Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California

Alan D. Chapman1,2,*, Jason B. Saleeby1, David J. Wood4,†, Alison Piasecki1, Steven Kidder1, Mihai N. Ducea2, and Kenneth A. Farley1

1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
2Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

ABSTRACT

The Sierra Nevada batholith is an ~600-km-long, NNW-trending composite arc assemblage consisting of a myriad of plutons exhibiting a distinct transverse zonation in structural, petrologic, geochronologic, and isotopic patterns. This zonation is most clearly expressed by a west-to-east variation from mafic to felsic plutonic assemblages. South of 35.5°N, the depth of exposure increases markedly, and fragments of shallow-level eastern Sierra Nevada batholith affinity rocks overlie deeper-level western zone rocks and subjacent subduction accretion assemblages along a major Late Cretaceous detachment system. The magnitude of displacement along this detachment system is assessed here by palinspastic reconstruction of vertical piercing points provided by batholithic and metamorphic pendant structure and stratigraphy. Integration of new and published U-Pb zircon geochronologic, thermobarometric, (U-Th)/He thermochronometric, and geochemical data from plutonic and metamorphic framework assemblages in the southern Sierra Nevada batholith reveal seven potential correlations between dispersed crustal fragments and the Sierra Nevada batholith autochthon. Each correlation suggests at least 50 km of displacement along a regional detachment system. The timing and pattern of regional dispersion of crustal fragments in the southern Sierra Nevada batholith is most consistent with Late Cretaceous collapse above the underplated accretionary complex. We infer, from data presented herein (1) a high degree of coupling between the shallow and deep crust during extension, and (2) that the development of modern landscape in southern California was greatly preconditioned by Late Cretaceous tectonics.

INTRODUCTION

In zones of convergence, regional gradients in gravitational potential energy can be relaxed through lateral spreading and vertical thinning of orogenic crust (e.g., Dewey, 1988; Rey et al., 2001). Deep-crustal exposures of the southern Sierra Nevada batholith, subjacent subduction accretion assemblages, and flanking shallow-level assemblages of the Mojave Desert and Salinian block represent a multi-tiered regional core complex that formed in response to crustal thickening and subsequent extensional collapse (Glazner et al., 1989; Malin et al., 1995; Wood and Saleeby, 1997; Kidder et al., 2003; Saleeby, 2001). The collapse phase is marked by the structural ascent of presently exposed high-pressure (7–11 kbar) rocks of the southern Sierra Nevada batholith and vicinity (Aague and Brimhall, 1988; Pickett and Saleeby, 1993; Fletcher et al., 2002; Grove et al., 2003; Kidder et al., 2003; Saleeby et al., 2007; Nadin and Saleeby, 2008; Chapman et al., 2010, 2011) and the dispersal of lower pressure (2–4 kbar), southeastern Sierra Nevada batholith affinity assemblages across the entire width of the batholith (May 1989; Malin et al., 1995; Wood and Saleeby, 1997; Saleeby, 2003; Chapman et al., 2010).

The batholith affinities of the pendants and plutons of the southern Sierra Nevada batholith are characterized well enough to recognize allochthonous equivalents. In this study, we present new: (1) field and structural relations to provide the basis for recognizing potential correlations; (2) U-Pb geochronology of plutonic and detrital zircon populations to identify the age and provenance of displaced plutonic and metamorphic assemblages; (3) thermobarometric work to assess pressure differentials between native and displaced assemblages; (4) major and trace element geochemistry and Sr and Nd isotopic ratios to determine the sources of allochthonous metavolcanic rocks; and (5) zircon (U-Th)/He thermochronometry to constrain the timing of
extension. These results are integrated with previous geologic studies and thermobarometric, geochronologic, and geochemical databases in order to recognize allochthon-autochthon pairs and to estimate the magnitude of transport that they imply.

GEOLOGIC BACKGROUND

“Autochthonous” Sierra Nevada Batholith

The Sierra Nevada block is a NNW-trending composite batholith with juvenile batholithic crust extending to ≥35 km depth (Ruppert et al., 1998; Saleeby et al., 2003, 2007). Gradients in pluton ages, integrated bulk compositions, amounts of recycled crustal components, and the paleogeographic affinities of metamorphic pendants define a distinct west to east zonation (Figs. 1 and 2). These zones may be used to recognize and reconstruct superimposed tectonic disruptions.

For convenience, we refer to the pre-Late Cretaceous architecture of the Sierra Nevada batholith and adjacent southern California batholith of the Mojave Desert and Salinia as autochthonous, although a number of the pre-batholithic elements were deformed prior to and during emplacement of the Sierra Nevada batholith (Kistler, 1990; Dunne and Suczek, 1991; Saleeby and Busby, 1993; Stevens and Stone, 2005; Nadin and Saleeby, 2008; Saleeby, 2011; Fig. 2). The following is a summary of key compositional, geochemical, geochronologic, and structural relations between “autochthonous” longitudinal zones of the Sierra Nevada batholith and its framework.

Cretaceous Batholithic Belts

Across-strike variations in composition, pluton emplacement ages, and geochemistry delineate four distinct zones to the Sierra Nevada batholith (Nadin and Saleeby, 2008 and references therein). From west to east, we define the following zones: (1) the ~140–115 Ma dioritic zone, a collection of mafic assemblages dominated by quartz diorite, gabbro, and tonalite, with limited outcrop along the westernmost Sierra Nevada and extensive subcrop beneath the San Joaquin Basin (May and Hewitt, 1948; Williams and Curtis, 1976; Ross, 1989; Saleeby et al., 2009a, 2011); (2) the ~115–100 Ma tonalitic zone with domains of tonalite and lesser amounts of quartz diorite and gabbro; (3) the ~105–90 Ma granodioritic zone in mainly tonalite and granodiorite; and (4) ~90–80 Ma granitic zone granodiorite and granite rocks (Figs. 1 and 3). Initial $^{87}\text{Sr}/^{86}\text{Sr}$ (Sr_{0}) increases eastward across the Cretaceous zones from ~0.703 to ~0.709. The boundary between tonalitic and granodioritic zones is generally defined by the Sr$_0$ = 0.706 isopleth (Nadin and Saleeby, 2008).

Pre-Cretaceous Plutons and Metamorphic Framework

Cretaceous plutons of the Sierra Nevada batholith intruded a framework of Neoproterozoic to Mesozoic continental shelf, slope, and rise strata, a belt of accreted abyssal lithosphere, and Triassic to Jurassic plutons, now all exposed as metamorphic pendants (Saleeby et al., 2008; Figs. 1–3). Covariation of pendant stratigraphy, age, and provenance track with plutonic zonation patterns discussed above (Figs. 2 and 3). West to east longitudinal zones include: (1) the Paleozoic Foothills ophiolite belt with overlying Permian to Triassic (7) Calaveras complex hemipelagic deposits, and unconformable infolds of suprasubduction mafic volcanic rocks and siliciclastic turbidites (Saleeby, 2011; Fig. 2). (2) A belt, spanning western to eastern Sierra Nevada batholith zones, of Cambrian to Ordovician eugeoclinal (i.e., deep marine sediments of the outer continental margin) quartzite, phyllite, and chert named the Sierra City mélange and Shoo Fly Complex (e.g., Harding et al., 2000) in the north and the remnants of similar strata preserved in pendants of the Kernville terrane (e.g., Saleeby and Busby, 1993) in the south. (3) Neoproterozoic to Cambrian inner shelf facies of miogeoclinal (i.e., shallow marine sedimentary rocks of the inner continental margin) strata of the Death Valley and Mojave Desert regions, and correlative exposures in the Snow Lake terrane, an allochthonous slice that may have been shuffled ~400 km northward along the cryptic Sierra Nevada batholith (Saleeby, 1997; Fig. 1). The resulting generalized tectonostratigraphic of the southern Sierra Nevada batholith, from top to bottom, is that of a multi-tiered core complex consisting of three packages: allochthonous shallow-level mafic rocks and eastern Sierra Nevada batholith affinity rocks, (par)autochthonous deep-level western Sierra Nevada batholith assemblages, and subduction accretion assemblages. Characteristic features of exposed tectonostratigraphic units and bounding structures in the southern Sierra Nevada batholith and southern California batholith are discussed below.

Mafic Complexes and Cover Strata

The western San Emigdio mafic complex consists of hornblende-hornfels–facies basaltic sheeted dikes and pillows intruded by a suite of mid- to Late Jurassic layered to isotopic gabbroids and lesser amounts of ultramafic cumulates, which in turn are intruded by tonalitic assemblages (Hammond, 1958; James, 1986a; Reitz, 1986; Ross, 1989; Chapman et al., 2010). Correlative rocks of Logan Quarry and Gold Hill continue from the southwesternmost Sierra Nevada batholith into adjacent Salinia (Ross, 1970; Ross et al., 1973; James, 1986a; James et al., 1993).

The contact between the western San Emigdio mafic complex and western Sierra Nevada batholith assemblages is concealed beneath a veneer of Tertiary sedimentary rocks that form the southern margin of the San Joaquin basin. Subcrop mapping indicates that the basement surface is a detachment fault, informally named here as the Maricopa detachment (Fig. 1), consisting of northeast-southwest striated mylonitic and cataclastic assemblages derived from the western Sierra Nevada batholith and the western San Emigdio mafic complex.
Figure 1 (on this and following page). (A) Tectonic map of southern Sierra Nevada basement with related elements of northern Mojave and Salinia restored along San Andreas (310 km of dextral slip removed; Huffman, 1972; Matthews, 1976) and Garlock (50 km of sinistral slip removed; Ross, 1989) faults. Primary zonation and structures of the Sierra Nevada batholith from Saleeby et al. (2007) and Nadin and Saleeby (2008). Pressure determinations from Wiebe (1966, 1970), DeCrisoforo and Cameron (1977), John (1981), Ague and Brimhall (1988), Pickett and Saleeby (1993), Kidder et al. (2003), Nadin and Saleeby (2008), and this study. Extent of the Independence dike swarm from Carl and Glazner (2002), Glazner et al. (2002), Bartley et al. (2007), and Hopson et al. (2008). Rand fault structure contours from Cheadle et al. (1986), Li et al. (1992), Malin et al. (1995), Yan et al. (2005), and Luffi et al. (2009). Subsurface sources from Ross (1989), Monastero et al. (2002), and T. Nilsen (2005, personal commun.). Upper Cretaceous isopachs from Reid (1988).
Collapse of the Sierra Nevada batholith

Geosphere, April 2012 317

(Saleeby et al., 2009a). The Uvas Member of the Tejon Formation (e.g., Critelli and Nilsen, 2000) unconformably overlies the western San Emigdio mafic complex and contains meter-scale boulders of western San Emigdio mafic complex material (Fig. 4). The proximity of the Uvas Member to the Maricopa detachment and the presence of large boulders within the unit are consistent with inferred deposition in a supradetachment basin (Wood and Saleeby, 1997).

Eastern Sierra Nevada Batholith–Affinity Shallow-Level Granitoids and Metamorphic Framework Rocks

A first-order feature of the southern Sierra Nevada batholith and vicinity is a tectonostatigraphy topped by crustal fragments of shallow-level granitoids and amphibolite to hornblende hornfels–facies metamorphic pendant rocks (Nourse, 1989; Wood and Saleeby, 1997). These crustal fragments lie in the hanging wall of a regional detachment system consisting of “fault II” of Nourse (1989), the Blackburn Canyon, Jawbone Canyon, and Pastoria faults (Wood and Saleeby, 1997), and the cryptic westward continuation of the Pastoria fault into the Gabilan range (e.g., Kistler and Champion, 2001; Fig. 1A and B). These faults are referred to in aggregate as the southern Sierra detachment system. Here we review key temporal, kinematic, and structural relations of the southern Sierra detachment system.

The southern Sierra detachment system is a complex ductile to brittle low-angle structure that has been differentially remobilized, truncated, and folded by Transverse Ranges contractile deformation. Locally preserved ductile fabrics along eastern elements of the southern Sierra detachment system indicate a top to the south or southeast transport direction (Nourse, 1989; Wood and Saleeby, 1997). Kinematic analysis of the western southern Sierra detachment system is prohibited because original ductile fabrics are severely overprinted in the brittle regime.

Upper and lower plate juxtapositions across the southern Sierra detachment system are profound. These consist of: 2–4 kbar versus 7–11 kbar for pluton emplacement pressures, 87–105 Ma versus 102–138 Ma for pluton emplacement ages, and ~0.708 versus ~0.705 for Sr (Saleeby et al., 1987; Kistler and Ross, 1990; Pickett and Saleeby, 1994; Wood and Saleeby, 1997).

Deep-Level Exposures of the Western Sierra Nevada Batholith

Deep-crustal exposures of the Cretaceous batholithic belt lie in the footwall of the southern Sierran batholithic system and in the hanging wall of the Rand fault–Salinas shear zone.

Figure 1 (continued). (B) Map showing locations of metamorphic pendants and faults discussed in text. Calaveras complex shown in dark gray; Neoproterozoic to early Mesozoic pendants shown in gray. Cretaceous and Tertiary faults shown in black and red, respectively.
These rocks decrease in thickness and abundance westward from the southern Sierra Nevada batholith into Salinia, where only small remnants are preserved as basement inliers (Kistler and Champion, 2001; Kidder et al., 2003) and conglomerate clasts (Ross et al., 1973; Ross, 1988; James et al. 1993; Schott and Johnson, 1998, 2001; Fig. 1).

Unroofing of deep-level western Sierra Nevada batholith rocks is clearly linked to the transport of upper crustal fragments in the hanging wall of the southern Sierra detachment system. Mated thermochronometric and barometric data for the southern Sierra Nevada batholith, northern Salinia, and the northwestern Mojave Desert show an abrupt Late Cretaceous decompression event coincident with rapid cooling in the deep-level batholithic upper plate (Saleeby et al., 2007; Chapman et al., 2010 and references therein).

Subduction Accretion Assemblages

The Rand, San Emigdio, and Sierra de Salinas schists (referred to in aggregate as “the schist”) and similar early Tertiary Pelona and Orocopia...
schists of more southerly California crop out along detachment structures beneath older crystalline rocks of the southwest Cordilleran batholithic belt (Graham and England, 1976; Haxel and Dillon, 1978; Ehlig, 1981; Jacobson, 1983, 1995; Jacobson et al., 1988, 2007, 2011; Simpson, 1990; Kidder and Ducea, 2006; Ducea et al., 2009; Chapman et al., 2010, 2011). Most workers agree that the deposition and emplacement of the schist occurred during an episode of shallow subduction related to the Laramide orogeny (Jacobson et al., 2007 and references therein). The deposition, subduction, and structural ascent of the schist are temporally and spatially associated in plate reconstructions with the subduction of a large igneous province (LIP; Saleeby, 2003; Liu et al., 2008, 2010). Subduction of a LIP beneath the southernmost Sierra Nevada batholith and adjacent southern California batholith is hypothesized to have driven slab flattening, leading to the tectonic removal of subbatholithic mantle lithosphere, the cessation of arc magmatism, abrupt crustal thickening in the overriding batholithic plate (Malin et al., 1995; Ducea and Saleeby, 1998; House et al., 2001; Saleeby, 2003; Nadin and Saleeby, 2008) and decompression of batholithic assemblages

Figure 3. Block diagram illustrating petrologic, isotopic, and age zonation of the Sierra Nevada batholith and the distribution of Paleozoic wall-rock terranes and infolds of lower Mesozoic sedimentary and volcanic protolith sequences immediately prior to Late Cretaceous extensional collapse and activity of the southern Sierra detachment.

Figure 4. Photographs of Uvas member of the Tejon formation in the San Emigdio Mountains. Note pervasive fracturing of and intrusion of clastic dikes into meter-scale blocks of western San Emigdio mafic complex–derived gabbro. (A) Field of view 50 m long. (B) Field of view 7 m long.
from deep- to midcrustal levels (Saleeby et al., 2007; Chapman et al., 2010). The resultant high-elevation mountain belt segment shed detritus as the schist protolith into the trench, which was immediately underthrust beneath the recently extinguished arc (Kidder and Ducaea, 2006).

Late Cretaceous Tectonic Shuffling

Here we review temporal and kinematic relations between the principal members of the integrated proto–Kern Canyon–Kern Canyon–White Wolf fault system (Nadin and Saleeby, 2008) and the Owens Valley shear system (Bartley et al., 2007), because they are important for both the contractile and extensional phases of Late Cretaceous regional deformation in the southern Sierra Nevada batholith. Beginning at ca. 95 Ma, the proto–Kern Canyon fault functioned as a west-directed deep crustal reverse fault with southward increasing throw of 10–25 km and a northward increasing component of dextral shear (Nadin and Saleeby, 2008).

At ca. 88 Ma, the Kern Canyon fault branched from the proto–Kern Canyon fault to the southwest and merged with the proto–White Wolf fault (abbreviated in aggregate as KWF below). Displacement along the KWF increases southward from zero at 36.7° N to 40 km of dextral slip and 15 km of dip slip near the Tejon embayment (Nadin and Saleeby, 2008).

Bartley et al. (2007) show that ~65 km of dextral slip along the Owens Valley shear system occurred between Late Cretaceous and Paleogene time. Coeval shear along the Owens Valley shear system, KWF, and southern Sierra detachment system suggests that these structures may have been cogenetic, with the Owens Valley shear system and KWF representing transfer faults flanking the southern Sierra–Salinia core complex.

RESULTS

Analytical techniques for U-Pb geochronology, (U-Th)/He thermochronometry, thermobarometry, and geochemistry are available in the Supplemental File. Also included in the Supplemental File are complete data sets, sample petrography, representative zircon cathodoluminescence (CL) images and notes, details of the multidimensional scaling algorithm used, a discussion of correlative granitoids, and U-Pb zircon, Sr, and igneous and metamorphic pressure databases.

U-Pb Zircon Geochronology

Plutonic Rocks

This geochronologic investigation focuses on batholithic suites adjacent to the southern Sierra detachment system and Maricopa detachment: hanging-wall granitoids of the Pastoria and southern Tehachapi plates, footwall deep-level plutonic assemblages of the San Emigdio Mountains (Tehachapi–San Emigdio complex of Chapman et al., 2010, 2011; Chapman and Saleeby, 2012), and the White Ridge tonalite of the western San Emigdio mafic complex.

Deep-level rocks from the San Emigdio Mountains include: (1) the Antimony Peak tonalite, dated at 131 Ma in reconnaissance U-Pb zircon studies by James (1986a, 1986b); (2) the San Emigdio tonalite, a more felsic phase of the Antimony Peak body; (3) the San Emigdio gneiss (Chapman et al., 2011), an undated hornblende quartz diorite orthogneiss that crops out north of the San Emigdio schist and likely correlates with similar rocks of the 99–105 Ma intrusive suite of Bear Valley (Saleeby et al., 1987; Pickett and Saleeby, 1993; Saleeby et al., 2007); (4) the Digier Canyon diorite gneiss, the western continuation of the White Oak diorite gneiss (Saleeby et al., 2007), a tectonic mixture of amphibolite to locally retrograde gneissich-facies dioritic and subordinate tonalitic, gabbroic, and mylonitic gneisses and cataclasites at the base of the Tehachapi–San Emigdio complex; and (5) the western continuation of the Grapevine Canyon paragneiss (Pickett and Saleeby, 1993, 1994).

Hanging-wall granitoids include: (1) the Lebec granodiorite of Crowell (1952), which hosts the Salt Creek pendant; (2) the Claraville granodiorite of the Blackburn plate, which yields U-Pb zircon ages of 91 ± 1 Ma ~50 km north of our sample site (Saleeby et al., 1987, 2008); (3) the granite of Brush Mountain, assigned a 98 Ma U-Pb zircon age by James (1986b); (4) the granodiorite of Gato Montes, which yields a Rb-Sr isochron age of 96.3 ± 8.7 Ma (Kistler and Ross, 1990); and (5) a hornblende granodiorite in contact with the Tylerhorse Canyon pendant, informally named here the granodiorite of Gamble Spring Canyon. Sample locations and interpreted U-Pb ages of plutonic as well as metavolcanic rocks are given in Table 1 and shown in Plate 1. U-Pb results are shown in Figure 5.

Results from our geochronologic work are combined with all known U-Pb zircon ages from the southern Sierra Nevada and Salinia to produce a color contour map (Plate 1), showing regional variations in pluton emplacement age, using the spatial analyst extension of Arcmap 9 and employing “barriers” such as the proto–Kern Canyon fault, KWF, and other faults shown on Figure 1. Sr, (Plate 2) and pluton emplacement and metamorphic equilibration pressure (Plate 3) compilation maps were also produced in an identical manner.

Metamorphic Pendant Rocks

A single sample of dacitic metaturf from the Bean Canyon pendant (07TM10) yields a total of 24 concordant analyses with an interpreted age of 273.0 ± 2.4 Ma (Fig. 5). A concordia age of ca. 102.6 ± 1 Ma was determined using two multigrain zircon fractions from a metamorphosed pumice lapilli silicic tuff (sample 91TH140) from the Oak Creek Pass complex. Thirty-five concordant zircon grains were analyzed from a felsic segregation within the basal amphibolite of the Bean Canyon pendant (11BC1) and give a weighted mean age of 487.4 ± 3.2 Ma.

Samples of metamorphosed siliciclastic rock from the Salt Creek (08SE258), Tylerhorse (08TC44), and Bean Canyon (07BC60) pendants yielded a total of 286 concordant grains suitable for provenance analysis. A normalized probability plot comparing detrital zircon age spectra of samples analyzed here with strata of Death Valley, the Snow Lake terrane, the Salinian block, the Kernville terrane, the El Paso terrane, the Roberts Mountains allochthon, the Sierra Nevada mélange, and the Shoo Fly complex is shown in Figure 6. Sample 08SE258 has major age peaks at ca. 1100 Ma, 1400 Ma, and 1700 Ma. Sample 07BC60 has a major age peak at ca. 1800 Ma, with scattered ages between 1000–1700 Ma and 2300–2900 Ma. Sample 08TC44 contains scattered ages between ca. 200–600 Ma, 1000–1800 Ma, and 2000–2900 Ma.

Figure 7 compares the age spectra of samples from this study with those of a suite of samples from the terranes listed above using multidimensional scaling (MDS). Multidimensional scaling offers an advantage over traditionally used Kolmogorov-Smirnov (K-S) statistical tests in that MDS can be used to produce visual representations of statistical distances between arrays of age data. In other words, MDS calculates a matrix of statistical distances between samples of detrital zircon ages and plots the samples on a map such that the samples that contain similar age spectra are placed close to each other on the map. Multidimensional scaling mapping of data from the El Paso terrane–Roberts Mountains allochthon, Death Valley–Snow Lake terrane,
and northern and southern Sierra produces clusters (Fig. 7) that can be exploited to test provenance hypotheses for unknown samples.

Paleontology

Broken bivalve remains were discovered by undergraduate assistant S. Peek in a hornfelsic calcareous sandstone from the Tylerhorse Canyon pendant (Fig. 8). These remains strongly resemble Early Jurassic bivalves of the genus Weyla that were recovered from two locations in the same stratigraphic horizon of the Isabella pendant (Saleeby and Busby, 1993; identified by J.W. Durham and D.L. Jones). In each pendant, bivalve fragments are located in a centimeter- to meter-scale layered quartzite unit characterized by thin, calc-silicate and psammitic interbeds that sit stratigraphically above a thick highly recrystallized gray marble. The Isabella pendant fossils are from ~10 and ~50 m above the marble, and the Tylerhorse Canyon fossils are from ~40 m above the marble. These relations suggest stratigraphic equivalence of marble-layered quartzite units in Isabella and Tylerhorse Canyon pendants.

(U-Th)/He Thermochronometry

(U-Th)/He zircon ages were determined along a traverse across the footwall of the southern Sierra detachment system from a subset of samples studied by apatite He and zircon He ages, against sample elevation and zircon He ages (Mahéo et al., 2009) to calculate the amount of erosion that took place between apatite He and zircon He closure, and (3) adding the eroded amount to the sample elevation for zircon He determinations. The age-(pseudo)elevation relationships shown in Figure 9A indicate that the footwall of the southern Sierra detachment system cooled through the ~180 °C zircon He closure temperature (Reiners, 2005) rapidly at 77 ± 5 Ma.

K/Ar and Ar/Ar ages on biotite and hornblende scattered across the autochthon are in the 89 to 75 Ma range (Kistler and Peterman, 1978; Dixon, 1995). These ages, when coupled with zircon U-Pb igneous and He cooling ages, further indicate cooling from solidus conditions to He closure at ~100 °C/m.y. scale (Fig. 9B).

Thermobarometry

The rationale behind our thermobarometric work is that correlative native and displaced sites should show pressure differentials that reflect the relative upper and lower plate positions. To investigate igneous emplacement pressures as well as peak metamorphic conditions within pendant rocks, a suite of samples was collected from the southern Tehachapi Mountains, San Emigdio Mountains, and the Santa Lucia Range. Pressure-temperature conditions for metapelitic pendant rock were calculated from garnet + biotite + plagioclase + quartz + sillimanite/andalusite + cordierite + K-feldspar (Table 3) assemblages interpreted to have equilibrated during peak metamorphism. Calculated temperatures and pressures for metapelitic pendant rock range from ~550 to 700 °C and 2.5 to 4 kbar.

Host plutons containing the equilibrium assemblage hornblende + plagioclase + K-feldspar + quartz + plagioclase + titanomagnetite were collected for aluminum-in-hornblende (Al-in-hbl) igneous barometry (Hammarstrom and Zen, 1986; Hollister et al., 1987; Johnson and Rutherford, 1989; Schmidt, 1992; Anderson and Smith, 1995; Ague, 1997). We report hornblende-plagioclase temperatures as well as Al-in-hbl pressures for Hammarstrom and Zen (1986), Hollister et al. (1987), Johnson and Rutherford (1989), Schmidt (1992), and Anderson and Smith (1995) calibrations in Table 4. Thermobarometric results are appended to a recent compilation by Nadin and Saleeby (2008) to produce a color contour map (Plate 3), showing regional variations in igneous and metamorphic pressure for the southern Sierra Nevada batholith and Salinia. We refer below to the Schmidt (1992) determinations to remain consistent with the Nadin and Saleeby (2008) compilation.

Geochemistry

Western San Emigdio Mafic Complex

Major and trace element geochemistry and Sr and Nd isotopic ratios were determined from allochthonous metavolcanic rocks to evaluate the most likely native sites of these rocks. Major and trace element data indicate that sheeted dikes and pillow basalts from the western San Emigdio mafic complex are of normal mid-ocean ridge basalt (N-MORB) affinity (Sun and McDonough, 1989), with SiO₂ of

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lithology</th>
<th>Zone</th>
<th>UTM easting</th>
<th>UTM northing</th>
<th>U-Pb zircon age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08SE46</td>
<td>Antimony Peak tonalite</td>
<td>11</td>
<td>319551</td>
<td>3864823</td>
<td>Cores: 135.6 ± 2.1</td>
</tr>
<tr>
<td>08SE262</td>
<td>Antimony Peak tonalite</td>
<td>11</td>
<td>308858</td>
<td>3863886</td>
<td>Rims: 136.4 ± 0.9</td>
</tr>
<tr>
<td>08SE51</td>
<td>Antimony Peak tonalite</td>
<td>11</td>
<td>307029</td>
<td>3861038</td>
<td>135.3 ± 1.0</td>
</tr>
<tr>
<td>08SE582</td>
<td>Antimony Peak tonalite</td>
<td>11</td>
<td>305678</td>
<td>3860356</td>
<td>134.5 ± 1.0</td>
</tr>
<tr>
<td>08SE675</td>
<td>Antimony Peak tonalite</td>
<td>11</td>
<td>324340</td>
<td>3863296</td>
<td>Cores: 136.4 ± 0.9</td>
</tr>
<tr>
<td>07SE94</td>
<td>San Emigdio gneiss</td>
<td>11</td>
<td>314647</td>
<td>3863872</td>
<td>Rims: 98.5 ± 2.8</td>
</tr>
<tr>
<td>08SE450</td>
<td>San Emigdio gneiss</td>
<td>11</td>
<td>307107</td>
<td>3860929</td>
<td>105.1 ± 2.4</td>
</tr>
<tr>
<td>08SE674</td>
<td>Diger Canyon and White Oak diorite gneiss</td>
<td>11</td>
<td>324461</td>
<td>3861916</td>
<td>121.3 ± 1.4</td>
</tr>
<tr>
<td>08SE679</td>
<td>Diger Canyon and White Oak diorite gneiss</td>
<td>11</td>
<td>325421</td>
<td>3861840</td>
<td>105.2 ± 2.7</td>
</tr>
<tr>
<td>04SE5</td>
<td>Lebec granodiorite</td>
<td>11</td>
<td>311257</td>
<td>3858324</td>
<td>91.6 ± 0.7</td>
</tr>
<tr>
<td>06SE19a</td>
<td>Lebec granodiorite</td>
<td>11</td>
<td>316199</td>
<td>3864484</td>
<td>91.1 ± 1.7</td>
</tr>
<tr>
<td>08SE256</td>
<td>Lebec granodiorite</td>
<td>11</td>
<td>312736</td>
<td>3860408</td>
<td>88.4 ± 1.2</td>
</tr>
<tr>
<td>91TH181</td>
<td>Claraville granodiorite</td>
<td>11</td>
<td>373131</td>
<td>3879868</td>
<td>91.91 ± 0.47</td>
</tr>
<tr>
<td>93TH417</td>
<td>Claraville granodiorite</td>
<td>11</td>
<td>368657</td>
<td>3878458</td>
<td>91.93 ± 0.56</td>
</tr>
<tr>
<td>10TC5</td>
<td>Granodiorite of Gato Montes</td>
<td>11</td>
<td>294640</td>
<td>3863171</td>
<td>92.1 ± 1.0</td>
</tr>
<tr>
<td>08TC27a</td>
<td>Granodiorite of Gamble Spring Canyon</td>
<td>11</td>
<td>367862</td>
<td>3870810</td>
<td>146.8 ± 0.4</td>
</tr>
<tr>
<td>08SE596</td>
<td>Granite of Brush Mountain</td>
<td>11</td>
<td>297219</td>
<td>3861811</td>
<td>104.5 ± 0.8</td>
</tr>
<tr>
<td>09SE23</td>
<td>White Ridge tonalite</td>
<td>11</td>
<td>291420</td>
<td>3867183</td>
<td>155.2 ± 3.4</td>
</tr>
<tr>
<td>91TH140</td>
<td>Oaks metavolcanic</td>
<td>11</td>
<td>368864</td>
<td>3881115</td>
<td>102.64 ± 0.97</td>
</tr>
<tr>
<td>07TM10</td>
<td>Bean Canyon metatuffaceous</td>
<td>11</td>
<td>374359</td>
<td>3872499</td>
<td>273.0 ± 2.4</td>
</tr>
<tr>
<td>11BC1</td>
<td>Bean Canyon amphibolite</td>
<td>11</td>
<td>374571</td>
<td>3872044</td>
<td>487.4 ± 3.4</td>
</tr>
</tbody>
</table>

Note: Universal Transverse Mercator (UTM) coordinates are World Geodetic System datum. Isotopic data can be found in Tables SD1 and SD2 in the Supplemental File (see footnote 1).
Plate 1. Color contour map showing regional variations in compiled U-Pb zircon ages from plutonic rocks of the Sierra Nevada batholith, Salinian block, and Mojave Desert draped over a digital elevation model. Data, sample locations, and references in Table SD4 in the Supplemental File (see footnote 1). If you are viewing the PDF of this paper or reading it offline, please visit http://dx.doi.org/10.1130/GES00740.S2 or the full-text article on www.gsapubs.org to view Plate 1.
DISCUSSION

Palinspastic Restoration of Vertical Piercing Points

Integrated field mapping, petrography, geochemistry, and geochemistry reveal seven distinct allochthonous assemblages that may correlate with similar autochthonous rocks of the southern Sierra Nevada and vicinity. Wood and Saleeby (1997) argued on the basis of geologic evidence for an additional nine correlations, two of which are supported by this study (correlations 2 and 3, described below) and two are modified slightly (correlations 1 and 5). All correlations are summarized in Table 5 and shown on Figure 12A.

Correlation #1: Area between Lake Isabella and Kern Plateau Pendants (A) and Bean Canyon and Tylerhorse Canyon Pendants (A')

The Bean Canyon pendant is characterized by a succession of marble, quartzite, calc-silicatic hornfels, pelitic schist, and silicic metatuff, unconformably underlain by amphibolite and associated ultramafic rock (Rindosh, 1977; Ross, 1989; Wood and Saleeby, 1997; and this study). We report an Early Ordovician (487.4 ± 3.4 Ma) U-Pb zircon age from the basal amphibolite unit. An overlapping Sm-Nd isochron age of 484 ± 18 Ma from the Kings River ophiolite (Saleeby, 2011) suggests a possible relationship, currently under investigation, between mafic rocks at the base of the Bean Canyon section and the Kings River ophiolite. The correlation of metamorphosed mafic to ultramafic bodies in Bean Canyon and Salinia with similar rocks at the apparent base of the Kennedy pendant section in the El Paso terrane is discussed below in “correlation #5.”

Detrital zircon geochronologic data reported herein indicate that quartzite (sample 07BC60) from the Bean Canyon pendant contains an age distribution similar to that of eugeoclinal deposits of the El Paso terrane (J. Saleeby, 2011, personal commun.) and Roberts Mountains allochthon (Gehrels et al., 2000a) and möegoclinial rocks of the Snow Lake pendant (Figs. 6 and 7). A U-Pb zircon age of 273.0 ± 2.4 Ma for dacitic metatuff from near the top of the Bean Canyon section overlaps in age with andesitic flows and brecias from the El Paso Mountains (Walker, 1988; Martin and Walker, 1995) and indicates that the Bean Canyon pendant is entirely Paleozoic. Trace element abundances of undated silicic metavolcanic rocks from the Kern Plateau resemble those of the Bean Canyon pendant (Fig. 10B). Age, geochemical, petrographic, and stratigraphic relations lead us to suggest that volcanic and metavolcanic rocks exposed in the El Paso Mountains, and Bean and Kern Plateau pendants are correlative.

The Tylerhorse Canyon pendant lies stratigraphically above the Bean Canyon pendant and consists of pelitic and psammitic schist, calc-silicates, and marble. The U-Pb detrital zircon age spectrum from metapsammitic sample 08TC44 partially overlaps that of sample 07BC60 from the Bean Canyon pendant for grains older than ca. 1400 Ma (Fig. 6), but abundant late Paleozoic to early Mesozoic grains indicate that strata of the Tylerhorse Canyon pendant were deposited into Jurassic time. The Tylerhorse Canyon section is, therefore, interpreted as a Mesozoic overlap sequence deposited across Bean Canyon pendant protoliths.

A similar depositional setting is envisaged for the Isabella pendant, based on the presence of Paleozoic amphibolite over lain by Triassic to Jurassic metavolcanic and metasedimentary rocks. Fossils that resemble the Early Jurassic pectinid bivalve Weyla (Fig. 8) corroborate a Mesozoic depositional age for Tylerhorse Canyon strata and permit correlation to equivalent strata found in the Lake Isabella pendant.

Two igneous suites of distinct age and composition intrude the Bean Canyon–Tylerhorse Canyon package. First is a series of east-striking tonalitic, gabbroic, and granodioritic dikes and lenticular masses distributed throughout and along the margins of the pendants. The granodiorite of Gamble Spring Canyon represents one phase of the suite, and with a U-Pb zircon emplacement age of 146.8 ± 0.4 Ma, is similar in age to the quartz diorite of Long Valley (J. Saleeby, 2011, personal commun.) and to the...
Figure 5.
Late Jurassic Independence dike swarm of the eastern Sierra Nevada–Owens Valley–Mojave Desert region (Chen and Moore, 1979; Carl and Glazner, 2002; Glazner et al., 2002; Bartley et al., 2007; Hopson et al., 2008; Fig. 1). The granodiorite of Gato Montes and granite of Bean Canyon, both Late Cretaceous in age (Evernden and Kistler, 1970; Kistler and Ross, 1990, and this study), comprise a second plutonic suite that intrudes Bean Canyon and Tylerhorse Canyon pendants and the Jurassic granodiorite of Gamble Spring Canyon. High Sr ratios (>0.707) characterize these plutons and autochthonous equivalents. An upper plate (a')–lower plate (a) pressure differential of ~2.4–2.8 kbar (samples 08TC27a and 08TC29; Tables 3 and 4) versus 4.1–5.5 kbar (Nadin and Saleeby, 2008, samples 03SS1, 04SS31, and 51) suggests the removal of 5–10 km of crust along the southern Sierra detachment system during faulting.

Correlation #2: Silicic Metavolcanic Rocks of the Erskine Canyon Sequence (B) and the Oak Creek Pass Complex (B')

Small screens of finely recrystallized laminated tuffs with remnants of quartz phenocrysts and pumice lapilli crop out in the Oak Creek Pass complex (Wood, 1997; Wood and Saleeby, 1997). The Oaks metatuffs are similar in petrography, texture, and field setting to the 102–105 Ma Erskine Canyon rhyolitic to andesitic metavolcanic sequence, which has been transposed along the proto–Kern Canyon fault over ~40 km adjacent to Lake Isabella (Nadin and Saleeby, 2008; Saleeby et al., 2008). We hypothesize that Oaks metavolcanic rocks represent Erskine Canyon rocks formerly situated east of the proto–Kern Canyon fault that were displaced southward by detachment faulting. U-Pb zircon geochronology reported here supports this view, with an interpreted eruption age of 102.6 ± 1.0 Ma for Oaks metavolcanic rocks. Pressure determinations from plutons and metamorphic assemblages in contact with Erskine Canyon metavolcanic rocks range from 6.6 to 4.5 kbar (Nadin and Saleeby, 2008, Plate 3), in contrast to 3 to 4.4 kbar determinations from the Claraville granodiorite in the hanging wall (Nadin and Saleeby, 2008, sample RB020601, and samples 93TH417 and 91TH181; Table 4), which intrudes Oaks metavolcanic rocks, corresponding to ~0–12 km of missing crust.

Correlation #3: Monolith and Back Canyon Pendants (C) and Quinn Ranch and Aqueduct Tunnel Pendants (C')

The Quinn Ranch and Aqueduct Tunnel pendants are characterized by sequences of chiefly marble interleaved with calc-silicate and minor quartzite and siliceous meta-argillite (Ross, 1989). The granodiorite of Gato Montes intrudes these pendants and yields a U-Pb zircon age of 92.1 ± 1.0 Ma. The Aqueduct Tunnel and Quinn Ranch pendants, neighboring small marble septa, and host plutons share similar pendant-pluton relations with Monolith and Back Canyon pendants and intrusive Claraville granodiorite of the south-central Sierra Nevada batholith. A similar range of lithologies to that of Aqueduct Tunnel and Quinn Ranch pendants is seen in Monolith and Back Canyon pendants (Wood and Saleeby, 1997). We suggest, on the basis of distinctive marble successions found in pendants at c and c', that these pendants belong to the Death Valley facies of the passive margin as exposed in the Shadow Mountains of the western Mojave Desert (Martin and Walker, 1995; Fig. 1). Al-in-hbl pressures of 5.7–6.5 kbar are calculated from the Claraville granodiorite near Kelso Valley in the footwall of the southern Sierra detachment system (Ague and Brimhall, 1988, sample 420; Dixon, 1995, samples 49 and Th275; Nadin and Saleeby, 2008, sample 04SS34). The presence of prograde andalusite as the only stable aluminosilicate phase in pelitic assemblages near c' (Ross, 1989) suggests that these rocks were intruded and contact metamorphosed at pressures no greater than ~4 kbar (Spear, 1993). These relations suggest the excision of at least 5.5 km of crust along the southern Sierra detachment system.

Correlation #4: Antelope Canyon Group (D) and Salt Creek Pendant (D')

The Salt Creek pendant of the San Emigdio Mountains is composed principally of layers...
Plate 2. Color contour map showing regional variations in compiled Sr$_i$ ratios from plutonic rocks of the Sierra Nevada batholith, Salinian block, and Mojave Desert draped over a digital elevation model. Data, sample locations, and references in Table SD5 in the Supplemental File (see footnote 1). If you are viewing the PDF of this paper or reading it offline, please visit http://dx.doi.org/10.1130/GES00740.S3 or the full-text article on www.gsapubs.org to view Plate 2.
Plate 3. Color contour map showing regional variations in compiled Al-in-hbl emplacement pressures from plutonic rocks and conventional thermobarometric pressure determinations from metamorphic rocks of the Sierra Nevada batholith, Salinian block, and Mojave Desert draped over a digital elevation model. Data, sample locations, and references in Table SD6 in the Supplemental File (see footnote 1). If you are viewing the PDF of this paper or reading it offline, please visit http://dx.doi.org/10.1130/GES00740.S4 or the full-text article on www.gsapubs.org to view Plate 3.
of marble, quartzite, and quartzofeldspathic gneiss, with lesser amounts (<5%) of pelitic to psammitic schist. These lithologies suggest that the protoliths of the Salt Creek pendant were deposited in a slope to inner shelf environment and potentially correlate to similar assemblages found in the Sierra City mélange–Shoo Fly–Kernville terrane (Fig. 2). Our detrital zircon geochronologic data from quartzite sample 08SE258 support this view, with major age peaks corresponding to those of slope strata from the Kernville terrane (Saleeby, 2011; Figs. 6 and 7).

The Salt Creek pendant is intruded by the ca. 90 Ma Lebec granodiorite. Ross (1989) notes lithologic similarities between the Salt Creek pendant and pendants north of Tehachapi Valley, including the Brite Valley, Tehachapi, Mono-lith, and Back Canyon pendants. However, the Lebec granodiorite-hosted Salt Creek pendant does not likely correlate with Brite Valley and Tehachapi pendants since they are intruded by 99–105 Ma tonalites, diorites, and gabbroids of the intrusive suite of Bear Valley (Saleeby et al., 2007, 2008). In contrast, similar siliciclastic and carbonate rocks of the Antelope Canyon group are intruded by a border phase of the ca. 90 Ma Claraville granodiorite (Wood, 1997), representing the most likely native site for similar assemblages of the Salt Creek pendant and adjacent rocks.

A pressure differential of 6.5 (Dixon, 1995, sample Th275) versus 3.1 (sample 04SE5) and 3.7 (sample 10SE41) kbar (Tables 3 and 4) for autochthonous versus allochthonous assemblages, corresponding to 9–11 km of missing crust, is implied by this correlation.

Correlation #5: Area Southwest of the Rand Mountains (E) and Salinian Framework of the Gabilans Range, Santa Lucia Range, and Southern Ben Lomond Mountain (E')

The Sur Series (Trask, 1926) of the Santa Lucia and Gabilan Ranges, and smaller exposures in the Ben Lomond and Point Reyes areas, contains abundant interbedded marble and calc-silicate, leading several workers to suggest that metasedimentary rocks of the Salinian block correlate with strata of the Paleozoic Cordilleran miogeocline (e.g., Ross et al., 1973; Ross, 1977; Kidder et al., 2003). However, pure quartzite and marble units that resemble the Stirling and Zabriskie quartzites and the Bonanza King Formation of the Death Valley–Mojave Desert region are conspicuously absent from the Salinian block.

Instead, stratigraphic relations and detrital and igneous zircon ages and pluton geochemistry from northern Salinian and the western Mojave Desert suggest that the El Paso terrane is the most likely parent for “orphan” Salinian. Metasedimentary assemblages of the Salinian terrane share several similarities with eugeoclinal strata of the El Paso terrane. First, thinly-bedded Sur Series assemblages are lithologically similar to strata of the Kern Plateau pendants and the Bean Canyon pendant (Rindosh, 1977; Ross, 1977; Dunne and Suczek, 1991). Second, Sur Series assemblages exhibit broad Late Archean and Proterozoic U-Pb detrital zircon age peaks that roughly correspond to those of the El Paso terrane, including the Bean Canyon pendant (Barbeau et al., 2005; Fig. 6). While Sur Series age peaks are too broad to distinguish between miogeoclinal and eugeoclinal sources within the Mojave Desert, potentially due to zircon isotopic disturbance during high-grade metamorphism, the presence of Permian zircons in Upper Cretaceous cover strata suggests derivation from, or at least proximity to, the El Paso terrane (Barbeau et al., 2005). Lastly, small mafic to ultramafic bodies crop out entirely within, and are elongated parallel to the foliation of, Sur Series metasedimentary rocks (Wiebe, 1966, 1970; Nutt, 1977; Bush, 1981), the Lake Isabella pendant (Saleeby and Bushy, 1993), the Bean Canyon pendant (Rindosh, 1977; this study), and the Kern Plateau pendants (Dunne and Suczek, 1991).

The central Santa Lucia and Gabilan Ranges and southern Ben Lomond Mountain contain 93–76 Ma plutons with high Sr (typically >0.708; Kistler and Champion, 2001; Kidder et al., 2003; Dickinson et al., 2005) that intruded the Sur Series at pressures of 3.4–4 kbar (John, 1981, and this study). A zone of platformal sequences characterized by quartzite, marble, and psammitic schist (Miller et al., 1995) and high Sr and young plutons (Plates 1 and 2) southwest of the Rand Mountains appears to be the most likely native site for the central Santa Lucia and Gabilan Ranges. However, Permian metavolcanic rocks and Independence dikes, two striking yet volumetrically minor constituents of the El Paso terrane, are not reported from the Salinian block. These rock types may be absent from the Salinian block or obscured due to poor exposure.

The Coast Ridge Belt, an exposure of orthogneiss and subordinate marble and quartzite (Kidder et al., 2003), probably represents the midcrustal (~7.5 kbar) equivalent of the central Santa Lucia Range. The belt crops out ~5 km to the west of our 3.4 kbar determination and 4–6 kbar estimates of peak metamorphic pressures in the Sur Series by Wiebe (1966, 1970). The pressure gradient between the Coast Ridge Belt and the central Santa Lucia Mountains is explained by Kidder et al. (2003) as the result of regional ~30° to the NE tilt. However, this tilt can only account for an ~3 km (i.e., ~1 kbar) difference over 5 km. Therefore, the pressure difference between the Coast Ridge Belt and the central Santa Lucia Range must have resulted either from structural attenuation or faulting, potentially along the Coast Ridge and/or Palo Colorado faults (Ross, 1976).

We suggest that the Coast Ridge Belt restores to a position along the west flank of the central Mojave metamorphic core complex, possibly correlating with the Johannesburg gneiss in the hanging wall of the Rand fault, with shallow exposures of the central Santa Lucia Range, Gabilan Range, and southern Ben Lomond Mountain lying in fault contact above the belt. Pressure determinations from footwall assemblages southwest of the Rand Mountains are sparse, yet values of ~10 kbar are reported from the central Mojave metamorphic core complex (Henry and Dokka, 1992). A pressure differential of ~2.5 kbar between the Coast Ridge Belt and the central Mojave metamorphic core complex implies the removal of ~8 km of crust along a structure that has not yet been recognized.

Figure 6 (on following page). Normalized probability plots comparing zircon ages from this study with spectra from: Paleozoic slope, inner shelf, and outer shelf strata of the Shoo Fly complex and Sierra City mélange (SF + SCM); eugeoclinal strata of the Roberts Mountains allochthon (RMA); Kern Plateau pendants of the El Paso terrane (EP); miogeoclinal strata of Death Valley and the Snow Lake terrane (DV + SL); the Fairview pendant of the Kernville terrane (KT); and Santa Lucia (“Seco”) and Gabilan (“Fremont”) ranges, showing the number of grains analyzed. Composite curves consist of (in parentheses): Shoo Fly complex (Lang sequence and Duncan Peak and Culbertson Lake allochthons); Roberts Mountains allochthon (Harmony, Vinini, Valmy, Snow Canyon, McAfee, Elder, and Slaven formations); Kern Plateau pendants (Bald Mountain, Indian Wells, and Kennedy pendants); Death Valley (Wood Canyon Formation and Zabriskie and Stirling quartzites); and Snow Lake terrane (Snow Lake pendant “Carrara Quartzite,” “Zabriskie,” “Upper Wood Canyon Formation,” and “Stirling”). Colors correspond to Figure 2. Samples of unknown paleogeographic affinity shown in gray. Isotopic data in Table SD3 in the Supplemental File (see footnote 1).
Collapse of the Sierra Nevada batholith

<table>
<thead>
<tr>
<th>PHANEROZOIC</th>
<th>PROTEROZOIC</th>
<th>ARCHEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mz</td>
<td>Pz</td>
<td>NEO-</td>
</tr>
</tbody>
</table>

- **SF + SCM**
 - Shop Fly complex (Harding et al., 2000; n = 62)
 - Sierra City Mélange (Harding et al., 2000; n = 30)

- **KT**
 - Fairview pendant - Riverkern beach (Saleeby, 2011; n = 82)
 - Death Valley (Memeti et al., 2010; n = 296)
 - Snow Lake pendant (Memeti et al., 2010; n = 377)

- **DV + SL**
 - Roberts Mountains allochthon (Smith and Gehrels, 1994; Gehrels et al., 2000a; n = 258)
 - Kern Plateau pendants (J. Saleeby, unpublished data; n = 250)

- **RNA + EP**
 - Secco (Barbeau et al., 2005; n = 78)
 - Fremont (Barbeau et al., 2005; n = 66)

- **SALINIA**
 - Salt Creek pendant (08SE258, n = 101)
 - Bean Canyon pendant (07BC60, n = 106)
 - Tylerhorse Canyon pendant (08TC44, n = 91)

Relative Age Probability

Figure 6.
Correlation #6: Cummings Valley (F) and Salinian Framework of Montara Mountain, Northern Ben Lomond, and Bodega Head (F′)

Tonalitic plutonic rocks of Montara Mountain, northern Ben Lomond Mountain, and Bodega Head range in age from 99 to 104 Ma (James and Mattinson, 1985; James, 1992; Kistler and Champion, 2001) and have similar Sr (0.707–0.705) to the 99–105 Ma intrusive suite of Bear Valley (Saleebay et al., 1987; Pickett and Saleebay, 1993; Saleeby et al., 2007). Furthermore, similarities between Sur Series metasedimentary rocks of northern Salinia and the Brite Valley and Tehachapi pendants of the southern Sierra Nevada batholith (Wood, 1997) suggest that rocks found at f′ originated near Cummings Valley. Plutons and framework rocks near f′ have not received detailed thermobarometric study, although pressures of ~5 kbar are reported from metapelitic assemblages from Ben Lomond Mountain (Leo, 1967; DeCrisoforos and Cameron, 1977). Pressure determinations of 8.3–8.7 kbar are reported from the area near Cummings Valley (Pickett and Saleebay, 1993, samples GC-16 and GC-2).

Correlation #7: Southwestern Sierra Nevada Foothills (G) and Western San Emigdio Mafic Complex (G′)

Reitz (1986) suggests that the western San Emigdio mafic complex is a unique exposure of a primitive intraoceanic arc and that it does not correlate with (1) the Coast Range ophiolite because the mafic complex lacks ophiolite stratigraphy, or (2) Sierran Foothills belt peridotite to dioritic intrusive complexes (Snook et al., 1982) and associated ophiolitic wall rocks. This assertion is based on slight differences in

TABLE 2. SUMMARY OF SAMPLE LOCATIONS AND ZIRCON (U-Th)/He AGES

<table>
<thead>
<tr>
<th>Sample</th>
<th>UTM easting*</th>
<th>UTM northing*</th>
<th>Elevation (m)</th>
<th>Pseudo-elevation</th>
<th>Mean age (Ma)</th>
<th>Error (Ma)</th>
<th>Number of replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>04SS32</td>
<td>350708</td>
<td>3940938</td>
<td>1508</td>
<td>2327</td>
<td>77.3</td>
<td>8.0</td>
<td>4</td>
</tr>
<tr>
<td>04SS27</td>
<td>350384</td>
<td>3899048</td>
<td>1485</td>
<td>2193</td>
<td>72.2</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>04SS28</td>
<td>349061</td>
<td>3897426</td>
<td>1818</td>
<td>3319</td>
<td>83.5</td>
<td>6.3</td>
<td>4</td>
</tr>
<tr>
<td>04SS30</td>
<td>396529</td>
<td>3933080</td>
<td>1891</td>
<td>2416</td>
<td>70.0</td>
<td>3.9</td>
<td>3</td>
</tr>
<tr>
<td>04SS33</td>
<td>391015</td>
<td>3932556</td>
<td>1164</td>
<td>2518</td>
<td>76.8</td>
<td>2.3</td>
<td>4</td>
</tr>
<tr>
<td>04SS35</td>
<td>388629</td>
<td>3929572</td>
<td>1515</td>
<td>2949</td>
<td>84.7</td>
<td>6.7</td>
<td>6</td>
</tr>
<tr>
<td>04SS36</td>
<td>384771</td>
<td>3924533</td>
<td>1900</td>
<td>2701</td>
<td>69.2</td>
<td>2.4</td>
<td>4</td>
</tr>
<tr>
<td>04SS38</td>
<td>380420</td>
<td>3943122</td>
<td>1879</td>
<td>3129</td>
<td>78.2</td>
<td>8.1</td>
<td>5</td>
</tr>
<tr>
<td>04SS39</td>
<td>376370</td>
<td>3924106</td>
<td>2242</td>
<td>3239</td>
<td>73.7</td>
<td>5.2</td>
<td>4</td>
</tr>
<tr>
<td>04SS40</td>
<td>373067</td>
<td>3921963</td>
<td>2242</td>
<td>3347</td>
<td>76.7</td>
<td>5.2</td>
<td>4</td>
</tr>
<tr>
<td>04SS41</td>
<td>371086</td>
<td>3920961</td>
<td>1874</td>
<td>3576</td>
<td>83.8</td>
<td>5.9</td>
<td>5</td>
</tr>
<tr>
<td>04SS43</td>
<td>371523</td>
<td>3918853</td>
<td>1515</td>
<td>3424</td>
<td>81.1</td>
<td>8.3</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: replicate data in Table SD7 in the Supplemental File (see footnote 1).

*Universal Transverse Mercator (UTM) coordinates are World Geodetic System datum, zone 11N.

*Errors (1σ) are taken as the standard deviation divided by the square root of the number of replicates minus one.
crystallization sequence, geochemistry, and the presence of minor orthopyroxene in the western San Emigdio mafic complex, which is rare in peridotitic to dioritic complexes. New geochemical data and field relations call this interpretation into question.

Major and trace element geochemistry and 143Nd/144Nd versus 87Sr/86Sr systematics indicate that sheeted dikes and pillow basalts from the western San Emigdio mafic complex were generated through MORB magmatism (Fig. 10A). The geochemical similarity between basaltic rocks of the western San Emigdio complex and the Kings-Kaweah segment of the Foothills ophiolite belt suggests that the two bodies are correlative.

Exposures and basement cores of variably mylonitized and highly altered mafic to ultramafic rocks occur in the footwall of the Maricopa detachment near g (Dibblee and Chesterman, 1953; Ross, 1989; Saleeby et al., 2009a; Fig. 12A). Estimating the amount of crust that was removed by the Maricopa detachment is difficult, because the western San Emigdio mafic complex does not appear to contain assemblages conducive to thermobarometry. However, the preservation of albite-epidote and hornblende hornfels–facies assemblages in pillow basalts and sheeted dikes of the western San Emigdio complex (Hammond, 1958; this study) suggest that metamorphic pressures of equilibration did not exceed ~2 kbar (Spear, 1993). Al-in-hbl pressure determinations of 4.5–5.8 kbar from footwall assemblages (Nadin and Saleeby, 2008, samples 48 and 49) suggest that restoration of $g' \rightarrow g$ implies the removal of at least 8 km of formerly intervening crust.

Magnitude and Direction of Displacement

The correlations discussed above each imply the removal of ~5–10 km of crust along detachment faults with a north-bounding breakaway zone in the Isabella basin area. The KWF bounds the western margin of the Isabella breakaway and transfers the zone ~50 km to the...
<table>
<thead>
<tr>
<th>Sample</th>
<th>Zone</th>
<th>Zone</th>
<th>UTM easting*</th>
<th>UTM northing*</th>
<th>Hbl-Plag Tb (C) Error c</th>
<th>AS95 P* (kbar) Error c</th>
<th>HZ86 P* (kbar) Error c</th>
<th>JR98 P* (kbar) Error c</th>
<th>S92 P* (kbar) Error c</th>
</tr>
</thead>
<tbody>
<tr>
<td>94KK27</td>
<td>11</td>
<td>11</td>
<td>355753</td>
<td>4010210</td>
<td>712</td>
<td>13 (42)</td>
<td>3.8</td>
<td>0.4 (0.7)</td>
<td>3.7</td>
</tr>
<tr>
<td>10SE1</td>
<td>11</td>
<td>11</td>
<td>296912</td>
<td>3862460</td>
<td>731</td>
<td>24 (47)</td>
<td>3.2</td>
<td>0.7 (0.9)</td>
<td>3.5</td>
</tr>
<tr>
<td>93TH11</td>
<td>11</td>
<td>11</td>
<td>368657</td>
<td>3879458</td>
<td>679</td>
<td>15 (43)</td>
<td>3.8</td>
<td>0.3 (0.7)</td>
<td>3.3</td>
</tr>
<tr>
<td>91TH181</td>
<td>11</td>
<td>11</td>
<td>371313</td>
<td>3879688</td>
<td>732</td>
<td>9 (41)</td>
<td>0.3</td>
<td>0.3 (0.7)</td>
<td>0.3</td>
</tr>
<tr>
<td>08SE463</td>
<td>11</td>
<td>11</td>
<td>307763</td>
<td>3860816</td>
<td>711</td>
<td>15 (43)</td>
<td>5.2</td>
<td>0.6 (0.8)</td>
<td>5.2</td>
</tr>
<tr>
<td>08SE429</td>
<td>11</td>
<td>11</td>
<td>305382</td>
<td>3860121</td>
<td>687</td>
<td>25 (47)</td>
<td>5.6</td>
<td>0.3 (0.7)</td>
<td>5.4</td>
</tr>
<tr>
<td>08SE451</td>
<td>11</td>
<td>11</td>
<td>307028</td>
<td>3861038</td>
<td>675</td>
<td>78 (88)</td>
<td>9.7</td>
<td>1.5 (1.6)</td>
<td>10.0</td>
</tr>
<tr>
<td>08SE674</td>
<td>11</td>
<td>11</td>
<td>324461</td>
<td>3861916</td>
<td>657</td>
<td>17 (44)</td>
<td>11.0</td>
<td>0.3 (0.7)</td>
<td>10.6</td>
</tr>
<tr>
<td>08TC27a</td>
<td>11</td>
<td>11</td>
<td>367862</td>
<td>3870810</td>
<td>626</td>
<td>28 (49)</td>
<td>3.0</td>
<td>0.6 (0.8)</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Note: Representative mineral compositions in Tables SD9 and SD10 in the Supplemental File (see footnote 1).

*Universal Transverse Mercator (UTM) coordinates are World Geodetic System datum.

1Hornblende-plagioclase temperatures based on Holland and Blundy (1994). Calibration uncertainty: ±40 °C.

2Uncertainties based on counting statistics from multiple analyses. Overall uncertainties (in parentheses) calculated as the square root of the sum of squares of analytical and calibration errors.

3Andersen and Smith (1995) pressures calculated by iteration using Holland and Blundy (1994) temperatures. Calibration uncertainty: ±0.6 kbar.

205 ± 28° is oblique to SSE-trending and moderately plunging lineations along the Blackburn Canyon and Jawbone Canyon faults (Wood, 1997; Wood and Saleeby, 1997) and fault II of the Rand fault complex (Nourse, 1989; Fig. 12). Two potential explanations for this difference are that Cretaceous to recent deformation has led either to remobilization of the eastern southern Sierra detachment system with a top to the SSE sense of shear, or systematic clockwise rotation of allochthonous fragments without concurrent rotation of lineations along the eastern southern Sierra detachment system. Small increments of post-Cretaceous tectonism may account for some of the discrepancy between the lineation orientation and the actual transport direction along the southern Sierra detachment system.

Our preferred explanation for the discrepancy between the lineation orientation and inferred transport direction along the southern Sierra detachment system, however, is that extension began in the southwestern Sierra Nevada batholith and propagated eastward with time. To better articulate this model, we define the following allochthonous regions of similar inferred paleogeographic affinity and timing of transport: the Logan–western San Emigdio allochthon, the northern Salinia allochthon, the Gabilian-Pastoria allochthon, the Santa Lucia allochthon, and the Jawbone-Rand allochthon (Fig. 12B). Hornblende and biotite 40Ar/39Ar and K-Ar cooling ages from the northern Salinia allochthon cluster around 90 Ma (Kistler and Champion, 2001), probably reflecting the timing of tectonic transport and upper plate attenuation from above the Cummings Valley area. The Logan–western San Emigdio allochthon was derived from a nearby area and has a similar dispersal pattern to the northern Salinia allochthon. In contrast, K-Ar hornblende and biotite ages from the Gabilian-Pastoria, Santa Lucia, and Jawbone-Rand allochthons lie in the 85 to 75 Ma range (Evernden and Kistler, 1970; Huffman, 1972), overlapping with He zircon results indicating ca. 77 Ma rapid cooling in the autochthonous southeastern Sierra Nevada batholith. We suggest that detachment and transport of these allochthons occurred at roughly 80 Ma with a more southerly transport direction than Logan–western San Emigdio and northern Salinia allochthons (Fig. 12B; Movie SD1 in the Supplemental File [see footnote 1]).
Approximate lateral distance between sites (km)

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Native site</th>
<th>Displaced site</th>
<th>Correlated featuresa</th>
<th>Approximate transport azimuthb</th>
<th>Pressure differential between sites (kbar)d</th>
<th>Plungec°</th>
<th>Sourcef</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-a'</td>
<td>Area between Kern Plateau and Isabella pendant</td>
<td>Bean Canyon and Tylerhorse Canyon pendants</td>
<td>S, UM, MV, DZ, IA, F, ID, Siri</td>
<td>100</td>
<td>200°</td>
<td>1.3–3.1</td>
<td>This study, WS97 (b–b')</td>
</tr>
<tr>
<td>b-b'</td>
<td>Enrike Canyon sequence</td>
<td>Oak Creek Pass complex</td>
<td>S, MV, IA, Siri</td>
<td>45</td>
<td>185°</td>
<td>0.1–3.3</td>
<td>This study, WS97 (e–e')</td>
</tr>
<tr>
<td>c-c'</td>
<td>Monolith and Back Canyon pendants</td>
<td>Quinn Ranch and Aqeduct</td>
<td>S, IA, Siri</td>
<td>75</td>
<td>220°</td>
<td>>1.7</td>
<td>This study, WS97 (a–a')</td>
</tr>
<tr>
<td>d-d'</td>
<td>Antelope Canyon group</td>
<td>Salt Creek pendant</td>
<td>S, DZ, IA, Siri</td>
<td>60</td>
<td>250°</td>
<td>2.8–3.4</td>
<td>This study, 10°</td>
</tr>
<tr>
<td>e-e'</td>
<td>Area southwest of Rand Mountains</td>
<td>Montara Mountain, northern Ben Lomond Mountain</td>
<td>S, UM, DZ, IA, Siri</td>
<td>75</td>
<td>225°</td>
<td>~2.5 (CRB)</td>
<td>This study, 6°</td>
</tr>
<tr>
<td>f-f'</td>
<td>Cummings Valley</td>
<td>Western San Emidglo mafic complex</td>
<td>IA, Siri</td>
<td>150</td>
<td>250°</td>
<td>~3</td>
<td>This study, 4°</td>
</tr>
<tr>
<td>g-g'</td>
<td>Southernmost Sierra Nevada batholiths</td>
<td>Western San Emidglo mafic complex</td>
<td>MV, IA, Siri</td>
<td>60</td>
<td>220°</td>
<td>2.5–2.5</td>
<td>This study, 8°</td>
</tr>
<tr>
<td>h-h'</td>
<td>Area between Tylerhorse and Quinn Ranch pendants</td>
<td>Area north of Kelso Valley</td>
<td>I, IA, Siri</td>
<td>60</td>
<td>210°</td>
<td>2.9–3.7</td>
<td>This study, WS97 (h-h')</td>
</tr>
<tr>
<td>i-i'</td>
<td>Granite of Bob Rabbit Canyon</td>
<td>Granite of Tejon Lookout</td>
<td>I, IA, Siri</td>
<td>70</td>
<td>195°</td>
<td>~3</td>
<td>WS97 (h-h')</td>
</tr>
<tr>
<td>j-j'</td>
<td>Granite of Onyx</td>
<td>Granite of Lone Tree Canyon</td>
<td>I</td>
<td>50</td>
<td>170°</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>k-k'</td>
<td>Summit gabbro of Walker Pass</td>
<td>Rand Mountains</td>
<td>I</td>
<td>70</td>
<td>200°</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>l-l'</td>
<td>Granite of Long Meadow</td>
<td>Granite of Bishop Ranch</td>
<td>I</td>
<td>50</td>
<td>160°</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>m-m'</td>
<td>Granite of Onyx</td>
<td>Bishop Ranch leucogranite</td>
<td>I</td>
<td>50</td>
<td>185°</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Averagea</td>
<td></td>
<td></td>
<td></td>
<td>71 ± 28</td>
<td>205 ± 28</td>
<td>2.5 ± 0.6</td>
<td>6.5 ± 3.1</td>
</tr>
</tbody>
</table>

- **DZ**—Detrital zircon spectra of quartzofeldspathic intervals; **F**—fossils; **I**—igneous relations; **IA**—igneous ages of pendant hosting plutons; **ID**—independence dikes present; **MV**—presence of metavolcanics of similar geochemistry and age; **S**—stratigraphic relations; **Sri**—Sri of pendant hosting plutons; **UM**—presence of geochemically enriched ultramafic rock.
- **c**—Calculated by measuring the map view heading of the displaced site from the native site after restoring slip along San Andreas and Garlock faults.
- **d**—Calculated by measuring the map view distance between native and displaced sites after restoring slip along San Andreas and Garlock faults.
- **e**—Calculated by multiplying the pressure differential between sites by 3.3 km/kbar, dividing this value by the lateral distance between sites, and taking the arc tangent of this quotient.
- **f**—WS97—Letters in parentheses correspond to correlations inferred by Wood and Saleeby (1997).
- ° on uncertainties based on counting statistics from multiple measurements.

A thorough review of crosscutting relationships between dated plutons (Table 5) and kinematic data (Chapman et al., 2010) to explain an ~20 Myr time lag in schist cooling ages between the southern Sierra Nevada, occurred entirely within the Southern Sierra Nevada Batholith. However, thermochronometric work presented here and elsewhere in the southern Sierra Nevada, indicates that the extension may have taken place over as much as 40 Myr. However, a recent review of available thermochronometric data (Chapman et al., 2010) indicate that the majority of extension, while diachronous across the southern Sierra Nevada, occurred entirely within the Late Cretaceous. A thorough review of crosscutting relationships between dated plutons (Table 5) and kinematic data (Chapman et al., 2010) to explain an ~20 Myr time lag in schist cooling ages between the southern Sierra Nevada, occurred entirely within the Southern Sierra Nevada Batholith. However, thermochronometric work presented here and elsewhere in the southern Sierra Nevada, indicates that the extension may have taken place over as much as 40 Myr. However, a recent review of available thermochronometric data (Chapman et al., 2010) indicate that the majority of extension, while diachronous across the southern Sierra Nevada, occurred entirely within the Late Cretaceous.
Figure 12 (on this and following page). (A) Tectonic map of Figure 1 with Pliocene–Quaternary north-south shortening in the San Emigdio Mountains (Davis, 1983) removed and inferred allochthon (primed letters)-autochthon (corresponding letters) correlations and kinematic relations overlain. Correlations of Wood and Saleeby (1997) shown as black circles. Correlations of this study shown as white circles. Schist and allochthonous plate shear sense determinations from Nourse (1989), Wood and Saleeby (1997), and Chapman et al. (2010). Equal-area lower-hemisphere stereonets show lineation measurements from the Rand Schist (Postlethwaite and Jacobson, 1987), schist of Sierra de Salinas (Chapman et al., 2010), the southern Sierra detachment, and inferred transport directions of upper crustal fragments (Kamb contour interval 4\(\sigma\); Table 5). Abbreviations, symbols, and map units as in Figures 1 and 2.
Figure 12 (continued). (B) Map showing allochthonous regions of similar inferred paleogeographic affinity (shaded), correlative autochthonous areas (outlined with corresponding colors), and ⁴⁰Ar/³⁹Ar and K-Ar cooling ages (Evernden and Kistler, 1970; Huffman, 1972; Ross, 1989; Kistler and Champion, 2001; Saleeby et al., 2007). An accompanying animation can be found in Movie SD1 in the Supplemental File (see footnote 1). Abbreviations, symbols, and map units as in Figures 1 and 2.
land regions. South- to southwestward-directed collapse transferred from hinterland to foreland, which gravitational potential energy is fixed-end-member modes of gravitational collapse in the southern Sierra Nevada batholith, Mojave Desert, and Salinian block, through middle plate deep-crustal exposures of the southern Sierra Nevada batholith, and into the lower plate schist, occurred in Late Cretaceous time. Late Cretaceous trenchward flow of Rand and related schists (Malin et al., 1995; Saleeby, 2003; Chapman et al., 2010) and strain coupling between the educting schist and upper plate(s) provide an explanation for the overlapping transport directions along the southern Sierra detachment system, Rand fault, and Salinas shear zone. We speculate that strain coupling between the schist and deep batholithic plate along the Rand fault and Salinas shear zone and, in turn, between the deep batholithic plate and upper crustal fragments along the southern Sierra detachment system, reflects gravitational collapse of the southern Sierra Nevada batholith and adjacent northwest Mojave and Salinia.

Mass transfer associated with lateral spreading and vertical thinning of the Sierran crust leads to a space problem. Rey et al. (2001) address this space problem by defining two end-member modes of gravitational collapse in which gravitational potential energy is “fixed-boundary collapse” and is not “free-boundary collapse” transferred from hinterland to foreland regions. South- to southwestward-directed extension of the entire crustal column of the southern Sierra Nevada batholith without synchronous shortening in the foreland best fits the criteria for free-boundary gravitational collapse. However, Late Cretaceous transcurrent faulting along the KWF and Owens Valley shear system has partitioned the highly extended and exhumed core of the southern Sierra Nevada batholith from less extended and exhumed adjacent regions. These relations imply that SSW-directed extrusion toward the unconfined continental margin probably accompanied crustal attenuation in the southern Sierra Nevada batholith (Fig. 13). Subduction of a LIP beneath the southern Sierra Nevada batholith and adjacent areas (Liu et al., 2010) and associated transient horizontal compres- sional stresses, basal shear stresses, and lithospheric strength (i.e., the replacement of mantle wedge material with underplated schist) is postulated to have preconditioned the southern Sierra Nevada batholith for lateral extrusion-modified, free-boundary collapse.

Southern Sierra Landscape Development

Apatite He data (Mahéo et al., 2009) from the zircon He sample suite can be further utilized to approximate the position of the southern Sierra detachment system surface relative to the modern topographic surface and to relate the topography of the detachment surface to the early landscape development of the greater Sierra Nevada. Following the termination of large volume arc magmatism in the Sierra Nevada batholith at ca. 84 Ma (Chen and Moore, 1982), the topographic surface of the arc underwent slow regional erosion at a rate of 0.05 ± 0.01 mm/yr throughout much of Cenozoic time (Clark et al., 2005; Cecil et al., 2006; Mahéo et al., 2009). Thus the constructional topographic surface of the greater Sierran arc, commonly interpreted to have constituted the western margin of a Cordilleran-wide orogenic plateau locally termed the Nevadaplano (DeCelles, 2004), began to slowly erode at virtually the same time as the tectonically denuded lower plate regime of the southern Sierra detachment system.

Apatite He age-elevation relations are used to adjust each data point of our zircon He suite to a position (“virtual distance”) that would correspond to the freshly denuded detachment surface (Fig. 14). The reconstructed detachment surface is subhorizontal and projects at ~2 ± 1 km above the modern landscape. We have also calculated “virtual pressures” of igneous equilibration by dividing calculated “virtual distances” by 3.3 km/kbar and adding this quotient to existing Al-in-hbl pressure determinations, where available. Calculated “virtual pressures” reveal the crustal depth of the footwall of the southern Sierra detachment system at the moment of large magnitude detachment faulting.

Figure 14 shows that the detachment surface in the area of the sample traverse sat at ~4 ± 1 km levels of the crust, which corresponds well to the typical 3 ± 1 kb crustal levels determined for the allochthons. These features are synthesized in Figure 15, a regional N-S cross section crossing the restored Rand Mountains, extending the schist under the southern Sierra Nevada batho-

Figure 13. Tectonic model for Late Cretaceous free-boundary gravitational collapse and transport of upper crustal fragments in the southern Sierra Nevada batholith. Strain coupling between the schist (shown in blue) and upper plates accompanies high magnitude extension and lateral spreading toward the unconfined continental margin. Displaced pendant with vertical piercing point (a–a′) shown in brown. Abbreviations: KWF—Late Cretaceous Kern Canyon–White Wolf fault system; LIP—large igneous province; MSL—mean sea level; OVSS—Owens Valley shear system; SBML—sub-batholith mantle lithosphere; SOML—sub-oceanic mantle lithosphere.

Figure 14. Plot showing “virtual distance,” the calculated distance above the modern landscape of the reconstructed detachment surface, versus northing. Secondary axis shows “virtual pressure” of igneous equilibration, calculated along the reconstructed detachment fault, for locations where Al-in-hbl determinations are available (samples 04SS27, 04SS28, 04SS39, and 04SS43 of Nadin and Saleeby, 2008). See text for discussion.
SSD—southern Sierra detachment system.

CONCLUSIONS

Integration of new field and structural relations, U-Pb zircon geochronology, thermobarometry, major and trace element chemistry, Sr and Nd isotopic ratios, and zircon (U-Th)/He thermochronometry with existing databases reveals temporal and spatial overlap between: (1) tectonic transport of allochthonous fragments of shallow-level eastern Sierra Nevada batholith affinity rocks; (2) structural attenuation and ascent of deep-level western Sierra Nevada batholith assemblages; and (3) trench-directed flow in the schist. These relationships suggest that the entire crustal column of the southern Sierra Nevada batholith and vicinity collapsed in Late Cretaceous time due to excess gravitational potential energy.

This work places several constraints on the timing and magnitude of extension attending gravitational collapse of the southern Sierra Nevada batholith. First, zircon (U-Th)/He data presented herein reveal a rapid cooling event at 77 ± 5 Ma, probably reflecting the time of gravitational collapse of the southern Sierra Nevada batholith and vicinity collapsed in Late Cretaceous time due to extension and detachment faulting. Second, palinspastic restoration of seven presumably correlative allochthon-autochthon pairs implies 50–70 km of lateral transport and the removal of ~5–10 km of crust along the southern Sierra detachment system. Finally, the timing and the kinematics of dispersal of upper crustal fragments and ascent of deep-level batholithic and subduction accretion assemblages overlap, suggesting that the shallow and deep crust were highly coupled during gravitational collapse. The observations presented here clarify several issues pertaining to Late Cretaceous orogenesis and subsequent collapse of the southern Sierra Nevada batholith and vicinity, and are consistent with the free-boundary gravitational collapse mode of Rey et al. (2001).

ACKNOWLEDGMENTS

This research was supported by National Science Foundation grant EAR-0739071 and by the Gordon and Betty Moore Foundation. This is Caltech Tectonics Observatory Contribution 188. The manuscript benefited from enlightening discussions with M. Robinson Cecil, George Dunne, Vali Memeti, Elisabeth Nadin, and Scott Paterson and from thoughtful reviews by Jade Star Lackey, John Bartley, and Associate Editor Keith Putirka. We thank Pieter Vermeesch for providing a MATLAB script for multidimensional scaling of U-Pb detrital zircon ages. Ronald Kistler graciously provided samples of north and south tonalites of Vergeles (Gabilan Range).

REFERENCES CITED

Collapse of the Sierra Nevada batholith

Huffman, T.M., 1972, Lithologic and regional metamorphism of upper Miocene rocks and the Neogene history of offset along the San

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/8/2/314/3342599/314.pdf