Substructure recovery by three-dimensional discrete wavelet transforms

A. Pagliaro,1,2 V. Antonuccio-Delogu,3* U. Becciani3 and M. Gambera2

1SRON, Sorbonnelaan, 2 - NL 3584 CA Utrecht, The Netherlands
2Istituto di Astronomia dell’Università di Catania, Città Universitaria, Via S. Sofia 78 - I 95125 Catania, Italy
3Osservatorio Astrofisico di Catania and CNR-GNA, Città Universitaria, Via S. Sofia 78 - I 95125 Catania, Italy

ABSTRACT

We present and discuss a method to identify substructures in combined angular-redshift samples of galaxies within clusters. The method relies on the use of the discrete wavelet transform (hereafter DWT) and has already been applied to the analysis of the Coma cluster. The main new ingredient of our method with respect to previous studies lies in the fact that we make use of a 3D data set rather than a 2D one. We test the method on mock cluster catalogues with spatially localized substructures and on an N-body simulation. Our main conclusion is that our method is able to identify the existing substructures provided that: (a) the subclumps are detached in part or all of the phase space, (b) one has a statistically significant number of redshifts, increasing as the distance decreases due to redshift distortions; (c) one knows a priori the scale on which substructures are to be expected. We have found that to allow an accurate recovery we must have both a significant number of galaxies (≈ 200 for clusters at $z \approx 0.4$ or about 800 at $z \approx 0.4$) and a limiting magnitude for completeness $m_B^* = 16$.

The only true limitation to our method seems to be the necessity of knowing a priori the scale on which the substructure is to be found. This is an intrinsic drawback of the method and no improvement in numerical codes based on this technique could make up for it.

Key words: methods: data analysis – methods: numerical – methods: statistical – galaxies: clusters: general.

1 INTRODUCTION

A large fraction of clusters of galaxies shows a very complex structure, either in the spatial and velocity distribution of the galaxies themselves (e.g. West & Bothun 1990), or in the X-ray maps (e.g. Sarazin 1988), or in both. Although the substructures are often clearly visible in the optical (e.g. Mellier et al. 1988) and on the X-ray maps (Grebenev et al. 1995) it is not always easy to make a quantitative analysis of the amount of substructure present. Over the years, many methods borrowed from statistical theory have been applied in an attempt to determine the number and properties of the subgroups. Most of these methods have been applied to 2D angular position galaxy maps or 1D line-of-sight velocity distributions. In a recent paper (Gambera et al. 1997, hereafter GPAB) we have tried to make use of the full 3D information available from a complete sample of galaxy projected positions and line-of-sight velocities for Abell 1656 (the Coma cluster) in order to recover and determine some morphological properties of the substructure. In this paper we will explain and test the method introduced in GPAB on simulated cluster catalogues and we will determine the minimal requirements which have to be satisfied in order to apply it with confidence.

Our method is based on the use of the discrete wavelet transform (hereafter DWT), a technique originally introduced in turbulence studies (see e.g. Farge 1992). Sometimes the continuous wavelet transform (hereafter CWT) has been applied to characterize substructure in galaxy clusters (e.g. Escalera & Mazure 1992, hereafter EM), but it has been convincingly shown that the two methods are unrelated to each other (i.e. CWT is not the continuous limit of DWT), and that CWT is unsuitable for characterizing the structure of clusters (Pando & Fang 1996; Fang & Pando 1997). The DWT admits a complete, compact supported orthogonal bases (Daubechies 1988), and for this reason it represents a suitable tool for the analysis of finite samples of objects, like galaxy catalogues.

One point of our 3D DWT method deserves some clarification, i.e. the fact that we are using heterogeneous data, namely the projected position on the sky and the line-of-sight velocity. Although many authors have used the distribution function of the projected velocity in their statistical analysis of substructure, one can argue that in the highly non-linear environment of a cluster both redshift distortions and relaxation effects destroy the relationship between line-of-sight (l.o.s.) velocity and distance,

* Also at: TAC, Copenhagen, Denmark.

© 1999 RAS
thus making apparently meaningless the use of the l.o.s. velocity in a context where one tries to isolate substructures in real space. Suppose however that the substructure we are trying to identify is made of spatially separated clumps whose inner velocity dispersion is smaller than the average l.o.s. distance among the clumps themselves. The velocity of a galaxy can be written as:

\[\mathbf{v}_g = H_0 \mathbf{v}_{pec} \]

where \(H_0 \) is the Hubble constant and \(\mathbf{v}_{pec} \) measures the deviations induced by random velocities within the cluster due to relaxation effects and systematic infall motions. The quantity \(\mathbf{v}_{pec} \) is a stochastic variable, described by some probability distribution, but we know from observations (e.g. the ENACS survey, Mazzure et al. 1996) and from simulations (Natarajan, Hjorth & van Kampen 1997) that its moments filtered on cluster scales are finite. So if: \(H_0 \tau \gg \mathbf{v}_{pec} \) the Hubble term dominates the l.o.s. velocity, and this quantity can then be used to characterize substructures whose relative distances within the cluster are larger than \(\mathbf{v}_{pec} / H_0 \).

In order to test our 3D DWT method and to determine reliable confidence limits, we have simulated a total number of 20 clusters changing the following parameters: (1) the distance of the cluster from the observer; (2) the number of clumps making up the cluster; (3) the number of galaxies inside the cluster and the individual clumps; (4) the mean distance separating different clumps in the same cluster; (5) the completeness of our catalogues. The analysis has been performed using a parallel code that allows a rapid structure detection and morphological analysis in a 3D set of data points (Pagliaro & Becciani 1998). We have also analysed the output of a \(N \)-body simulation, where substructure has a more hierarchical distribution.

The plan of the paper is as follows: in Section 2 we describe the method of analysis, in Section 3 we describe how we engendered our mock catalogues, which are then analysed in Section 4. In Section 5 we discuss the statistical robustness of our results and finally in Section 6 we report our conclusions.

2 THE METHOD OF ANALYSIS

2.1 Method overview

The 3D DWT method can be divided into three steps. In the first, one computes the wavelet matrices on all the scales investigated: we adopt the ‘à trous’ algorithm to perform this task, as described by Lega (1994, hereafter L94). The same matrices are computed for the data to be analysed and on a random distribution in the same region of space and on the same grid as the real data. On these latter matrices we calculate the threshold corresponding to a certain confidence level in the structure detection.

The second step is the segmentation analysis. The aim of this analysis is to have all the connected pixels with wavelet coefficients greater than the threshold labelled with an integer number which is different for every single structure. This allows a rapid identification of connected regions which are needed as input for the third step.

The third and last step of the method is the computation of a morphological parameter for every structure singled out and of a mean morphological parameter for each scale.

Following this section we describe the serial version of our algorithm. A detailed description of the parallel implementation has been given in more technical papers (Pagliaro & Becciani 1998).

2.2 The wavelet transform

Generally speaking, a wavelet transform is the decomposition of basis functions obtained by translation and dilatation of a particular function localized in both physical and frequency space. A characteristic feature of this kind of analysis is that it allows a simultaneous study of both positional and scaling properties. Although our method is devised to deal with 3D data, for the sake of simplicity we describe here the 1D version. The generalization to the 3D case is straightforward.

For a one-dimensional function \(f(x) \) the wavelet transform is a linear operator that can be written as:

\[w(s, t) = \langle f(x) \rangle \mathbf{v}(x - t), \tag{1} \]

where \(s > 0 \) is the scale on which the analysis is performed, \(t \in \mathbb{R} \) is the spatial translation parameter and \(\mathbf{v} \) is the Grossmann–Morlet (1984, 1987) analysing wavelet function

\[\mathbf{v}(x) = \frac{1}{\sqrt{s}} \mathbf{v}(x - \frac{t}{s}), \tag{2} \]

which is spatially centred around position \(t \) and on a scale \(s \). The wavelet function \(\mathbf{v}(t, s) \) is called the mother wavelet. It generates the other wavelet function \(\mathbf{v}(t, s) \), \(s > 1 \). We follow L94 in the choice of the mother wavelet in order to use the ‘à trous’ algorithm in the following.

\[\mathbf{v}(x) = \mathbf{v}(x - \frac{1}{2}), \tag{3} \]

where \(\mathbf{v} \) is the cubic centred B-spline function defined by:

\[\mathbf{v}(x) = \frac{|x - 2|^3 - 4|x - 1|^3 + 6|x|^3 - 4|x + 1|^3 + |x + 2|^3}{12}. \tag{4} \]

In order to use the ‘à trous’ algorithm we choose a set of scales which are powers of two: \(s = 2^r \) and the first scale always corresponds to the size of 1 pixel. The scale \(s \) in this kind of analysis may be considered as the resolution. In other words, if we perform a calculation on a scale \(s_0 \), we expect the wavelet transform to be sensitive to structures with typical size of about \(s_0 \) and to be able to reveal them. The first step of the wavelet matrices computation is the evaluation of the coefficient \(c(0) \). This is defined as:

\[c(0, t) = \langle f(x) \rangle \mathbf{v}(x - t). \tag{5} \]

On the other scales the coefficients \(c \) are given by:

\[c(s, t) = \frac{1}{2^s} \langle f(x) \rangle \mathbf{v}(x - \frac{t}{s}), \tag{6} \]

Since the function \(\mathbf{v} \) satisfies:

\[\frac{1}{2^s} \mathbf{v}(x - \frac{t}{s}) = \sum_{n=0}^{s-2} h(n) \mathbf{v}(x - \frac{t}{2^n} - n), \tag{7} \]

for \(i \geq 0 \), we can write:

\[c(s, t) = \sum_{n=0}^{s-2} h(n) c(s - 1, t + n2^{r-1}), \tag{8} \]

where \(h(n) = \frac{C_n^i}{C_{2^{r-1}}^i}, C_n^m \) being the binomial coefficients. Using equations (1) and (3) we can write the following expression for the wavelet coefficients on the various scales:

\[w(s, t) = c(s, t) - c(s - 1, t). \tag{9} \]

The wavelet analysis associates to each pixel a real number, which represents the smoothed local density contrast at a given
scale. At the end of this part our result is a set of matrices of wavelet coefficients; one matrix for each scale investigated.

Even if the histogram of the wavelet coefficients may suggest the presence of substructure, revealed by asymmetries between the positive and negative parts of the probability distributions (see e.g. figs 2–4 in GPAB), this kind of information is only visual and not easily quantifiable and spatially localizable.

2.3 Thresholding

The thresholding is made on the wavelet coefficient histogram. For an ideal flat background, the wavelet transform coefficients should be equal to zero. The existence of structures at a given scale gives a wavelet coefficient with large positive values. It is however quite obvious that this is strictly true only in an ideal case: a random distribution may have non-zero coefficients even if there are no structures, due to statistical fluctuations. Moreover, the statistical behaviour of the wavelet coefficient is complex due to the correlation among nearby pixels.

In order to decide whether a structure is detected on a given scale we need to fix a significance threshold. We choose it using a classical decision rule. We calculate the wavelet coefficients \(w_{\text{ran}}(s) \) for each scale of our analysis, for a random distribution in the same region of space of our data and on the same grid. Then we calculate the probability \(P[w(s) \leq w_{\text{ran}}(s)] \) and choose the value \(w_{\text{thres}}(s) \) so that:

\[
P[w_{\text{thres}}(s) \leq w_{\text{ran}}(s)] \leq \epsilon.
\]

(10)

Our threshold on the scale \(s \) is the value \(P_{\text{thres}} = w_{\text{thres}}(s) \). For example, a choice for the value of \(\epsilon \) of:

\[
\epsilon = 0.001
\]

ensures a 99.9 per cent confidence level in the structure detection. We have also explored the consequences of an alternative choice for the threshold, i.e. to fix it in terms of a given number of standard deviations from the variance, but the final results are insensitive to this choice.

2.4 Structure numbering by means of segmentation

The second step of our analysis is the determination of connected pixels over a fixed threshold (segmentation, Rosenfeld 1969), the numbering of the selected structures and their morphological analysis.

The segmentation and numbering consists of the examination of the wavelet coefficient matrix; all the pixels associated with a wavelet coefficient greater than the selected threshold are labelled with an integer number. All other pixel labels are set equal to zero. Then, the same label is associated with all the pixels connected in a single structure, in a sequential manner. So, the first structure individuated bears the label ‘1’ and so on. We also compute the volume and surface of each structure found.

2.5 The morphological parameter

In order to perform a morphological analysis we have to introduce a morphological parameter that quantifies the sphericity of the structures. We choose the parameter:

\[
L(s) = K(s) \frac{V^2}{S^3},
\]

(12)

where \(V \) is the volume and \(S \) is the surface, as in L94, and \(K(s) \) is a parameter that depends on the scale of the analysis. We want \(L(s) \) to have the following behaviour: zero for very filamentary structures and 1 for spherical ones. This may be achieved putting \(K = 36\pi \), but only for those scales not affected by the granular nature of the analysis. We choose the value \(36\pi \) only for the scales \(s = 2^r \) pixels with \(r \geq 2 \). For the smallest scales the constant \(36\pi \) is not adequate, since we are close to the grid resolution and the geometry of the substructures cannot be spherical. Since we want to consider a one-pixel structure which is as spherical as possible, we adopt the values:

\[
K(2^r) = \begin{cases} 216, & \text{if } r = 0, 1, \\ 36\pi, & \text{otherwise}. \end{cases}
\]

(13)

Then, for every detection threshold we calculate the values:

\[
\langle L(s) \rangle = \sum_{i=1}^{N_{\text{obj}}} \frac{L_i(s)}{N_{\text{obj}}}
\]

(14)

where \(N_{\text{obj}} \) is the number of objects detected at scale \(s \).

3 SIMULATING CLUSTERS OF GALAXIES

3.1 Mock catalogues

Our model clusters are engendered by randomly assembling a number of clumps, each characterized by the position of their centres. As coordinates we choose two angular coordinates and the line-of-sight velocity: (\(\theta, \phi, v_\text{los} \)). Given the position of the centre of each clump (\(\theta_{\text{cl}}, \phi_{\text{cl}}, v_\text{los} \)), galaxies are distributed about the centre according to a Gaussian distribution in real space of width \(\sigma_r \). Velocities are then specified by adding to the Hubble flow a random component drawn from a Maxwellian distribution with a given dispersion \(\sigma_{\text{cl}} \). Each simulated cluster is then made of a collection of these clumps. This method allows a partial superposition of the clumps.

To each galaxy in the cluster we also attribute an absolute magnitude drawn randomly from a Schechter luminosity function:

\[
\phi(L) = \phi^* \left(\frac{L - L_*}{L_*} \right) \exp(-L/L_*) \frac{dL}{L}.
\]

(15)

The values for \(m_* = -2.5 \log(L_*) \), \(\phi^* \) and \(\alpha \) are appropriate to the central region of the Coma cluster (Biviano et al. 1996).

We show in Fig. 1 the projected positions of galaxies in a typical mock catalogue obtained with these prescriptions, and in Fig. 2 the corresponding wedge diagram. It is evident from these plots that substructure in these mock catalogues is made of independent groups which overlap each other.

3.2 N-body simulation

We also applied our test to the result of a N-body simulation, where density distribution is clearly hierarchical. We have considered a \(10^3 h^{-3} \)Mpc \(^3 \) box extracted from a 16-million particles simulation of a 50h\(^{-1}\)Mpc box (Antonuccio-Delogu et al., in preparation). Using SKID, a standard gravitationally bound groups finder (Stadel et al., in preparation) we have found five groups on a scale of 500h\(^{-1}\)kpc within this box.
4 TESTING SUBSTRUCTURE RECOVERY

4.1 Is the DWT capable of recovering substructure?

In order to assess the capability of our code to recover substructures we simulate five clusters of galaxies at a fixed distance made of an increasing number of well separated clumps: from only 1 clump to 15. Clusters are identified by the names C13 (containing 1 clump, 528 galaxies), C14 (3 clumps, 1224 galaxies), C1 (5 clumps, 1512 galaxies), C15 (8 clumps, 3456 galaxies) and C16 (15 clumps, 8750 galaxies). The mean separation between two clumps inside a cluster is set equal to $2.7 \, h^{-1} \, \text{Mpc}$. As one can see from Table 1 substructures are well detected. Unfortunately, an intrinsic drawback of the DWT is the inability to distinguish the typical scale of substructures (Biajou, private communication). Substructures ‘created’ by our simulations are on a typical scale of about $2 \, h^{-1} \, \text{Mpc}$, so we can detect them looking at the right scale.

4.2 Dependence on the distance from the observer

We simulate four different clusters of galaxies with distances ranging from 8 to $68 \, h^{-1} \, \text{Mpc}$ with step $20 \, h^{-1} \, \text{Mpc}$. Clusters are identified by the names C1 (set at a distance $68 \, h^{-1} \, \text{Mpc}$ from the observer), C2 ($48 \, h^{-1} \, \text{Mpc}$), C3 ($28 \, h^{-1} \, \text{Mpc}$) and C4 ($8 \, h^{-1} \, \text{Mpc}$). All clusters are made of 1512 galaxies divided into five clumps with mean separation $2.7 \, h^{-1} \, \text{Mpc}$. As one can see from Table 2, the recovery does not depend on the distance from the observer. However at small distances the Hubble flow and the peculiar velocities of the galaxies becomes comparable, and we must take into account this effect. We have repeated the analysis on each one out of 20 realizations of the four clusters obtained by randomly ‘reshuffling’ the original simulated catalogues with two different methods: (1) the first 10 reshufflings were made by redistributing randomly the redshifts among the galaxies while keeping the angular coordinates fixed (see Table 3); (2) the remaining 10 reshufflings were made by varying the redshifts (namely the value of cz) of a typical value of the galaxies’ peculiar velocities in a random direction, while keeping the angular coordinates fixed (see Table 4). In the first case, the average values of the number of structures found is always smaller than the one found in the original simulated clusters. This test, already performed in GPAB on a catalogue of clusters from the Coma cluster with the same result, strengthens our confidence on the physical significance of the structures detected in the Coma cluster. In the second case the number of structures is nearly the same as in the original catalogues. We ‘followed’ some galaxies labelling them in the reshufflings and we have seen that the labelled galaxies are always inside the same substructure for the clusters C1, C2, C3 and reshuffled samples, but may change substructure for the case of the cluster C4. This happens because in this latter case the peculiar velocities and the Hubble flow become comparable. However it is worth noting that, although the galaxies may ‘leap’ from one substructure to another, the number of these substructures is always nearly the same.

4.3 Dependence on the number of galaxies

We simulate six clusters of galaxies made of an increasing number of data points (galaxies) ranging from a minimum of 118 to a maximum of 14712. Clusters are identified by the names C5 (made of 118 galaxies), C6 (330 galaxies), C7 (528 galaxies), C1 (1512 galaxies), C8 (7032 galaxies) and C9 (14712 galaxies). All these clusters are composed of five clumps with mean separation $2.7 \, h^{-1} \, \text{Mpc}$. It is clear from our results that a minimum number of at least 200 data points is required to ensure a correct substructure recovery and that an increasing number of points improves the confidence of the analysis (see Table 5).

4.4 Dependence on the interclump separation

Clusters are identified by the names C10 (mean separation $1.5 \, h^{-1} \, \text{Mpc}$), C1 ($2.7 \, h^{-1} \, \text{Mpc}$), C11 ($3.7 \, h^{-1} \, \text{Mpc}$) and C12

Figure 1. Projected positions of galaxies in a typical mock catalogue obtained as described in Section 3.1.

Figure 2. The wedge diagram corresponding to the projected positions of Fig. 1.
(4.7 h\(^{-1}\) Mpc). We note no significant variations in the number of substructures detected as the mean interlump separation varies, as one can see from Table 6, if the mean separation is greater than 1.5 h\(^{-1}\) Mpc.

4.5 Dependence on completeness

Clusters are identified by the names C17 (100 per cent completeness at \(m_B = 22\)), C18 (\(m_B = 20\)), C19 (\(m_B = 18\)) and C20 (\(m_B = 16\)). We note a progressive decrease in the number of structures found, as the magnitude of completeness decreases. However, it is worth noticing that, until the value \(m_B = 16\) inclusive, this decrease is not dramatic and the number of structures detected is very close to the effective number of structures composing the clusters. We can consider this result as a warning to keep in mind while examining catalogues with low completeness. In this case the number of substructures detected could be less than the effective number of substructures (see Table 7). See Table 8 for a summary.

4.6 Test on a N-body simulation

In order to test the method on a real hierarchical structure which has many possible substructures at many length-scales, we run a N-body cosmological simulation of a cubic box of present size \(L = 50\) h\(^{-1}\) Mpc with a number of particles \(n = 16666.216\).

The purpose of the simulation is to form a configuration clustered on several scales. For this reason, we use constrained initial conditions.

The wavelet analysis is performed on these sets of points for three scales: 50, 100, 200 h\(^{-1}\) kpc. The confidence level of detection is 99.5 per cent for all the scales and the thresholds have been computed from a random simulation in the same region with the same number of points.

As one can see from the result in Table 9 our method detects quite a few structures on these scales. In particular on a scale of 500 h\(^{-1}\) kpc it detects five structures. We have analysed the same simulation using SKID (Stadel et al., in preparation), a tool used to detect gravitationally bound objects, and found more than 50 objects when using the same percolation length-scale. This apparently contradictory result is not strange when one thinks that SKID looks for gravitationally bound objects, while our method inspects the local density field and looks for relatively isolated objects. This cannot be the case for the output of a purely collisionless N-body simulation, where gravitationally isolated bound groups are rare. In fact, each gravitationally bound group on a given scale also hosts non-gravitationally bound particles.
which are often irregularly distributed across many different groups.

This restriction of our method should not however cause problems for galaxy catalogues, because galaxies are relatively isolated objects even when they trace a hierarchically clustered density field.

As a matter of fact, we have already applied a serial version of the wavelet code on a catalogue of galaxies for the Coma clusters and the method has been able to detect hidden hierarchical substructures on different scales (see GPAB).

5 STATISTICAL ROBUSTNESS

From a wavelet analysis of a catalogue of a combined angular-redshift distribution any conclusion drawn about the real phase-space and configuration-space structure requires that one verifies first that the catalogue does not suffer from any systematic selection biases or from other types of systematic effects such as those induced by redshift distortions, as described by Regös & Geller (1989) and Praton & Schneider (1994). About the latter we note that they have little significance for a distant cluster like Coma (GPAB), in which the Hubble flow term is dominant over the peculiar velocity within the substructures. These effects may, on the other hand, affect the analysis in closer clusters, but our work shows that in the presence of a significant statistics (which we quantify with about 800 galaxies members) these effects can be neglected too. One can reasonably argue that because the structures we find in simulated clusters of galaxies are generally well within the non-linear virialized region, on these scales we are probing a region of the phase space detached from the Hubble flow, where the linearity between redshift and distance is completely lost. On the other hand one also expects that the phase-space distribution within the non-linear region should be sufficiently well mixed within each clump (if there are any) that the substructures detected correspond to substructures in velocity space.

In order to check this latter hypothesis we have repeated the wavelet analysis in the distance dependence study (the distance is the parameter mostly affected by redshift effects) on each of 10 realizations obtained by randomly ‘reshuffling’ the original catalogue, i.e. redistributing randomly the redshifts among the galaxies while keeping the angular coordinates fixed.

The results are consistent with those found by EM who performed a similar analysis for 2D catalogues. The average values of the number of structures is always smaller than the one found in the original catalogue, showing that the catalogue itself is probably contaminated by some uncertainty, probably connected to the arbitrariness in the choice of the redshift limits, by some background contaminants, etc.

Another kind of ‘reshuffling’ has been performed on the same data varying the value of the redshift by a typical peculiar velocity in a random direction and following some target galaxies. These may leap from one substructure to another, but as the number of galaxies is high the morphology of the substructure is not modified.

These tests strengthen our confidence on the physical significance of most of the substructures that can be detected by means of this method, particularly when dealing with a great number of galaxy members or with few galaxies, but in a more distant cluster.

6 CONCLUSIONS

In recent years contradictory conclusions on various methods to detect significant substructures in clusters of galaxies have been reported by several authors (Fitchett & Webster 1987; Dressler & Shectman 1988; Mellier et al. 1988; West, Oemler & Dekel 1988; Slezak, Bijaoui & Mars 1990; EM; Escalera Slezak & Mazure 1992; L94; Lega et al. 1996; GPAB). Among the methods that have been tested and used for this purpose, we believe that the most powerful is the one based on wavelet transforms and in this paper we have investigated its dependence on various parameters that characterize a cluster of galaxies, such as its distance from the observer or the number of clumps and/or galaxies that makes it, and on some selection effects. According to our analysis the wavelet transforms method is a very powerful method for recovering substructures inside clusters of galaxies, rather than independently from the many features that may vary in a cluster. The only serious limitation is due to the necessity of knowing a priori the scale on which the substructure is to be found. This is an intrinsic drawback of the method and no improvement in numerical codes based on this technique could make up for it. An interscale connectivity graph can be helpful to discriminate among the scales at which a physical object shows features (Bijaoui et al. 1995; Bijaoui, private communication) but this technique is presently beyond the purpose of our analysis. Besides, a significant number of data points is required to perform an accurate analysis. We estimate about 200 galaxies to be a good minimum number to allow a rather accurate recovery in a distant...
cluster. As the distance decreases, we need a larger number of galaxy members so that a statistical redistribution can compensate for redshift distortion. For the closest clusters we have taken into account \((8 h^{-1} \text{Mpc})\) 800 members should be enough. Obviously, the larger the number of data points, the more accurate the analysis. Finally, it is clear that this method can not give any kind of dynamical information on the clusters investigated and that a companion method, like high resolution N-body simulations (e.g. Becciani, Antonuccio-Delogu & Pagliaro 1996; Becciani et al. 1997), is required for a more complete and detailed study about evolutionary states.

REFERENCES

Lega E., 1994, These de Doctorat, Univ. Nice (L94)

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.