Classification of Human Parasites, Vectors, and Similar Organisms

Lynne S. Garcia

From the Department of Pathology and Laboratory Medicine, UCLA Medical Center, Los Angeles, California

When common names are used to describe parasites and parasitic infections, these names may refer to different parasites in different parts of the world. To eliminate these problems in interpretation of names, a binomial system of nomenclature is used in which the scientific name consists of the genus and species.

Classification systems have been developed to indicate the relationship among the various species of parasites, and these schemes have been based primarily on life cycles and morphology of the organism. Closely related species are placed in the same genus, related genera in the same family, related families in the same order, related orders in the same class, and related classes in the same phylum, one of the major categories in the animal kingdom. Organisms in each category will have characteristics in common.

Parasites of humans are classified in six major divisions. These include the Protozoa (amebae, flagellates, ciliates, sporozoans, coccidia, microsporidia), the Nematoda or roundworms, the Platyhelminthes or flatworms (cestodes, trematodes), the Pentastomids or tongue worms (may be grouped with the arthropods), the Acanthocephala or thorny-headed worms, and the Arthropoda (e.g., insects, spiders, mites, ticks). Although these categories appear to be clearly defined, there may be confusion in attempting to classify parasites, often due to the lack of known specimens or the presence of strains or races of the same species with slightly different characteristics.

Reproductive mechanisms have been used as a basis for determining definitions of species, but there are many exceptions within parasite groups. Another difficulty in recognition of species is the ability and tendency of the organisms to alter their morphological forms according to age, host, or nutrition, which may result in different names for the same organism. In many cases, there may be alternation of parasitic and free-living phases in the life cycle. These organisms may be very different and difficult to recognize as belonging to the same species. However, newer molecular methods of grouping organisms have often confirmed taxonomic conclusions reached hundreds of years before by experienced taxonomists. As studies continue in parasitic genetics, immunology, and biochemistry, the species designation will be defined more clearly by use of highly sophisticated molecular techniques.

No attempt has been made to include every possible organism, but only those considered to be clinically relevant in the context of human parasitology. Not every organism listed below is a human pathogen. Also, although new classification names are proposed frequently and there may be some disagreement among scientists, this list is designed to provide nomenclature that is currently in use.

Protozoa

Amebae (Intestinal)
- Entamoeba histolytica
- Entamoeba dispar*
- Entamoeba hartmanni
- Entamoeba coli
- Entamoeba polecki
- Endolimax nana
- Iodamoeba bütschlii
- Blastocystis hominis

Flagellates (Intestinal)
- Giardia lamblia
- Chilomastix mesnili
- Dientamoeba fragilis
- Trichomonas hominis
- Enteromonas hominis
- Retortamonas intestinalis

Ciliates (Intestinal)
- Balantidium coli

Coccidia, Microsporidia (Intestinal)
- Coccidia
 - Cryptosporidium parvum
 - Cyclospora cayetanensis
 - Isospora belli
 - Sarcocystis hominis
 - Sarcocystis suihominis
- Microsporidia
 - Enterocytozoon bieneusi
 - Encephalitozoon intestinalis

Sporozoans, Flagellates (Blood, Tissue)
- Plasmodium vivax
- Plasmodium ovale
- Plasmodium malariae
- Plasmodium falciparum
- Babesia species
Flagellates (Leishmaniae, Trypanosomes)
- Leishmania tropica complex
- Leishmania mexicana complex
- Leishmania braziliensis complex
- Leishmania donovani complex
- Leishmania peruviana
- Trypanosoma brucei gambiense
- Trypanosoma brucei rhodesiense
- Trypanosoma cruzi
- Trypanosoma rangeli

Amebae, Flagellates (Other Body Sites)
- Ameba
 - Naegleria fowleri
 - Acanthamoeba species
 - Entamoeba gingivalis
 - Balamuthia mandrillaris (Leptomyxid ameba)
- Flagellates
 - Trichomonas vaginalis
 - Trichomonas tenax

Coccidia, Sporozoa, Microsporidia (Other Body Sites)
- Coccidia
 - Toxoplasma gondii
 - Sarcocystis "lindemanni"
- Sporozoa
 - Pneumocystis carinii
- Microsporidia
 - Nosema connori
 - Vittaforma corneae
 - Pleistophora
 - Trachipleistophora hominis
 - Brachiola
 - Encephalitozoon hellem
 - Encephalitozoon cuniculi
 - Encephalitozoon intestinalis
 - Encephalitozoon bieneusi
 - "Microsporidium"
 - Enterocytozoon bieneusi

Nematodes (Roundworms)

Intestinal
- Ascaris lumbricoides
- Enterobius vermicularis
- Ancylostoma duodenale
- Necator americanus
- Strongyloides stercoralis
- Trichuris trichiura
- Capillaria philippinensis

Tissue
- Trichinella spiralis
- Visceral larva migrans (Toxocara canis or Toxocara cati)

Ocular larva migrans (Toxocara canis or Toxocara cati)
Cutaneous larva migrans (Ancylostoma braziliense or Ancylostoma caninum)
- Dracunculus medinensis
- Angiostrongylus cantonensis
- Angiostrongylus costaricensis
- Gnathostoma spinigerum
- Anisakis species (larvae from saltwater fish)
- Phocanema species (larvae from saltwater fish)
- Contraaccaecum species (larvae from saltwater fish)
- Eustrongylides species
- Capillaria hepatica
- Thelazia species
- Gnathostoma species

Blood and Tissues (Filarial Worms)
- Wuchereria bancrofti
- Brugia malayi
- Brugia timori
- Loa loa
- Onchocerca volvulus
- Mansonella ozzardi
- Mansonella streptocerca
- Mansonella persimans
- Dirofilaria immitis (usually lung lesion; in dogs, heartworm)
- Dirofilaria species (may be found in subcutaneous nodules)

Cestodes (Tapeworms)

Intestinal
- Diphyllobothrium latum
- Dipylidium caninum
- Hymenolepis nana
- Hymenolepis diminuta
- Taenia solium
- Taenia saginata

Tissue (Larval Forms)
- Taenia multiceps (formerly Multiceps multiceps)
- Taenia serialis
- Spirometra mansoni
- Spirometra mansonii
- Diphyllobothrium species

Trematodes (Flukes)

Intestinal
- Fasciolopsis buski
- Echinostoma ilocanum
- Heterophyes heterophyes
- Metagonimus yokogawai
Liver/Lung

Clonorchis (Opisthorchis) sinensis
Opisthorchis viverrini
Fasciola hepatica
Paragonimus westermani
Paragonimus mexicanus
Paragonimus species

Blood

Schistosoma mansoni
Schistosoma haematobium
Schistosoma japonicum
Schistosoma intercalatum
Schistosoma mekongi

Pentastomids (Tongue Worms)

Tissue (Larval Forms)

Armillifer species
Linguatula serrata
Sebekia species

Nasopharyngeal (Adult Worms)

Armillifer species
Linguatula serrata

Acanthocephalans (Thorny-Headed Worms)

Intestine

Macrocanthorynchus hirudinaceus
Moniliformis moniliformis

Arthropods

Diplopo
da
Millipedes
Chilopoda
Centipedes

Crustacea

Copepoda: copepods (Cyclops)
Decapoda: crayfish, lobsters, crabs

Arachnida

Scorpiones: scorpions
Araneae: spiders (black widow, brown recluse)
Acari: ticks (Dermacentor, Ixodes, Argas, Ornithodoros)
Mites (Sarcoptes)

Insecta

Anoplura: sucking lice (Pediculus, Phthirus)
Siphonaptera: fleas (Pulex, Xenopsylla, etc.)
Dictyoptera: cockroaches
Hemiptera: true bugs (Triatoma)
Hymenoptera: bees, wasps, etc.
Coleoptera: beetles
Lepidoptera: butterflies, caterpillars, moths, etc.
Diptera: flies, mosquitoes, gnats, midges (Phlebotomus, Aedes, Anopheles, Glossina, Simulium, etc.)

Pentastomida

Tongue worms (see above)

* Entamoeba histolytica is being used to designate pathogenic zymodemes, while Entamoeba dispar is now being used to designate nonpathogenic zymodemes. However, unless trophozoites containing ingested red blood cells (E. histolytica) are seen, the two organisms cannot be differentiated on the basis of morphology. The laboratory report should indicate: Entamoeba histolytica/Entamoeba dispar.

† Although some individuals have changed the species designation for the genus Giardia to Giardia intestinalis or Giardia duodenalis, there is no general agreement. Therefore, for this listing, we will retain the name Giardia lamblia.

‡ Pneumocystis carinii has now been reclassified with the fungi.

Suggested Reading

Gibson DI. Nature and classification of parasitic helminths. In: Collier L,