Baryonic signatures in large-scale structure

A. Meiksin,1 Martin White2 and J. A. Peacock1
1Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ
2Departments of Physics and Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3080, USA

Accepted 1998 December 7. Received 1998 November 23; in original form 1998 September 18

ABSTRACT
We investigate the consequences of a non-negligible baryon fraction for models of structure formation in cold dark matter dominated cosmologies, emphasizing in particular the existence of oscillations in the present-day matter power spectrum. These oscillations are the remnants of acoustic oscillations in the photon–baryon fluid before the last scattering, for which evidence from measurements of the cosmic microwave background anisotropy is mounting. For acceptable values of the cosmological and baryon densities, the oscillations modulate the power by up to \(\Delta k \approx 0.05 \) Mpc\(^{-1}\). We study the effects of non-linear evolution on these features, and show that they are erased for \(k \gtrsim 0.2 \) Mpc\(^{-1}\). At larger scales, the features evolve as expected from second-order perturbation theory: the visibility of the oscillations is affected only weakly by non-linear evolution. No realistic CDM parameter combination is able to account for the predicted feature at \(k \approx 0.1 \) h Mpc\(^{-1}\) in the APM power spectrum, or the excess power at 100 h\(^{-1}\) Mpc wavelengths quoted by several recent surveys. Thus baryonic oscillations are not predicted to dominate existing measurements of clustering. We examine several effects that may mask the features that are predicted, and conclude that future galaxy surveys may be able to detect the oscillatory features in the power spectrum provided baryons comprise \(\gtrsim 15 \) per cent of the total density, but it will be a technically challenging achievement.

Key words: cosmic microwave background – cosmology: theory – large-scale structure of Universe.

1 INTRODUCTION
It is commonly assumed that the mass of the Universe is dominated by cold dark matter (CDM) and that baryons had a negligible influence on the development of large-scale structure. Recent estimates of the ratio of the baryon density to dark matter density suggest that this view may be incorrect. Because of the coupling between baryons and the cosmic microwave background (CMB) radiation during the recombination epoch, additional structure in the power spectrum will develop compared with a standard CDM scenario in which the power spectrum contains only one feature, at the horizon scale of matter–radiation equality. We discuss the detectability of such higher order effects in the context of currently favoured models for structure formation. We show that they will leave a significant imprint on the matter power spectrum that will be measurable with forthcoming galaxy redshift surveys for a wide range of parameters, including the possibility of a direct detection of acoustic oscillations in the galaxy power spectrum. Unlike the CMB, the imprint of the oscillations on the matter power spectrum would survive even if the Universe underwent early reionization, in which case they could only be revealed by large galaxy surveys.

The baryon density as determined by big bang nucleosynthesis (BBN) has been on the rise in recent years (see discussion in White et al. 1996). At the beginning of this decade, the baryon density was estimated to have a 95 per cent confidence range of \(\Omega_B h^2 = 0.0125 \pm 0.0025 \) (Walker et al. 1991; Smith, Kawano & Malaney 1993), where \(\Omega_B \) is the baryon density in units of the critical density, and \(h \) is the present Hubble parameter in units of 100 km s\(^{-1}\) Mpc\(^{-1}\). This range has recently broadened and shifted toward higher values. For example, the measurement of the primordial deuterium abundance by Tytler, Fan & Burles (1996) yields \(\Omega_B h^2 = 0.024 \pm 0.002 \pm 0.002 \pm 0.001 \), with the 1σ uncertainties being statistical, systematic, and theoretical respectively. While extragalactic assessments of \(\Omega_B \) have crept upwards, the measured abundance of deuterium in the interstellar medium (ISM) sets a ceiling of \(\Omega_B h^2 < 0.031 \) (Linsky et al. 1995), within the assumptions of the standard BBN paradigm. It may be possible to relax the nucleosynthesis bound on \(\Omega_B \) with new particle physics, an example being the decaying tau neutrino proposal of Gyuk & Turner (1994), or by allowing inhomogeneities in the baryon-to-photon ratio (see e.g. Mathews, Kajino & Orito 1996 and references therein). However, in the latter case, even with relaxed constraints on the primordial \(^7\)Li abundance one finds \(\Omega_B h^2 < 0.0325 \).

Support for a high baryon fraction is also provided by clusters of...

$$\Omega_B/\Omega_0 = 0.14 \pm 0.08 \left(\frac{h}{0.5} \right)^{-3/2}$$

(95 per cent confidence) with comparable lower limits quoted by other authors: Steigman & Fellen (1995) find $\Omega_B/\Omega_0 \geq 0.2(h/0.5)^{-3/2}$, while Evrard, Metzler & Navarro (1996) estimate $\Omega_B/\Omega_0 \geq 0.11(h/0.5)^{-3/2}$. Here $\Omega_0 = \Omega_{CDM} + \Omega_B$ is the total non-relativistic energy density relative to the critical density. Given the above discussion we consider $0.01 \leq \Omega_B h^2 \leq 0.03$ and $0.1 \leq \Omega_B h^2 \leq 0.25$ as a fair range of parameters and we shall work within this range except in Section 4, where we shall relax these assumptions.

For some time it has been recognized that a universe with a substantial baryon fraction will result in significant features in the matter power spectrum. Historically, Sakharov predicted oscillations in the matter power spectrum in a cold universe with no radiation component, building on the earlier work of Lifshitz. The oscillations were an imprint of sound waves as in the modern fluid equations. Note that the radiation power spectrum is not totally dominated by the CDM and features in the matter power spectrum $\Delta^2(k)$ will be generated. Here δ_B is the fractional density contrast $\langle \delta_B \delta_B \rangle$ at horizon crossing, $k = H_0/\mathcal{C}$, and $T(k)$ is the transfer function. Specifically, the linear power spectrum $\Delta^2(k)$ contains a series of peaks of small amplitude which arise from acoustic oscillations in the baryon–photon fluid prior to recombination, the same source as the much larger peaks in the CMB power spectrum, for which there is growing evidence.

We show in Fig. 1 the radiation and matter power spectra for a CDM model with $\Omega_0 = 0.4, \Lambda = 0, h = 0.65$ and $\Omega_B = 0.045$. The upper panel is contribution per $\ln(k)$ to the total variance in the CMB (scaled to unity at the smallest wavenumbers). The lower panel is the power per $\ln(k)$ in the matter, i.e. $\Delta^2(k)$, with the trend taken out using the BBKS fitting function (see text). The vertical dotted lines mark the positions of the peaks in the CMB power spectrum, which are 90° out of phase with the corresponding oscillations in the LSS power spectrum.

been assumed until recently. This has motivated us to look in detail at a variety of CDM models, including those with $\Omega_B < 1$, and to examine cases with a baryon fraction consistent with current constraints. For some of this regime the gravitational potential is not totally dominated by the CDM and features in the matter power spectrum

$$\Delta^2(k) = \frac{k^3 P(k)}{2\pi} = \delta_B^2 \left(\frac{ck}{H_0} \right)^{3+n} T^2(k)$$

will be generated. Here δ_B is the fractional density contrast $\langle \delta_B \delta_B \rangle$ at horizon crossing, $k = H_0/c$, and $T(k)$ is the transfer function. Specifically, the linear power spectrum $\Delta^2(k)$ contains a series of peaks of small amplitude which arise from acoustic oscillations in the baryon–photon fluid prior to recombination, the same source as the much larger peaks in the CMB power spectrum, for which there is growing evidence.

We show in Fig. 1 the radiation and matter power spectra for a CDM model with $\Omega_0 = 0.4, h = 0.65$ and $\Omega_B h^2 = 0.02$, calculated by numerical evolution of the coupled Einstein, Boltzmann and fluid equations. Note that the radiation power spectrum Δ^2_T is the contribution per $\ln(k)$ to the total variance in the CMB; it is closely related to the angular power spectrum $\ell^2 C_\ell$, but the two should not be confused. The top panel shows the radiation power spectrum, which exhibits a clear series of peaks. These peaks are modes, which are density maxima and minima of the oscillations of the photon–baryon fluid at recombination (see Appendix A for more details). The bottom panel shows the scale of the matter transfer function $T(k)$ for this same model, with the gross features [the bend from $T(k) \sim 1$ as $k \to 0$ to $T(k) \sim k^{-2}$ at $k \to \infty$] removed by normalizing by the fitting function for $T(k)$ provided by Bardeen et al. (1986) (hereafter BBKS):

$$T(k) = \frac{\ln(1 + 2.34q)}{2.34q} \left[1 + 3.89q + (16.1q)^2 \right]$$

$$+ (5.46q)^3 + (6.71q^4)^{1/4},$$

with $q = k h \Gamma^*$ and Γ^* a parameter. The BBKS fitting function provides a reasonable fit to $T(k)$ over the range of scales plotted, where $T(k)$ changes by 2 to 3 orders of magnitude. It is also in wide use and provides a practical reference standard. By taking the ratio

\[\Omega_0 = 0.4, h = 0.65, \Omega_B h^2 = 0.02\]

\[\Omega_0 = 0.4, h = 0.65, \Omega_B h^2 = 0.02\]
Baryonic signatures in large-scale structure

of our results to the BBKS results we can focus on finer scale features in the spectrum, with the prominent trends caused by matter–radiation equality removed.

We set the parameter Γ^* in the BBKS fitting function using the prescription of Sugiyama (1995):

$$\Gamma^* = \Omega_0 h \exp[-\Omega_0(1 + \sqrt{2h/\Omega_0})].$$

(4)

We have labelled this parameter Γ^* rather than Γ to emphasize that it governs the shape of the transfer function alone, and not the shape of $\Delta^2(k)$ if the initial spectrum is not scale-invariant. A more involved expression for Γ^* is given by Hu & Sugiyama (1996) (their equations D29, E12), but we shall use the simple scaling; it has received widespread use elsewhere, and it is informative to examine its accuracy. The BBKS fitting function itself is accurate only to about 5 per cent, even in the limit $\Omega_0 \rightarrow 0$, and this accounts for some of the discrepancy shown in Fig. 1. Finally, we should emphasize that Fig. 1 does not show the full effect of including baryons in the calculation of the power spectrum. Compared with a zero-baryon model with the same Ω_0, a model with baryons has less power on all scales smaller than $k \sim 10^{-2} h \text{Mpc}^{-1}$. This suppression of power on small scales is partly accounted for by the rescaling of Γ in equation (4). We reiterate that we have divided by the BBKS form purely in order to remove the trend and focus on the finer features in the power spectrum.

Fig. 1 shows that on scales $k \sim 0.1 h \text{Mpc}^{-1}$, there is a suppression of power relative to the BBKS fitting function. This is partly caused by inaccuracies in the BBKS fit, but there is also a physical effect at work: the baryons are supported by photon pressure at early times and their fluctuations cannot grow in amplitude until they are released from the photons. On small scales the peaks in the matter and radiation power spectra are out of phase because of velocity overshoot (Sunyaev & Zel’dovich 1970; Press & Vishniac 1980; Hu & Sugiyama 1996). The growing (decaying) mode of the perturbations projects primarily on to the velocity (density) of the perturbation at high k. At larger scales the phases of the peaks become comparable, as the growing mode is sourced more by the density. Further discussion is given in Appendix A. A thorough discussion of the physics in linear theory and an analytic fitting function for $T(k)$ are presented by Eisenstein & Hu (1998) and the application to 100-Mpc clustering by Eisenstein et al. (1998b). Where our results overlap, they are in good agreement.

The positions of the peaks in $P(k)$ are very insensitive to the cosmological parameters over the range of interest. In adiabatic CDM models the second peak is the most likely to be measured first, because it occurs at a more accessible scale than the first peak. We show the position (in Mpc^{-1}) of the second peak in adiabatic CDM models, as a function of $\Omega_0 h^2$ and $\Omega_b h^2$, in Fig. 2. The transfer functions for a grid of 35 models in total were calculated by numerical integration of the coupled Einstein, fluid and Boltzmann equations from before equality through to the present. In Fig. 3 we show $T(k)$ for a set of these models. On the absolute scale of the power spectrum, the features are small. Relative to the BBKS transfer function, however, the features are prominent. The peaks in $T(k)$ were found as the maxima and minima of $T(k)/T_{\text{BBKS}}(k)$ with an additional trend removed to account for the dip near $k \sim 0.1 h \text{Mpc}^{-1}$, as is visible in Fig. 4. Notice that the position varies by only 10 per cent for reasonable variations in these parameters, and can thus be very reliably predicted by models. For isocurvature models the peaks are shifted by a factor of approximately 1.5 to higher k. The other peaks form an almost harmonic series, as shown in Fig. 4 and discussed in Appendix A.

Figure 2. The position (in k space in Mpc^{-1}) of the second maximum in $T(k)$ compared with BBKS, as a function of $\Omega_0 h^2$ and $\Omega_b h^2$. Here $\Omega_b = \Omega_{\text{CDM}} + \Omega_0$. For measurements of distances in $h \text{Mpc}^{-1}$ the values of the contours need to be divided by h. Apart from this scaling, the position of the peak is almost independent of cosmological parameters.

Figure 3. The transfer function $T(k)$ for $\Omega_0 = 0.3, 0.4$ and $h = 0.6, 0.65$ and 0.7. Note that the features in $T(k)$ are quite small on the scale of the variation of $T(k)$, but prominent when the trend is removed, as shown in Fig. 4.

3 BEYOND LINEAR THEORY

The power spectra shown in Figs 1 and 4 are computed using linear perturbation theory, as discussed in Appendix A. However for COBE-normalized models, even the first few features are in the translinear regime ($\Delta \sim 0.1–1$), so it is far from clear that linear theory will apply to these oscillations. To compute the full non-linear power spectrum Δ^2, we have gone to second order in perturbation theory and performed N-body simulations as described below. Our conclusion is that the general trend of the non-linear effects is to suppress the peaks in the non-linear regime.

3.1 Normalization

As the persistence of the peaks depends on whether they lie above or below the scale of non-linearity, the absolute normalization of the models is important. The COBE normalization distinguishes between open and vacuum-dominated models. In the absence of tensor contributions, the horizon-crossing amplitude is

$$\delta_H = 1.95 \times 10^{-5} \Omega_0^{0.35-0.19 \ln \Omega_0 - 0.17(n-1)} \times \exp[-(n - 1) - 0.14(n-1)^2]$$

(5)

for open models and

$$\delta_H = 1.94 \times 10^{-5} \Omega_0^{0.785-0.05 \ln \Omega_0} \times \exp[-0.95(n - 1) - 0.169(n-1)^2]$$

(6)

for flat models (Bunn & White 1997). Thus if the models are COBE-normalized we would expect the open models to show more pronounced oscillations. However one can also normalize the models on small scales ($k = 0.2 h^{-1} \text{Mpc}$) using the abundance of rich clusters (see e.g. Pen 1998 and references therein). In this case the open and Λ models have very similar normalizations (Eke, Cole & Frenk 1996; Viana & Liddle 1996; Eke et al. 1998; Viana & Liddle 1998). We adopt the following simple fitting formula, which is near to the mean opinion on this issue:

$$\sigma_8 = 0.55 \Omega_0^{0.56}$$

(7)

(White, Efstathiou & Frenk 1993a). In what follows, we will generally force the models to fit both COBE and the abundance of rich clusters by adjusting the primordial spectral index n appropriately. Fig. 5 shows the values of n required in order for CDM models to satisfy these constraints for various values of Ω_b, Ω_0 and h. This was calculated using the approximate transfer function of Eisenstein & Hu (1998), and neglecting any tensor contribution to CMB anisotropies. It is apparent that, for reasonable baryon content, $\Omega_0 = 1$ models generally require a substantial tilt towards $n < 1$, whereas low-Ω models need $n > 1$ (White & Silk 1996). The smallest degree of tilt is required in the case of ΛCDM and a low baryon fraction.

Table 1

<table>
<thead>
<tr>
<th>Model</th>
<th>Ω_0</th>
<th>$\Omega_b h^2$</th>
<th>h</th>
<th>n</th>
<th>Γ^*</th>
<th>σ_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΩCDM</td>
<td>1.0</td>
<td>0.00375</td>
<td>0.50</td>
<td>0.748</td>
<td>0.370</td>
<td>0.55</td>
</tr>
<tr>
<td>ΩCDM</td>
<td>0.4</td>
<td>0.0300</td>
<td>0.65</td>
<td>1.258</td>
<td>0.198</td>
<td>0.92</td>
</tr>
<tr>
<td>ΩCDM</td>
<td>0.4</td>
<td>0.0300</td>
<td>0.65</td>
<td>1.030</td>
<td>0.198</td>
<td>0.92</td>
</tr>
<tr>
<td>EHSS</td>
<td>1.0</td>
<td>0.1440</td>
<td>0.60</td>
<td>0.889</td>
<td>0.259</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Figure 4. The linear theory matter power spectrum with the trend removed by dividing by the best-fitting BBKS analytic fit to $T(k)$. Higher Ω_0 gives larger oscillations.

Figure 5. The values of primordial spectral index required in order for CDM models to satisfy the constraints of correct normalization on both COBE and cluster scales, for the indicated values of h. This figure assumes no tensor contribution to the CMB anisotropy.
3.2 Perturbation theory

As the features we are interested in occur in the regime where $\Delta^2(k) \sim 1$, we first computed the correction to the linear theory result using second-order perturbation theory (Juszkiewicz 1981; Vishniac 1983; Makino, Sasaki & Suto 1992; Jain & Bertschinger 1994). The basic method involves evaluating two convolution integrals numerically,

$$\Delta^2_{\text{D}}(k) = \Delta^2_{\text{L}}(k) + \int_0^1 \frac{d \ln q}{d \ln \hat{q}} \Delta^2_{\text{L}}(k \cdot \hat{q}) K_1(k \cdot \hat{q}) \hat{q} + \Delta^2_{\text{L}}(k) \int_0^1 d \ln q \Delta^2_{\text{L}}(q) K_2(k \cdot q),$$

(8)

where $\Delta^2_{\text{D}}(k)$ is the power spectrum including second-order corrections, and $K_1(k \cdot q)$ and $K_2(k \cdot q)$ are integration kernels. These are given by

$$K_1(k \cdot q) = \frac{1}{196 q^4} \left(\frac{k^2}{q^2} - 1 \right) \left(3 q^2 k^2 + 7 q k^3 - 10 q^2 k^2 \mu^2 \right),$$

(9)

where $\mu = k \cdot q / (k \cdot q)$, and

$$K_2(k \cdot q) = \frac{1}{252 q^2} \left(\frac{k^2}{q^2} - 1 \right) \left(7 q^2 + 50 q^2 k^2 - 21 q^4 + 3 \right) \left(q^2 - k^2 \right)^2,$$

$$\times \ln \left(\frac{k + q}{|k - q|} \right).$$

The perturbation expansion formally breaks down for large $\Delta^2_{\text{D}}(k)$. In principle the integration over q should be terminated at some maximum wavenumber; in practice, the results are not very sensitive to the upper limit. We note that, for an Einstein–de Sitter universe, the second-order correction to the power spectrum evolves as a^4, while the power spectrum in linear order evolves as a^2, where a is the expansion factor. We adopt the same expressions for the open models below, since the additional corrections to the second-order terms appear small (Catelan et al. 1995).

One may also compare the second-order calculation with the fully non-linear scaling formula developed by Peacock & Dodds (1996). Extension of this formalism to treat oscillatory spectra is difficult, because there is no unique definition of a local spectral index. A naive application of the results, using the spectral index from the best-fitting BBKS spectrum and the full oscillatory power spectrum in Δ^2_{D}, results in a very poor match to the exact non-linear spectrum. We have not pursued this matter further.

3.3 N-body models

In order to find the exact behaviour of the spectrum, we ran a series of N-body simulations using two PM codes. The first was an adaptation of Hugh Couchman’s AP3M code (Couchman 1991; see also Peacock & Dodds 1996) and the second was the Hydra N-body hydrodynamics code, run in collisionless mode (Couchman, Thomas & Pearce 1995). The agreement in $\Delta^2(k)$ between both of these codes and an independent PM code (see Appendix B) was very good, indicating that the numerical results were stable. Note that these codes treat all matter as cold, whether or not some fraction is baryonic or HDM. Such differences have a strong effect on small scales, but for $k \lesssim 1 \ h \ Mpc^{-1}$ are negligible.

Having determined that the PM code adequately calculated the non-linear power spectrum on the scales of interest, we used its superior speed to allow averaging over many realizations. For each model the PM code was run many times (typically 10^5 in 64^3 mode for the low-k modes and a few times in 128^3 mode for the high-k modes) with a starting redshift of $z = 20$, and different Gaussian initial conditions. The resulting determinations of $\Delta^2(k)$ were averaged over the runs. An alternative procedure designed to reduce scatter at low k, allowing random phases but with fixed amplitudes (Peacock & Dodds 1996), was found not to be sufficiently accurate for our purposes. With a careful treatment of binning effects, we believe our results for the power spectrum are accurate to 1 per cent.

3.4 Real-space power spectra

The results of these procedures are shown in Figs 6–9. The high-k oscillations in $\Delta^2(k)$ are suppressed once second-order effects are included. There is an additional reduction of power on somewhat longer scales ($k < 0.1 \ h \ Mpc^{-1}$). Second-order perturbation theory provides a reasonable, but not highly accurate, description of the non-linear effects. It successfully predicts the scale of complete suppression of the peaks, but breaks down at $\Delta^2(k) \lesssim 1$.

The clear message of these figures is that only one unambiguous baryonic feature in the spectrum is expected. The first baryonic peak relative to BBKS is scarcely altered by non-linear evolution, but it is not clear that it is detectable. As we discuss below, the likely future errors on the power spectrum at these very large scales will not allow such a 10 per cent feature to be picked out. In any case, it is very broad in k-space extent, and will depend rather sensitively on which BBKS model is used as a reference. In contrast, the second peak is relatively narrow, being confined to roughly a factor of 1.3 in k. This feature is usually near the maximum wavenumber at which it can survive non-linear damping, and the observational errors are much smaller. Finally, we have shown in Section 2 that the position

![Figure 6](https://academic.oup.com/mnras/article-abstract/304/4/851/1048428/004114f9ba686c82b6c5b3c7620f72c6)

Figure 6. The effect of non-linear evolution on the oscillations in the power spectrum. We show (solid line) the ratio of the linear power spectrum for the model suggested by Eisenstein et al. EHS with $\Omega_m = 1$, $h = 0.6$, $\Omega_b = 0.4$ and $n = 0.889$ (we have lowered n to provide a better fit to the cluster abundance) to a BBKS model. The BBKS transfer function has $f^* = 0.259$ and the model is COBE-normalized. Note that the BBKS transfer function with f^* as provided by Sugiyama (1995) does not provide a good fit to the numerical $T(k)$. At small scales a much better fit is provided by $f^* = 0.265$. The dashed line shows the ratio including second-order corrections; the small arrow near $k \sim 0.4 \ h \ Mpc^{-1}$ indicates where $\Delta^2(k) = 1$. The open squares are the results from N-body simulations with the CDM spectrum in real space, filled squares the results in redshift space. Note that the oscillations for $k \gtrsim 0.1 \ h \ Mpc^{-1}$ are washed out.
of this peak is quite robust once \(h \) is determined. Future efforts to prove the importance of baryons in determining the form of the fluctuation should therefore concentrate on this signature.

The results so far have been entirely in real space. However, the only statistics which are independent of redshift-space effects are projected statistics, e.g. the projected correlation function,

\[
\mathcal{Z}(r) = \int \xi[(r^2 + x^2)^{1/2}] \, dx,
\]

or the angular correlation function \(\omega(\theta) \). Integration over a wide selection function damp the visibility of oscillations. With typical survey selection functions the features are suppressed to an unmeasurable level. To avoid this one must use subsamples with a narrow distribution in depth. We will discuss the Fourier space analogue of \(\mathcal{Z}(r) \) calculated on narrow shells selected using photometric redshifts in Section 5.

3.5 Redshift-space power spectra

The redshift-space power spectrum is distorted compared with the real-space power spectrum by peculiar velocities. On large scales this leads to an increase in power (Kaiser 1987) because objects stream towards overdensities. On short scales virialized motions suppress clustering in redshift space.

We have computed the power spectrum in redshift space, \(\Delta^2(k) \), from the \(N \)-body codes. For simplicity, an infinitely distant observer

![Figure 7](image7.png)

Figure 7. As in Fig. 6 but for a model with \(\Omega_0 = 1 \), \(h = 0.5 \), \(\Omega_b = 0.15 \) and \(n = 0.748 \). The BBKS transfer function has \(\Gamma'' = 0.37 \) and the model is COBE-normalized.

is assumed; i.e. the redshift distortions are along a single Cartesian axis of the box. The results are in reasonable agreement with analytical models of the redshift-space distortion, which involve convolving the Kaiser (1987) result with an exponential on small scales (Cole, Fisher & Weinberg 1995). However, the transition from enhancement to suppression of \(\Delta(k) \) starts to set in near \(k \sim 0.1-0.2 \, h \, \text{Mpc}^{-1} \), and by \(k \sim 0.3-0.5 \, h \, \text{Mpc}^{-1} \) the suppression is severe. As the position of the features we are proposing to observe is near \(k \sim 0.1 \, h \, \text{Mpc}^{-1} \), an interpretation of the power spectrum in redshift space requires a careful modeling of the redshift-space distortions.

We show \(\Delta^2(k) \) as the filled squares in Figs 6, 7, 8 and 9. Note that the appearance of the baryonic features is altered by the redshift-space distortions, but persists in a recognizable form. As in the real-space results, the only feature that will be robust with respect to how the smooth underlying spectrum is defined will be the second peak, which is expected to give a roughly 10 per cent boost to the power in a range of \(k \) of about a factor of 1.3 centred on \(k = 0.055 \, h \, \text{Mpc}^{-1} \). The detection of this signature will be an observational challenge but, as we discuss below, it may be feasible.

4 FITTING CLUSTERING DATA

So far our discussion has been confined to a firm prediction for the CDM family of models: for large \(\Omega_b \) and low \(\Omega_m \), we expect to see oscillations in the matter power spectrum arising from the same mechanism (acoustic waves before decoupling) that produced the oscillations in the CMB spectrum, for which evidence is mounting. We next consider the possibility that tentative evidence for the oscillations has been found in recent surveys.

There are several surveys which have quoted evidence for excess power on 100-Mpc scales. The first source of evidence was the Broadhurst et al. (1990) pencil-beam surveys, which quoted an excess of power on 128 \(h^{-1} \, \text{Mpc} \) wavelengths. The two-dimensional analysis of the Las Campanas Redshift Survey (LCRS; Landy et al. 1996) also reported a statistically significant bump in the power spectrum at \(k \sim 0.06 \, h \, \text{Mpc}^{-1} \) (but see Bromley & Press, in preparation). Recently Einasto et al. (1997a,b) have claimed to find 120 \(h^{-1} \, \text{Mpc} \) periodicity in the three-dimensional distribution of superclusters. Evidence for a distinct kind of excess power on large scales is the broad bump detected around \(k = 0.1 \, h \, \text{Mpc}^{-1} \) in the APM and IRAS real-space data (Saunders, Rowan-Robinson & Lawrence 1992; Maddox, Efstathiou & Sutherland 1996; Peacock 1997).

![Figure 8](image8.png)

Figure 8. As in Fig. 6 but for a model with \(\Omega_0 = 0.4 \), \(\Omega_m = 0.6 \), \(h = 0.65 \), \(\Omega_b h^2 = 0.03 \) and \(n = 1.030 \). The BBKS transfer function has \(\Gamma'' = 0.198 \) and the model is COBE-normalized.

![Figure 9](image9.png)

Figure 9. As in Fig. 6 but for a model with \(\Omega_0 = 0.4 \), \(\Omega_m = 0 \), \(h = 0.65 \), \(\Omega_b h^2 = 0.03 \) and \(n = 1.258 \). The BBKS transfer function has \(\Gamma'' = 0.198 \) and the model is COBE-normalized.
The intriguing possibility is that these surveys may be indicating the existence of acoustic oscillations in the underlying matter power spectrum. From our earlier discussion it appears that one cannot explain these features from the linear-theory mass power spectrum of an adiabatic CDM model with \(\Omega_B \) constrained by standard BBN. What would be required to explain such features? This question has been addressed recently in linear theory by Eisenstein et al. (1998a). They identify two models which might fit the data, one with low \(\Omega_B \) and one with high \(\Omega_B \). As expected from the discussion in Section 2, the parameters required for either of these models do not appear credible from other considerations (e.g. BBN constraints on the baryon fraction). However these models provide, by construction, the parameters required for either of these models to explain these features from the linear-theory mass power spectrum. The existence of acoustic oscillations in the underlying matter power spectrum is a consequence of the baryonic matter fraction in the universe (BBN). However, these models do not appear credible from other considerations (e.g. BBN constraints on the baryon fraction). However, these models provide, by construction, the parameters required for either of these models to explain these features from the linear-theory mass power spectrum.

The SDSS Northern polar cap (NCP) redshift survey will contain \(10^6 \) galaxies with a median distance of \(\sim 350 h^{-1} \) Mpc. An additional \(\sim 5 \times 10^7 \) galaxies will be measured in five bands in a photometric survey \(\sim 5 \) magnitudes deeper than the redshift catalogue. It will be possible to measure the two-dimensional power spectrum (or angular correlation function) using this deeper survey. It will additionally be possible to extract measurements of the three-dimensional power spectrum from the larger catalogue by the use of photometric redshifts.

A critical issue for the detection of baryonic features is the expected precision of these power estimates. Feldman, Kaiser & Peacock (1994), hereafter FKP) studied this question in some detail, and we now summarize their main results (see also Tegmark et al. 1998). Throughout it is assumed that on the scales of interest the modes remain approximately independent. While this is roughly true, in order to attain the high levels of precision of which the SDSS is capable this assumption may need to be improved (Meiksin & White 1998). The FKP formula for the fractional variance in the power measured for a Gaussian field by averaging modes in some \(k \)-space volume \(V_k \) is their equation (2.3.2):

\[
\frac{\sigma^2}{P} = \frac{(2\pi)^3}{V_k} \int d^3r \overline{n^4}[1 + \overline{n}P]^2 \overline{w^2}^2,
\]

where \(\overline{n(r)} \) is the mean density defined by the survey selection, and \(w(\vec{r}) \) is a weight function, which should be set to \(w = [1 + \overline{n}P]^{-1} \) for minimum variance. This formula assumes that the \(k \)-space region is large in all directions compared with the window function resulting from transforming the survey geometry. This assumption breaks down at the very largest scales; see Goldberg & Strauss (1998) for a more sophisticated analysis. Also, in the case where \(V_k \) is a shell in \(k \) space, rather than an isolated region, the above formula should be multiplied by a factor of 2 to allow for the fact that the density field is real (FKP equation 2.4.6).

In the simple case of a large survey where shot noise is negligible, \(\overline{nP} \gg 1 \), this expression becomes simply

\[
\frac{\sigma^2}{P} = [2 \times (2\pi)^3(V_k V)^{-1}.
\]
where V is the survey volume. This reflects the fact that the density of states in k space is $(2\pi)^3/V$. The weight function automatically cuts the survey off at the point where shot noise is starting to become important. We may choose, however, to analyse a volume-limited subsample for which the shot noise is negligible.

FKP also give an expression (their 2.2.6) for the covariance of the power estimates at different wavenumbers. If shot noise is negligible, this says that the two-point correlation function for fluctuations in power is just the Fourier transform of \bar{P}, or

$$\langle \delta P(k)\delta P(k+\Delta k) \rangle = \bar{P}(k)^2. \tag{14}$$

where $f(y) = 3(\sin y - y \cos y)/y^3$. This has its first zero at $\Delta k = 4.5/R$, suggesting that samples of the power at a spacing of $\geq 0.013 \ h\ Mpc^{-1}$ will be uncorrelated. The transform of the real conical window function is in practice about 15 per cent broader than would be calculated just on the basis of the effective volume of the survey. Overall, this implies that we can treat estimates of power separated by more than about $0.015 \ h\ Mpc^{-1}$ as being effectively completely uncorrelated. Note that this is a rather more conservative criterion than the $\Delta k = 0.0043 \ h\ Mpc^{-1}$ assumed by Goldberg & Strauss (1998). According to our calculations, the power correlation coefficient at this separation should be around 0.5. This may explain why they found slightly too small uncertainties in model fits to the power spectra when using FKP error bars.

We show in Fig. 10 the error bars that the SDSS NPC redshift survey should be able to produce on the power spectrum. The error bars are for bins with a constant spacing of $\Delta k = 0.015 \ h\ Mpc^{-1}$ in wavenumber. The above formula suggests a fractional power error of

$$\frac{\sigma_P}{P} = \sqrt{\frac{4\pi^2}{V}} = (k/0.0039 \ h\ Mpc^{-1})^{-1}. \tag{15}$$

The NPC survey can be extended in several ways which will enhance its ability to measure $\Delta^2(k)$ at low k. The first of these will be by autocorrelation including the Southern Redshift Survey, which provides several long baselines between the north and south to constrain the large-scale power. Secondly a deeper survey will be done using bright red galaxies, which could reach to an effective depth of close to 1 Gpc. This will at least double the number of independent modes compared with the NPC survey, with a corresponding reduction of the errors by a factor of 2. In Fig. 10 we show representative error bars corresponding to $\Delta k = 0.0075 \ h\ Mpc^{-1}$ and $\sigma_P/P = (k/0.00195 \ h\ Mpc^{-1})^{-1}$.

Because of the great depth to which QSO sources may be detected, it might be hoped that they could be used to obtain an even more precise measure of the power spectrum. Unfortunately their sparse numbers would restrict any such measurement to being shot noise dominated in the foreseeable future. For example, Warren, Hewett, & Osmer (1994) find the proper density of QSOs in a sample slightly deeper ($m < 20$) than either the SDSS or 2dF samples peaks at a value of $\bar{n}_{QSO} = 10^{-35} \ h^3 \ Mpc^{-3}$ at $z = 3.3$ ($n_0 = 0.5$). A fiducial value for the power spectrum today of $P = 5000 \ h^{-3} \ Mpc^3$ corresponds to $P = 300 \ h^{-3} \ Mpc^3$ at $z = 3.3$, an order of magnitude smaller than the shot noise contribution $\bar{n}_{QSO} \sim 3000$. It is quite likely that the QSOs are a biased tracer of the underlying mass fluctuations. Still, the number of QSOs must be at least a factor $100/b_{QSO}$ larger, where b_{QSO} is the bias factor, to detect the baryonic signature in the power spectrum. At this time it is unclear whether QSOs even exist in such numbers for plausible bias factors.

Finally one could imagine using photometric redshifts for the full 5×10^7 galaxies in the photometric catalogue to compute $\Delta^2(k)$ at low k where the effects of the redshift errors are less important. The larger number of galaxies allows one to probe deeper, and reduces the errors at low k as in the BRG sample. How well this may be done in practice will depend on the redshift distribution of the galaxies. The distance errors from photometric redshifts at low z are of the order of $\sigma = 50 \ h^{-1} \ Mpc$ (Brunner et al. 1998). The power spectrum is strongly affected when $k\sigma = 1$, or $k \approx 0.02 \ h^{-1} \ Mpc$. On the other hand, if there is a sufficient number of galaxies to high redshifts, say $z = 1$, then the decreased comoving differential path length with redshift will increase the usable region in (comoving) k space up to $k = 0.04 \ h^{-1} \ Mpc$ if errors as small as $k\sigma = 0.02$ may be achieved to these high redshifts (Connolly et al. 1995). This may be adequate for a detection of the primary, and largest, peak. Systematic errors are still potentially large in this range, but they may be sufficiently controllable. The question of how to deal with the effect of evolution in these very deep surveys, however, needs further study.
These questions aside, the error bars shown in Fig. 10 represent a conservative estimate which may be able to be improved upon with more work. Clearly the ability of the SDSS to measure the oscillations in $\Delta^2(k)$ will depend on the underlying cosmological parameters.

5.2 Degenerate models

We quantify the ability of the SDSS to detect the presence of the acoustic oscillations by computing the expected χ^2 between a power spectrum with oscillations and a corresponding limiting case with no baryons. In so doing, we assume that non-linear mode coupling can be neglected and the power estimates measured at the various sampling points are statistically independent of each other. Statistical independence is a stronger assumption than the result proved above, which is that sufficiently well-separated power estimates are uncorrelated. In practice, the difference appears to be small, and the reduced χ^2 values for the fit to the exact spectrum are very close to unity. We therefore neglect this technical distinction. Our neglect of non-linear mode coupling is slightly optimistic, but will not alter our results too much provided we work at $k < 0.1 \, h \, \text{Mpc}^{-1}$ (Meiksin & White 1998).

In Fig. 10, we show a comparison between the fiducial ΛCDM model and a variant with $n = 0.96, h = 0.56$ and $\Omega_0 = 0$. The non-linear spectrum was again calculated from the N-body code, even though there are no oscillations to render the Peacock & Dodds (1996) procedure inapplicable. We found that the non-linear scaling prescription was not always accurate enough for our purposes, which may be an important consideration when analysing future high-precision surveys. The model, which we fitted by eye, has the large-scale clustering amplitude held fixed at the COBE central value (Bunn & White 1997). We allowed the tilt and ‘shape’ to vary to obtain the closest fit to our ΛCDM model. The data points and errors are those expected for the SDSS bright red galaxy sample and the NPC sample, assuming ΛCDM is the true underlying model. The NPC sample is able to distinguish the two models at the 3σ level only for $k > 0.33 \, h \, \text{Mpc}^{-1}$. The greater depth of the BRG sample permits a clear distinction at the 3σ level to be made between the two models from the $k < 0.045 \, h \, \text{Mpc}^{-1}$ measurements. These measurements, however, may be difficult to achieve because of correlations in the photometry on these scales caused by either intrinsic measurement error or residual correlations in Galactic extinction. Confining the comparison to larger k values requires points with $k > 0.13 \, h \, \text{Mpc}^{-1}$, for which $\Delta^2(k) > 0.5$, for the BRG sample to separate the models at the 3σ level. Because the effects of bias and redshift-space distortions become difficult to estimate on these scales, obtaining low-k measurements may be required. Alternatively, under the assumption that the dominant errors in both experiments are statistical, it is possible that a combined fit of the CMB anisotropy data from MAP and the SDSS data will break any degeneracy in the quasi-linear regime. This has been shown using a linear analysis by Eisenstein, Hu & Tegmark (1998b). Note, however, that the second harmonic in Fig. 10 is invisible even to the BRG sample: over $0.045 < k < 0.1 \, h \, \text{Mpc}^{-1}$ the BRG sample rejects the non-baryonic model with a confidence of only 90 per cent. If the depth of the BRG is able to reach fully to 1 Gpc, then the situation improves. With the increased number of modes and precision, the BRG sample would then be able to distinguish the baryonic model from the non-baryonic model over the range $0.045 < k < 0.1 \, h \, \text{Mpc}^{-1}$ with a confidence of 99.93 per cent. This optimistically presumes that evolution of BRGs over such a broad range in ages is well understood. It also neglects intrinsic correlations in the power spectrum, which are moderately large even near $k = 0.1 \, h \, \text{Mpc}^{-1}$ (Meiksin & White 1998).

Two effects need to be considered further before a case can be made for the detectability of baryonic features. The first is the question of whether bias alters their visibility. We have assumed linear bias, i.e. $\delta N_g/N_f = b b_m \rho_m$, where N_g denotes the galaxy counts, ρ_m is the total matter density, and b is the bias factor. However, while semi-analytic modelling has helped us to make some progress in understanding bias (Kauffmann, Nusser & Steinmetz 1997), it is not a priori clear whether the transformation between mass and light affects the relative visibility of the baryonic features. For the ΛCDM model we have carried out experiments with simple non-linear modifications of the final density field, such as $\rho \rightarrow \rho^B$. This confirms that, on sufficiently large scales, linear bias is indeed a good approximation, even when the spectrum contains features (see also Scherrer & Weinberg 1998). Some results for ρ^B “biasing” are shown in Fig. 11. Note that on large scales the bias is linear, while it becomes more scale-dependent on small scales. Even for large enough B that the scale dependence would be strong, the second peak in the power spectrum is still present. These experiments remain preliminary. A definitive answer to this question would require an understanding of the nature of galaxy bias. As a first step beyond our simple model one could compute the halo–halo correlation function, or include hydrodynamics to identify sites of galaxy formation. Neither of these approaches is feasible with our PM code.

Secondly, when comparing power spectra measured at different redshifts, care must be taken to account for evolution. Within the biased galaxy formation paradigm the evolution of $\Delta^2(k)$ with z can be quite complicated and non-monotonic, unlike the evolution of Δ^2_{matter} as has been pointed out recently by several authors (Brainerd & Villumsen 1994; Ogawa, Roukema & Yamashita 1997; Bagla 1998; Primack et al. 1998) the contribution to the clustering strength comes both from the underlying mass power spectrum (which grows with z) and the bias of the object, which is a function of its rarity at a given z (and typically decreases with z). Preliminary observational evidence for evolution has recently been found.
(Giavalisco et al. 1998; Connolly, Szalay & Brunner 1998). Although eventually it may be possible to avoid the uncertainties introduced by bias by measuring the dark matter fluctuations directly through gravitational lensing (Seljak 1998; Kaiser 1998), for the upcoming large surveys it will remain an issue.

Lastly, this analysis has focused on modes with \(k \gtrsim 0.04 \, h \, \text{Mpc}^{-1}\), because on scales larger than this several systematic issues become important. For example, a correction for extinction to 10 per cent of the true power across the survey is required to control systematic errors on the power spectrum on larger scales (for currently popular models), and this is quite difficult to achieve. Correlations in the photometric errors have similar effects.

5.3 Two-dimensional surveys

The discussion so far has focused exclusively on redshift surveys. However for the SDSS there will be a much larger number of objects for which the photometry and positions will be known, but not the redshifts. As mentioned previously, in a fully two-dimensional survey the oscillations in the power spectrum will become immeasurably small because of projection effects. By making use of photometric redshifts, however, the photometric catalogue can be used to select redshift shells, which may easily be < 20 per cent in width (Brunner et al. 1998). With such shells, the features in large-volume three-dimensional surveys are not significantly washed out by projection. We shall work with shells of 20 per cent width. Such relatively broad shells have the advantage of containing a large number of galaxies, thus reducing the shot noise. As it turns out, we will show that it is not the shot noise that is the limiting factor, but rather the number of uncorrelated measurements of the power spectrum that may be made. For this reason three-dimensional surveys hold more promise than quasi-two-dimensional surveys for finding the baryonic features.

A second reason to consider relatively broad shells is to reduce the effect of redshift-space distortions. Photometric redshifts are a combination of true redshifts (since they are sensitive to the shifting the effect of redshift-space distortions. Photometric redshifts are a dimensional surveys for finding the baryonic features.

Figure 12. The persistence of oscillations in the two-dimensional power spectrum \(P_{2D}(K)\). Solid lines show the full non-linear calculation, dashed lines linear theory. The galaxy selection function is a Gaussian centred at \(z = 0.3\) with width 20 per cent, which should be easily selectable using photometric redshifts. Note that the features, which become immeasurably small with an APM-like selection function, survive convolution with a narrow redshift window. The error bars approximate those expected from the SDSS survey. The model is the same as in Fig. 10.

we would eventually recover the famous Kaiser factor \((1 + 2f/3 + f^2/5)\), which enhances large-scale power in redshift space. For 20 per cent shells this enhancement could affect the first feature in \(P(k)\) near \(k \sim 0.02 \, h \, \text{Mpc}^{-1}\), and a more sophisticated analysis would be needed.

We show a two-dimensional projection power spectrum in Fig. 12. The circular Sloan area has an effective radius of \(\Theta = 1\) rad (for a flat sky). Its transform is \(2J_1(K\Theta)/K\Theta\), which has its first zero at \(K = 3.83/\Theta\). We should therefore be able to deduce uncorrelated estimates of angular power spectra, provided the bins in angular wavenumber are wider than \(\Delta K = 4\). The expected fractional power errors in this case are

\[
\frac{\sigma_P}{P} = \frac{\sqrt{4\pi}}{AK\Delta K} = (K/1.0)^{-1/2},
\]

assuming the minimal uncorrelated sampling of \(\Delta K = 4\). Note that, in two dimensions, the error bars decline with wavenumber much more slowly than in three-dimensions, reflecting the larger number of modes in the three-dimensional case. This difference means that it is much harder to detect the baryon oscillations in the two-dimensional case; for the models considered here, the characteristic second harmonic would never be detectable. As shot noise is not a major contributor to the error bars in either two or three dimensions, the advantage of a larger number of objects in the sample is vastly outweighed by the reduced number of modes. This consideration obviously applies to other methods of measuring the power spectrum (e.g. lensing) where only two-dimensional information is available.

6 SUMMARY

If the baryonic density is an appreciable fraction of the matter density then the large-scale power spectrum is predicted to have features in addition to the break at the scale of matter–radiation equality. We have examined the observability of such features, specifically the oscillations on scales of 10–100 \(h^{-1}\) Mpc, which are the remnants of acoustic oscillations in the photon–baryon fluid
before the last scattering. Our principal conclusions may be summarized as follows.

(1) The linear theory of these processes is well understood, and may be described as resulting in a series of ‘bumps’ in power relative to a reference zero-baryon model.

(2) The effect of largest amplitude (a factor of perhaps 1.5 in power) is a broad hump at low k. A clearer observational feature is the second harmonic, which is expected to lie near $k = 0.055 \text{Mpc}^{-1}$ for most models, and which is relatively narrow in k space.

(3) Non-linear effects act to wash out the oscillations at higher k due to mode coupling. Second-order perturbation theory provides a qualitative description of the effect, but is not quantitatively accurate.

(4) For acceptable values of the cosmological and baryon densities, the oscillations may be measurable with forthcoming surveys. This will best be done with three-dimensional surveys, rather than quasi-two-dimensional surveys based on photometric redshifts or lensing. The measurement of a baryon signature, however, will be extremely demanding. A detection of the broad low-k hump, the clearest signature of the baryons, will require accurate measurements of the power spectrum for $k < 0.055 \text{hMpc}^{-1}$. Because of degeneracy between models, an unambiguous detection of the second harmonic will require a precise determination of the amplitude of the fluctuations, as could be provided by measurements of the CMB anisotropy, for example.

ACKNOWLEDGMENTS

MW thanks Matt Craig, Marc Davis and George Efstathiou for useful conversations on N-body code and Wayne Hu for conversations on baryonic features. AM and MW thank Alex Szalay for useful conversations on baryonic features. AM and MW thank Hugh Couchman for enlightenment on the operation of Hydra. MW was supported by the NSF.

REFERENCES

Broadhurst T. J., Ellis R. S., Koo D. C., Szalay A. S., 1990, Nat, 343, 726
Einasto J. et al., 1997a, Nat, 385, 139
Gradsthteyn I. S., Ryzhik I. M., 1980, Table of Integrals, Series and Products
Academic Press, New York
Hu W., Spergel D., White M., 1997, PRD, 55, 3288
Peebles P. J. E., 1987b, Nat, 327, 210
Peebles P. J. E., 1987b, Nat, 327, 210

APPENDIX A: FIRST-ORDER PERTURBATIONS

The matter and radiation power spectra used in this paper were calculated numerically by evolution of the coupled Einstein, fluid and Boltzmann equations in synchronous gauge (for details of the code see White & Scott 1996; Hu et al. 1995). However to understand the physics behind the oscillations it is simpler to use the Newtonian gauge. The relation between these two gauges is discussed in e.g. Hu, Spergel & White (1997).

We start with the fundamental equations describing the dynamics of a relativistic fluid. A physical interpretation and description of these equations can be found in Hu & White (1996), to which the reader is referred for more details. The evolution of the photons and baryons in a metric perturbed by density fluctuations in the 4th normal mode is given in the Newtonian gauge as

\[\dot{\Theta}_0 = -\frac{k}{3} \Theta_1 - \Phi, \]

\[\dot{\Theta}_b = -kV_b - 3\Phi, \]

for the continuity equations and

\[\dot{\Theta}_1 = k(\Theta_0 + \Psi - \frac{1}{6} \Pi_i) - \tau(\Theta_1 - V_b), \]

\[V_b = -\frac{\dot{a}}{a} V_b + k\Psi + \tau(\Theta_1 - V_b)/R, \]

for the momentum conservation or Euler equations of the photons and baryons respectively. The evolution of the cold dark matter is the same as that of baryons except for the \(\tau \) terms which describe the coupling to the photons. Overdots are derivatives with respect to conformal time \(\eta = \frac{\int dt/a}{R} \), \(R = 3\pi^2/4\alpha_0 \) is the baryon–photon momentum density ratio, and \(\tau \) is the differential Compton optical depth. The fluctuations are defined as the isotropic temperature perturbation \(\Theta_b = \Delta T/T = \delta_b/4 \), the dipole moment or photon bulk velocity \(\Theta_1 \), the photon anisotropic stress perturbation \(\Pi_i \), the baryon energy density perturbation \(\delta_b \) and the baryon velocity \(V_b \). The gravitational sources are \(\Phi \), the perturbation to the spatial curvature, and \(\Psi \), the Newtonian potential. At late times these are dominated by the CDM and baryons (if \(\Omega_0/\Omega_b \) is large) while at early times they are dominated by the relativistic species. The Einstein equations are

\[
(k^2 - 3K)\Phi = 4\pi G a^2 \sum \rho_i \delta_i + \frac{\dot{\alpha}}{a} (\rho_i + p_i)V/k, \\
(k^2 - 3K)\Psi = -8\pi G a^2 \sum \rho_i \Pi_i, \\
\]

where the sum is over particle species and the curvature \(K = -H_0^2(1 - \Omega_b - \Omega_\Lambda) \).

At early times the density is high and the scattering is rapid compared with the travel time across a wavelength. Thus we may expand the momentum conservation equation in powers of the Compton mean free path over the wavelength \(k/r \). To lowest order we obtain the right coupling approximation for the evolution,

\[
\frac{d}{d\eta} (1 + R)\delta_b + \frac{k^2}{3} \delta_b = -k^2 (1 + R)\Psi - \frac{d}{d\eta} 3(1 + R)\Phi, \\
\]

which is a driven harmonic oscillator with natural frequency \(c_2 = 3(1 + R) \). During the tight coupling phase the amplitude of the baryon perturbations cannot grow. It undergoes harmonic motion with an amplitude that decays as \((1 + R)^{-1/4} \) and a velocity that decays as \((1 + R)^{-3/4} \). For values of \(\Omega_b \) consistent with standard BBN, \(R < 0.3 \) so this effect is not dominant. If we define the optical depth \(\tau_b(\eta) = \int_0^\eta \tau_b d\eta/\tau(1 + R) \), we find that the baryons decouple from the photons when \(\tau_b \sim 1 \). The oscillations in the baryons are frozen in at this epoch. Expanding to higher order in \(k/\tau \) one finds the oscillations are exponentially damped with characteristic scale (for more details and a discussion of the physics of the damping see e.g. Hu & White 1997),

\[
k_{\text{D}}^2(\eta) = \frac{1}{6} \int d\eta \frac{1}{\tau} \frac{\int R^2 + 16(1 + R)/15}{(1/\tau)^2}, \\
\]

where \(k_{\text{D}}(\eta) \) is evaluated at the peak of the visibility function \(\tau_b \exp(-\tau_b) \). For \(\Omega_b \) consistent with standard BBN this decoupling is after recombination. In any case, this damping turns out not to be phenomenologically interesting, since non-linear effects wash out the higher peaks anyway.

Once the photons release their hold on the baryons we can neglect the \(\tau \) terms in equation (A2). The solutions are then the well-known growing and decaying modes of pressureless linear perturbation theory (e.g. in a critical density, matter-dominated universe the growing mode \(\propto a \)). The density and velocity perturbations from the tight-coupling era must be matched on to the growing and decaying modes for the pressureless components, including the CDM potential. The final spectrum is the component that projects on to the growing mode. As is well known (e.g. Padmanabhan 1993, Section 8.2), at high \(k \) the growing mode is sourced primarily by the velocities, while at low \(k \) it is a mixture of density and velocity terms. For this reason at high \(k \) the oscillations in \(\Delta^2(k) \) are out of phase with the peaks in the CMB anisotropy spectrum which arise predominantly from photon densities. In this limit peaks occur at \(k_{\text{r}} = (2j + 1)\pi/2 \) where \(j = 0, 1, 2 \), and \(r_a \) is the sound horizon at decoupling: \(r_a = \int c_s d\eta \). In detail this differs from the sound horizon at recombination (which controls the position of the CMB peaks) but as can be seen in Fig. 1 the two horizons are comparable.

In Fig. 1 we see that the baryons induce both oscillations and amplitude suppression in \(T(k) \). Let us consider the latter first. Modes that enter the horizon before matter–radiation equality can grow only logarithmically at best. For the baryons, modes which enter the horizon after equality but before decoupling oscillate with decaying amplitude. They therefore do not contribute fully to the gravitational potentials in equation (A3). For the CDM the modes that enter the horizon after equality but before decoupling grow as if in a universe with density \(\propto \Omega_0 - \Omega_b \) rather than \(\Omega_b \). Hence for the period between equality and decoupling all modes that are inside the horizon have their growth suppressed relative to the \(\Omega_b < \Omega_0 \) case. This damping of power changes the shape of \(P(k) \) near its peak, with the largest effect occurring in models where equality and decoupling are most separated (high \(\Omega_b h^2 \) and high \(\Omega_0 h^2 \)).

The acoustic oscillations in the baryons at decoupling (Hu & Sugiyama 1996) are then superposed upon the smooth power spectrum. The amplitude of the oscillations depends on both the
driving force (Φ and Ψ) and on R. As the potentials decay in the radiation-dominated epoch, larger oscillations come from higher Ω_0 h^2 and lower Ω_0 h^2 (see e.g. discussion of the potential envelope in Hu & White 1997). Specific examples are shown in Fig. 4.

APPENDIX B: PM CODE

To investigate the effects of non-linearity on the persistence of the features in the power spectrum we used a PM code to calculate the non-linear power spectrum. As it has not been discussed before, we give some details of our implementation of the code here. All of our results were also checked by running P3M simulations as discussed in the text. Above the grid scale the agreement was excellent.

We used 128^3 particles with the gravitational forces computed on a 128^3 grid. All of the runs were started at 1 + z = 20, and evolved using equations of motion in which the ‘time’ coordinate is ln a, where a is the scalefactor. The initial particle positions were displaced from a random position within a cell (with cells uniformly filling the box) using the Zel’dovich approximation. Each realization of the power spectrum was chosen to have random phases and amplitude drawn from an exponential distribution.

To calculate the forces on the particles we assigned them to a grid using the cloud-in-cell algorithm. On large scales the power spectrum recovered is independent of the charge assignment scheme, which we explicitly checked. The forces were computed using FFT techniques with a force kernel of k^2 to compute Ψ. While it is computationally faster to compute Φ directly using a 1/k kernel and calculate Ψ by differencing, we found that this gave worse performance on small scales than calculating Ψ for each direction using k^2. The better accuracy at small scales in this method more than makes up for the extra computing time (compared with running higher resolution). The step-time was dynamically chosen as a small fraction of the inverse square root of the maximum acceleration, with an upper limit of Δa/a = 4 per cent per step, where a is the cosmological expansion factor. This resulted in a final particle position error of less than 0.1 per cent of the box size.

At selected time-steps the power spectrum was calculated. The density field δ_i was computed by assigning all particles to the nearest node in a 128^3 grid and performing an FFT. The resulting power spectrum was computed by adding one component of the velocity (in units of a 128^3 grid). All of the runs were started at 1 + z = 20, and evolved using equations of motion in which the ‘time’ coordinate is ln a, where a is the scalefactor. The initial particle positions were displaced from a random position within a cell (with cells uniformly filling the box) using the Zel’dovich approximation. Each realization of the power spectrum was chosen to have random phases and amplitude drawn from an exponential distribution.

To calculate the forces on the particles we assigned them to a grid using the cloud-in-cell algorithm. On large scales the power spectrum recovered is independent of the charge assignment scheme, which we explicitly checked. The forces were computed using FFT techniques with a force kernel of k^2 to compute Ψ. While it is computationally faster to compute Φ directly using a 1/k kernel and calculate Ψ by differencing, we found that this gave worse performance on small scales than calculating Ψ for each direction using k^2. The better accuracy at small scales in this method more than makes up for the extra computing time (compared with running higher resolution). The step-time was dynamically chosen as a small fraction of the inverse square root of the maximum acceleration, with an upper limit of Δa/a = 4 per cent per step, where a is the cosmological expansion factor. This resulted in a final particle position error of less than 0.1 per cent of the box size.

At selected time-steps the power spectrum was calculated. The density field δ_i was computed by assigning all particles to the nearest node in a 128^3 grid and performing an FFT. The resulting power spectrum was computed by adding one component of the velocity (in units of a 128^3 grid). All of the runs were started at 1 + z = 20, and evolved using equations of motion in which the ‘time’ coordinate is ln a, where a is the scalefactor. The initial particle positions were displaced from a random position within a cell (with cells uniformly filling the box) using the Zel’dovich approximation. Each realization of the power spectrum was chosen to have random phases and amplitude drawn from an exponential distribution.

APPENDIX C: SCALE-DEPENDENT BIAS

Let us imagine that we have two classes of objects, the probability for which of being included in the sample at a position R is ϕ_i(R) with a = 1, 2. (Luminosity is only one possible criterion for inclusion in a catalogue; surface brightness could be another.) A straightforward calculation gives

\[ξ_{ij} = \frac{\Phi_i \Phi_j ξ_{11} + (\Phi_i \Phi_j + (\Phi_i \Phi_j) ξ_{23} + (\Phi_i \Phi_j) ξ_{22}}{(\Phi_i + \Phi_j) (\Phi_i + \Phi_j)} \]

where i, j label positions in the survey and we have used the shorthand \(Φ_i = ϕ_i(R) \). If we further suppose that \(ξ_{11}(r) = b_1^2 ξ_1(r) \), \(ξ_{22}(r) = b_2^2 ξ_2(r) \) and \(ξ_{12}(r) = b_1 b_2 ξ(r) \), where \(ξ(r) \) represents the correlation function for points at a separation r drawn from the underlying field, of which both populations are biased tracers, we find

\[b_i^2(R, r) = \left(\frac{ξ_{0}^2(R, r)}{ξ(r)} \right) \]

\[= N_{\text{tot}}^2 \sum_{ij} \frac{(b_i \Phi_i + b_j \Phi_j)(b_i \Phi_i + b_j \Phi_j)}{(\Phi_i + \Phi_j)(\Phi_i + \Phi_j)} \]

where \(R \) is the depth of the survey, the averaging is over the survey area, the sum is over all positions i, j in the survey which are separated by a distance r and \(N_{\text{tot}} \) is the number of such pairs of positions. The resulting power spectrum will be

\[Δ_s^2(R, k) = \frac{1}{(2π)^2} \int d^3 q b_i^2(R, |k - q|) Δ^2_q[R, q] \]

where \(b_i^2(R, k) \) is the Fourier transform of \(b_i^2(R, r) \) and \(Δ^2_q(k) \) is the power spectrum assuming no bias.

If the selection functions vary smoothly throughout the survey volume, the inferred bias parameter will depend only on the survey depth R, as the ratio \(ϕ_i(R)/ϕ_j(R) \) varies with R. This results in an overall shift with depth of the amplitude of the measured power spectrum, which would need to be distinguished from evolution in the clustering. It is also possible, however, to introduce a feature into the power spectrum at a given depth if the selection function of one of the populations changes rapidly in the survey volume. This could occur in a redshift slice if the selection function of one population either was rapidly declining in the slice or occupied a very narrow range in redshift space. For galaxies at a fixed mean redshift in a very narrow redshift shell, the population composition which dominates the contribution to the power spectrum at a given scale will differ for different scales. Depending on the shapes and peaks of the selection functions, and the position of the shell, this can result in either enhancements or reductions in the power spectrum with increasing scale.

We illustrate the effect in Fig. C1. The survey volume is taken to be a cone with solid angle π sr, as for the SDSS. The selection functions for both populations are assumed to be Gaussians with mean redshift \(z_i \) and width \(σ_i \). One population is taken to comprise 75 per cent of the galaxies (integrated over all redshifts), with
\[\hat{z}_1 = 0.2, \quad \sigma_1 = 0.1, \quad \text{and} \quad b_1 = 2. \] The selection function for the remaining population is very narrowly peaked at \(\hat{z}_2 = 0.3 \) with \(\sigma_2 = 0.003. \) It is taken to be unbiased (\(b_1 = 1. \)) The underlying matter power spectrum is assumed to be BBKS CDM. For a shell centred at \(z = 0.3, \) an oscillating scale-dependent bias is produced, which could easily be mistaken for an acoustic oscillation. The effect, however, diminishes sharply as the shell is moved away from \(z = \hat{z}_2, \) until by \(z = 0.25 \) the distinctions are reduced to less than 1 per cent. This means that for a shell of full width \(\Delta z = 0.1, \) the oscillations would be completely masked.

The strength of the effect is entirely a consequence of the narrowness of the selection function for the second population, which we consider to be unphysical. Moreover, even if the effect were detected, its extreme sensitivity to redshift would distinguish it from the acoustic oscillations, which are not expected to change with redshift except by the much more gradual growth resulting from gravitational instability. Typically, the effect on the power spectrum is much smaller than that shown here, even in the presence of a substantial scale-dependent bias. For instance, if the width of the second population above were increased to \(\sigma_2 = 0.05, \) with everything else held unchanged, at \(z = 0.3 \) the distortions of the power spectrum would be only 0.1 per cent, even though the mean bias factor changes by 3 per cent between 20 and 200 \(h^{-1} \) Mpc.

APPENDIX D: GALAXY NUMBER COUNTS

The number of galaxies per unit redshift \(dN/dz \) to a limiting magnitude \(m_{\text{lim}} \) in a survey of area \(\Omega_s \) sr is related to the proper luminosity function \(\phi(M, z) \) of the galaxies by

\[\frac{dN}{dz}(< m_{\text{lim}}) = \Omega_s d^3 A(z) \frac{dL_p}{dz} \int_{M_{\text{min}}}^{M_{\text{max}}} dM \phi(M, z), \]

where

\[M_{\text{max}} = m_{\text{lim}} - 5 \log_{10} d_L(z) - 25 - K(z) - A, \]

\(d_L(z) \) is the luminosity distance (in Mpc) to a source at redshift \(z, \)

\(d_L(z) = d_L(z)/(1 + z)^2 \) is the angular distance to the source, and \(dL_p \)

is the proper differential line element. The terms \(K(z) \) and \(A \) account for the \(K \)-correction and extinction, respectively. For \(\Lambda = 0, \)

\[d_L(z) = \frac{2c}{H_0 \Omega_0} \left(z \Omega_0 - \left(z - \Omega_0 \right) \left(1 + \Omega_0 z \right)^{1/2} - 1 \right). \]

and

\[\frac{dL_p}{dz} = \frac{c}{H_0} (1 + z)^{-2} (1 + \Omega_0 z)^{-1/2}. \]

When \(\Lambda \neq 0, \) closed form expressions do not exist and the defining integrals need to be evaluated numerically.

For a Schechter luminosity function, \(\log_{10}(L/L_*) = 0.4(M^* - M) \)

and

\[\phi(M, z) = (0.4 \log 10) \left(1 + z \right)^3 \phi^*(z) \times (L/L_*)^{1+\alpha} \exp[-L/L_*], \]

where the density expansion rate \((1 + z)^3 \) has been factored out so that any residual redshift dependence in \(\phi^*(z) \) is caused by galactic evolution. The integral over \(M \) is now analytic. Defining \(x_{\text{min}} \) by

\[2.5 \log_{10} x_{\text{min}} = M^* - M_{\text{max}}, \]

\[\int_{-\infty}^{M_{\text{max}}} dM \phi(M, z) = (1 + z)^3 \phi^*(z) \Gamma(1 + \alpha, x_{\text{min}}). \]

where \(\Gamma(\alpha, x) \) is an incomplete gamma function (Gradshteyn & Ryzhik 1980). For \(-2 < \alpha < -1, \) it may be evaluated using the recursion relation,

\[\Gamma(1 + \alpha, x) = \frac{1}{1 + \alpha} \left[\Gamma(2 + \alpha, x) - x^{1+\alpha} e^{-x} \right]. \]

We have used these estimates to obtain the number of galaxies in redshift shells in Section 5.3 and hence the shot-noise contribution to the error bar in Fig. 12.

This paper has been typeset from a TeX/LATEX file prepared by the author.