Non-GUT baryogenesis and large-scale structure of the Universe

D. P. Kirilova1,2* and M. V. Chizhov1,3

1The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy
2Institute of Astronomy at Bulgarian Academy of Sciences, Bul. Tsarigradsko Shosse 72, 1784 Sofia, Bulgaria
3Centre of Space Research and Technologies, Faculty of Physics, University of Sofia, 1164 Sofia, Bulgaria

Accepted 1999 October 31. Received 1999 July 26; in original form 1996 July 4

ABSTRACT

We discuss a mechanism for producing baryon density perturbations during the inflationary stage, and study the evolution of the baryon charge density distribution in the framework of the low-temperature baryogenesis scenario. This mechanism may be important for large-scale structure formation in the Universe and, in particular, may be essential for understanding the existence of a characteristic scale of $130\,h^{-1}\text{Mpc}$ (comoving size) in the distribution of the visible matter.

A detailed analysis shows that both the observed very large scale of the visible matter distribution in the Universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage.

Moreover, according to our model, the visible part of the Universe at present may consist of baryonic and antibaryonic regions, sufficiently separated, so that annihilation radiation is not observed.

Key words: cosmology: theory – large-scale structure of Universe.

1 INTRODUCTION

The large-scale texture of the Universe shows a great complexity and variety of observed structures: it displays a strange pattern of filaments, voids and sheets. Moreover, owing to the increasing quantity of different types of observational data and theoretical analysis in recent years, it has been realized that there exists a characteristic very large scale of about $130\,h^{-1}\text{Mpc}$ in the large-scale texture of the Universe. Specifically, galaxy deep pencil-beam surveys (Broadhurst, Ellis & Shanks 1988; Broadhurst et al. 1990) found an intriguing periodicity in the very large-scale distribution of the luminous matter. The data consisted of several hundred redshifts of galaxies, coming from four distinct surveys, in two narrow cylindrical volumes in the directions of the North and the South Galactic Poles of our Galaxy, up to redshifts of more than $z \sim 0.3$, combined to produce a well-sampled distribution of galaxies by redshift on a linear scale extending to $2000\,h^{-1}\text{Mpc}$. A plot of the number of galaxies as a function of redshift displays a remarkably regular redshift distribution, with most galaxies lying in discrete peaks, with a periodicity over a scale of about $130\,h^{-1}\text{Mpc}$ comoving size.

It has been realized also that the density peaks in the regular spatial distribution of galaxies in the redshift survey of Broadhurst et al. (1990) correspond to the locations of superclusters, as defined by rich clusters of galaxies in the given direction (Bahcall 1991). A survey of samples in other directions, located near the South Galactic Pole, also indicated a regular distribution on slightly different scales near $100\,h^{-1}\text{Mpc}$ (Ettori, Guzzo & Tarenghi 1995; see also Tully et al. 1992; Guzzo et al. 1992; Willmer et al. 1994). This discovery of a large-scale pattern at the Galactic poles was confirmed in a wider angle survey of 21 new pencil beams distributed over a 10^6 field at both Galactic caps (Broadhurst et al. 1995), and also by new pencil-beam galaxy redshift data around the South Galactic Pole region (Ettori, Guzzo & Tarenghi 1997).

Analysis of other types of observations confirms the existence of this periodicity. Specifically, such structure is consistent with the reported periodicity in the distribution of quasars and radio galaxies (Foltz et al. 1989; Komberg, Kravtsov & Lukash 1996; Quashnock et al. 1996; Petitjeau 1996; Cristiani 1998) and the Lymanα forest (Chu & Zhu 1989); studies of the spatial distribution of galaxies (both optical and IRAS) and clusters of galaxies (Kopylov et al. 1984; de Lapparent, Gellar & Huchra 1986; Geller & Huchra 1989; Huchra et al. 1990; Bertschinger, Deckel & Faber 1990; Rowan-Robinson et al. 1990; Bahcall 1992; Fetisova et al. 1993a; Einasto et al. 1994; Buryak, Doroshkevich & Fong 1994; Bellanger & de Lapparent 1995; Cohen et al. 1996), as well as peculiar velocity information (Lynden-Bell et al. 1988; Lauer & Postman 1994; Hudson et al. 1999), suggest the existence of a large-scale superclusters–voids network with a characteristic scale around $130\,h^{-1}\text{Mpc}$.

An indication of the presence of this characteristic scale in the distribution of clusters has also been found from studies of the correlation functions and power spectrum of clusters of galaxies.

* E-mail: mih@phys.uni-sofia.bg
(Kopylov et al. 1988; Bahcall 1991; Mo et al. 1992; Peacock & West 1992; Deckel et al. 1992; Einasto et al. 1993; Einasto & Gramann 1993; Fetisova et al. 1993b; Frisch et al. 1995; Saar et al. 1995; Einasto et al. 1997b; Tadros, Efstathiou & Dalton 1997; Retzlaff et al. 1998). The galaxy correlation function of the Las Campanas redshift survey also showed the presence of a secondary maximum at the same scale, and a strong peak in the two-dimensional power spectrum corresponding to excess power at about 100 Mpc (Landy et al. 1995, 1996; Shectman et al. 1996; Doroshkevich et al. 1996; Geller et al. 1997; Tucker, Lin & Shectman 1999). The supercluster distribution was shown also to be not random but rather described by some weakly correlated network of superclusters and voids with a typical mean separation of 100–150 h⁻¹ Mpc. Many known superclusters were identified with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998). The network was proven to resemble a cubical lattice, with the vertices of an octahedron superstructure network (Battaner 1998).
As has already been discussed by Dolgov (1992) and Chizhov & Dolgov (1992), a baryonic density distribution that is periodic in space can be obtained, provided that the following assumptions are realized:

(i) there exists a complex scalar field ϕ with a mass that is small in comparison with the Hubble parameter during inflation;
(ii) its potential contains non-harmonic terms; and
(iii) a condensate of ϕ forms during the inflationary stage and is a slowly varying function of the spatial points.

All of these requirements can be naturally fulfilled in our scenario of the scalar field condensate baryogenesis (Dolgov & Kirilova 1991), and in low-temperature baryogenesis scenarios based on the Affleck & Dine mechanism (Affleck & Dine 1985).

In the case where the potential of ϕ is not strictly harmonic, the oscillation period depends on the amplitude $P[\phi_d(r)]$, and it in turn depends on r. Therefore a monotonic initial spatial distribution will soon result in spatial oscillations of ϕ (Chizhov & Dolgov 1992). Correspondingly, the baryon charge, contained in ϕ: $N_B = i d^2 \delta_0 \phi$, will have quasi-periodic behaviour. During the expansion of the Universe, the characteristic scale of the variation of N_B will be inflated up to a cosmologically interesting size. Then, if ϕ has not reached the equilibrium point at the baryogenesis epoch t_B, the baryogenesis will make a snapshot of the spatial distribution of $\phi(r, t_B)$ and $N_B(r, t_B)$, and thus the present periodic distribution of the visible matter may date from the spatial distribution of the baryon charge contained in the ϕ-field at the advent of the B-conservation epoch.

Density fluctuations with a comoving size today of $130 h^{-1}$ Mpc re-entered the horizon at late times at a redshift of about 10000 and a mass of $10^{18} M_\odot$. After recombination the Jeans mass becomes less than the horizon one and the fluctuations of this large mass begin to grow. We propose that these baryonic fluctuations, periodically spaced, lead to an enhanced formation of galaxy superclusters at the peaks of baryon overdensity. The concentration of baryons into periodic shells may also have catalysed the clustering of matter coming from the inflaton decays on to these ‘baryonic nuclei’. After baryogenesis proceeded, superclusters may have formed at the high peaks of the background field (the baryon charge carrying scalar field we discuss). [See the results of statistical analysis (Plionis 1995), confirming the idea that clusters formed at the high peaks of the background field, which is analogous to our assumption.] We imply that afterwards the self-gravity mechanisms might have optimized the arrangement of this structure into the thin regularly spaced dense baryonic shells and voids in between, with the characteristic size of $130 h^{-1}$ Mpc observed today.

The analysis shows that in the framework of our scenario both the generation of the baryon asymmetry and the periodic distribution of the baryon density can be explained simultaneously as being due to the evolution of a complex scalar field.

Moreover, for a certain range of parameters, the model predicts that the Universe may consist of sufficiently separated baryonic and antibaryonic shells. This possibility has been discussed in more detail elsewhere (Kirilova 1998). It is an interesting possibility insofar as observational data on antiparticles in cosmic rays and gamma-ray data do not rule out the possible existence of superclusters of galaxies of antimatter in the Universe (Steigman 1976; Ahlen et al. 1982, 1988; Stecker 1985, 1989; Gao et al. 1990). The observations exclude the possibility of noticeable amounts of antimatter in our Galaxy, however they are not sensitive enough to test the existence of antimatter extragalactic regions. For example, current experiments (e.g. Salamon et al. 1990; Ahlen et al. 1994; Golden et al. 1994, 1996; Yoshimura et al. 1995; Mitchell et al. 1996; Barbieri & Zalateu 1997; Moiseev et al. 1997; Boesio et al. 1997; Orito et al. 1999) put only a lower limit on the distance to the nearest antimatter-rich region, namely ~ 20 Mpc. Future searches for antimatter among cosmic rays are expected to increase this lower bound by an order of magnitude. For example, the reach of the AntiMatter Spectrometer is claimed to exceed 150 Mpc (Ahlen et al. 1982) and its sensitivity is three orders of magnitudes better than that of previous experiments (Battiston 1997; Plyaskin et al. 1998). For a more detailed discussion on the problem of the existence of noticeable amounts of antimatter at considerable distances, see Dolgov (1993), Cohen, DeRujula & Glashow (1998) and Kinney, Kolb & Turner (1997).

The following section describes the baryogenesis model, and the final section deals with the generation of the periodicity of the baryon density, and discusses our results.

2 DESCRIPTION OF THE MODEL: MAIN CHARACTERISTICS

Our analysis was performed in the framework of the low-temperature non-GUT baryogenesis model described by Dolgov & Kirilova (1991), based on the Affleck & Dine supersymmetry GUT-motivated mechanism for generation of the baryon asymmetry (Affleck & Dine 1985). In this section we describe the main characteristics of the baryogenesis model, which are essential for investigation of the periodicity in the next section. For more details, please see the original paper.

2.1 Generation of the baryon condensate

The essential ingredient of the model is a squark condensate ϕ with a non-zero baryon charge. It naturally appears in supersymmetric theories and is a scalar superpartner of quarks. The condensate $\langle \phi \rangle \neq 0$ is formed during the inflationary period as a result of the enhancement of quantum fluctuations of the ϕ-field (Bunch & Davies 1978; Vilenkin & Ford 1982; Linde 1982; Starobinsky 1982): $\langle \delta \phi \rangle = H^2/4\pi^2$. The baryon charge of the field is not conserved at large values of the field amplitude, owing to the presence of the B non-conserving self-interaction terms in the field potential. As a result, a condensate of a baryon charge (stored in $\langle \phi \rangle$) is developed during inflation with a baryon charge density of the order of H_1^3, where H_1 is the Hubble parameter at the inflationary stage.

2.2 Generation of the baryon asymmetry

After inflation ϕ starts to oscillate around its equilibrium point with a decreasing amplitude. This decrease is due to the expansion of the Universe and to particle production by the oscillating scalar field (Dolgov & Kirilova 1990, 1991). Here we discuss the simple case of particle production when ϕ decays into fermions and there is no parametric resonance. We expect that the case of decays into bosons owing to parametric resonance (Kofman, Linde & Starobinsky 1994, 1996; Shibanov, Traschen & Brandenberger 1995; Boyanovski et al. 1995; Yoshimura 1995; Kaiser 1996), especially in the broad resonance case, will lead to an explosive decay of the condensate, and hence an insufficient baryon
asymmetry. Therefore we explore the more promising case of ϕ decaying into fermions.

In the expanding universe, ϕ satisfies the equation

$$\ddot{\phi} - a^{-2} \dot{a}^2 \phi + 3H \dot{\phi} + \frac{1}{4} \Gamma \phi + U'_{\phi} = 0,$$

(1)

where $a(t)$ is the scalefactor and $H = \dot{a}/a$.

The potential $U(\phi)$ is chosen in the form

$$U(\phi) = \frac{\lambda_1}{2} |\phi|^4 + \frac{\lambda_2}{4} (\phi^4 + \phi^*^4) + \frac{\lambda_3}{4} |\phi|^2 (\phi^2 + \phi^*^2).$$

(2)

The mass parameters of the potential are assumed to be small in comparison with the Hubble constant during inflation, $m \ll H_1$. In supersymmetric theories the constants λ_i are of the order of the gauge coupling constant α. A natural value of m is $10^{2} - 10^{4}$ GeV.

The initial values for the field variables can be derived from the natural assumption that the energy density of ϕ at the inflationary stage is of the order of H_1^2: then $\phi_0^{\text{max}} \sim H_1 \lambda^{-1/4}$ and $\phi_0 = 0$.

The term $\Gamma \phi$ in the equations of motion explicitly accounts for the eventual damping of ϕ as a result of particle creation processes. Explicitly accounting for the effect of particle creation processes in the equations of motion was first done by Chizhov & Kirilova (1994) and Kirilova & Chizhov (1996). The production rate Γ was calculated by Dolgov & Kirilova (1990). For simplicity here we have used the perturbation theory approximation for the production rate $\Gamma = \alpha \Omega$, where Ω is the frequency of the scalar field. For $\gamma < \lambda^{3/4}$, Γ considerably exceeds the rate of ordinary decay of the field $\Gamma_m = am$. Fast oscillations of ϕ after inflation result in particle creation owing to the coupling of the scalar field to fermions $g \phi f_{1,2}$, where $g^2/4\pi = \alpha_{\text{USY}}$. Therefore the amplitude of ϕ is damped as $\phi \rightarrow \phi \exp(-\Gamma t/4)$ and the baryon charge, contained in the ϕ condensate, is considerably reduced. Dolgov & Kirilova (1991) discussed in detail that for a constant Γ, this reduction is exponential and general, for a natural range of model parameters, the baryon asymmetry is washed out until the baryogenesis epoch as a result of the particle creation processes. Fortunately, in the case without flat directions of the potential, the production rate is a decreasing function of time, so that the damping process may be slow enough for a considerable range of acceptable model parameter values of m, H, α and λ, so that the baryon charge contained in ϕ may survive until the advent of the B-conservation epoch. Generally, in cases of more effective particle creation, like in the case with flat directions in the potential, or in the case when ϕ decays spontaneously into bosons as a result of parametric resonance, the mechanism of baryon asymmetry generation under discussion cannot be successful. Hence it also cannot be useful for the generation of the matter periodicity.

2.3 Baryogenesis epoch t_B

When inflation is over and ϕ relaxes to its equilibrium state, its coherent oscillations produce an excess of quarks over antiquarks or vice versa, depending on the initial sign of the baryon charge condensate. This charge, diluted further by some entropy-generating processes, dictates the observed baryon asymmetry. This epoch, when ϕ decays to quarks with non-zero average baryon charge and thus induces baryon asymmetry, we call the baryogenesis epoch. The baryogenesis epoch t_B for our model coincides with the advent of the baryon-conservation epoch, i.e. the time after which the mass terms in the equations of motion cannot be neglected. In the original baryogenesis scenario (Affleck & Dine 1985), this epoch corresponds to energies of $10^{2} - 10^{4}$ GeV. However, as has already been explained, the amplitude of ϕ may be reduced much more quickly owing to the particle creation processes and, as a result, depending on the model parameters, the advent of this epoch may be considerably earlier. For the correct estimation of t_B and the value of the generated baryon asymmetry, it is essential to account for the eventual damping of the field amplitude owing to particle production processes by an external time-dependent scalar field, which could lead to a strong reduction of the baryon charge contained in the condensate.

3 GENERATION OF THE BARYON DENSITY PERIODICITY

In order to explore the spatial distribution behaviour of the scalar field and its evolution during the expansion of the Universe, it is necessary to analyse equation (1). We have made the natural assumption that initially ϕ is a slowly varying function of the spatial coordinates $\phi(r, t)$. The spatial derivative term can be safely neglected because of the exponential increase of the scalefactor $a(t) \sim \exp(H_1 t)$. Then the equations of motion for $\phi = x + iy$ read

$$\ddot{x} + 3H \dot{x} + \frac{1}{4} \Gamma \dot{x} + (\lambda + \lambda_3) x^3 + \lambda_3 \chi x^2 = 0,$$

$$\ddot{y} + 3H \dot{y} + \frac{1}{4} \Gamma \dot{y} + (\lambda - \lambda_3) y^3 + \lambda_3 \chi y^2 = 0,$$

(3)

where $\lambda = \lambda_1 + \lambda_2$ and $\lambda' = \lambda_1 - 3\lambda_2$.

In the case where at the end of inflation the Universe is dominated by coherent oscillations of the inflaton field $\psi = m_{\phi} (3\pi)^{-1/2} \sin(m_{\phi} t)$, the Hubble parameter is $H = 2/(3t)$. In this case it is convenient to make the substitutions $x = H(t/4)^{3/2} u(t) \eta$ and $y = H(t/4)^{3/2} v(t) \eta$, where $\eta = 2(t/4)^{1/3}$. The functions $u(t)$ and $v(t)$ satisfy the equations

$$u'' + 0.75 \alpha \Omega_u (u' - 2u \eta^{-1}) + u[(\lambda + \lambda_3) u^2 + \lambda_3 \chi u^2 - 2 \eta^{-2}] = 0,$$

$$v'' + 0.75 \alpha \Omega_v (v' - 2v \eta^{-1}) + v[(\lambda - \lambda_3) v^2 + \lambda_3 \chi v^2 - 2 \eta^{-2}] = 0.$$

(4)

The baryon charge in the comoving volume $V = V(t/4)^2$ is $B = N_B V = 2(u'v - v'u)$. The numerical calculations were performed for $u_0, v_0 \in [0, 3^{1/4}]$, $u_0', v_0' \in [0, 2/3 \lambda^{1/4}]$. For simplicity we considered the case $\lambda_1 > \lambda_2 - \lambda_1$, when the non-harmonic oscillators u and v are weakly coupled. For each set of parameter values of the model λ_1, we have numerically calculated the baryon charge evolution $B(t)$ for different initial conditions of the field corresponding to the accepted initial monotonic spatial distribution of the field (see Figs 1 and 2).

The numerical analysis confirms the important role of the particle creation processes for baryogenesis models and large-scale structure periodicity (Chizhov & Kirilova 1994, 1996) that was obtained from an approximate analytical solution. In the present work we have accounted for particle creation processes explicitly. For the toy model that we discuss here, we consider this approximation to be instructive enough.

4 It has been shown that the damping effect due to particle creation is proportional to the initial amplitudes of the field. Insofar as the particle creation rate is proportional to the field frequency, it can be concluded that the frequency depends on the initial amplitudes. This result confirms our analytical estimate provided in earlier papers (Chizhov & Kirilova 1994, 1996).
The evolution of the baryon charge \(B(\eta) \) contained in the condensate \(\langle \phi \rangle \) for \(\lambda_1 = 5 \times 10^{-2}, \lambda_2 = \lambda_3 = \alpha = 10^{-3}, H_i/m = 10^7, \phi_0 = H_i \lambda^{-1/4} \) and \(\phi_0 = 0 \).

![Figure 1](https://example.com/figure1.png)

Figure 1. The evolution of the baryon charge \(B(\eta) \) contained in the condensate \(\langle \phi \rangle \) for \(\lambda_1 = 5 \times 10^{-2}, \lambda_2 = \lambda_3 = \alpha = 10^{-3}, H_i/m = 10^7, \phi_0 = H_i \lambda^{-1/4} \) and \(\phi_0 = 0 \).

The spatial distribution of the baryon charge is calculated for the moment \(t_0 \). It is obtained from the evolution \(B(\eta) \) for different initial values of the field, corresponding to its initial spatial distribution \(\phi(t, r) \) (Fig. 3). As expected, in the case of a non-harmonic field potential, the initially monotonic spatial behaviour is quickly replaced by spatial oscillations of \(\phi \), because of the dependence of the period on the amplitude, which in turn is a function of \(r \). As a result, different periods are observed at different points, and the spatial behaviour of \(\phi \) becomes quasi-periodic. Correspondingly, the spatial distribution of the baryon charge contained in \(\phi \) becomes quasi-periodic as well. Therefore the spatial distribution of baryons at the moment of baryogenesis is found to be periodic.

The observed spatial distribution of the visible matter today is defined by the spatial distribution of the baryon charge of the field \(\phi \) at the moment of baryogenesis \(t_0, B(t_0, r) \). At present, therefore, the visible part of the Universe consists of baryonic shells, divided by vast underdense regions. For a wide range of parameter values the observed average distance of 130 \(h^{-1} \) Mpc between matter shells in the Universe can be obtained. The parameters of the model that fix the observable size of the regions between the matter domains lie in the range of parameters for which the generation of the observed value of the baryon asymmetry may be possible in the model of scalar field condensate baryogenesis. This is an attractive feature of the model, because both the baryogenesis and the large-scale structure periodicity of the Universe can be explained simply through the evolution of a single scalar field.

Moreover, for some model variations the presence of vast antibaryonic regions in the Universe is predicted. This is an interesting possibility insofar as the observational data do not rule out the possibility of antimatter superclusters in the Universe. The model proposes an elegant mechanism to achieve a sufficient separation between regions occupied by baryons and those occupied by antibaryons, necessary in order to inhibit the contact of matter and antimatter regions with considerable density.

It would be interesting, bearing in mind the positive results of this investigation, to provide a more precise study of the subject for different possibilities of particle creation, and to consider their relevance for the scenario under discussion of baryogenesis and periodicity generation. In the case of narrow-band resonance decay, the final state interactions regulate the decay rate; parametric amplification is effectively suppressed (Allahverdi & Campbell 1997) and does not drastically enhance the decay rate. Therefore we expect that this case will be interesting to explore.

Another interesting case may be that of strong dissipative periodicity generation. In the case of narrow-band resonance decay, the final state interactions regulate the decay rate; parametric amplification is effectively suppressed (Allahverdi & Campbell 1997) and does not drastically enhance the decay rate. Therefore we expect that this case will be interesting to explore.

ACKNOWLEDGMENTS

We are glad to thank A. D. Dolgov for stimulating our interest in this problem. We are grateful to ICTP, Trieste, where this work was finished, for financial support and hospitality. We are grateful also to the referee for useful remarks and suggestions. This work was partially financially supported by Grant-in-Aid for Scientific
Trimble V., 1990, Nat, 345, 665

This paper has been typeset from a \TeX/L\TeX file prepared by the author.