Determination of optical positions for 23 extragalactic radio sources

Z. H. Tang,1,2,3* S. H. Wang1,2,3 and W. J. Jin1,2,3

1Shanghai Astronomical Observatory, Chinese Academy of Sciences, Nandan Road 80, Shanghai 200030, China
2National Astronomical Observatories, Chinese Academy of Sciences, Datun Road Jia 20, Beijing 100021, China
3Optical Astronomical Joint Laboratory, Chinese Academy of Sciences, Datun Road Jia 20, Beijing 100021, China

Accepted 2000 May 6. Received 2000 April 4; in original form 2000 January 5

ABSTRACT
The optical counterparts of 23 extragalactic radio sources, of which 13 are in the southern hemisphere, have been observed by three telescopes equipped with CCDs. By reference to the Astromatic/Tycho (ACT) Reference, Carlsberg Meridian (CMC), Positions and Proper Motions (PPM), Hipparcos (HIP) and Lick Northern Proper Motion (NPM) catalogues, the positions of the 23 objects have been obtained. The mean standard errors in right ascension and declination are better than 0.2 arcsec. The differences from the radio positions are given, and a comparison between our results and those of other studies is also made.

Key words: catalogues – astrometry – reference systems.

1 INTRODUCTION
With compact extragalactic radio sources as fiducial points, the radio reference frame may be said to be a quasi-inertial reference frame (Ma et al. 1998). Because the sources are very remote, their proper motions (approximately a few \(\mu\)as yr\(^{-1}\)) are negligible compared with the observational accuracy. Adopted by the 23rd General Assembly of the International Astronomical Union (IAU) (held in 1997 in Kyoto, Japan), the International Celestial Reference System (ICRS) has been the fundamental celestial reference system since 1998 January 1, replacing the FK5 optical system. The ICRS is realized by the International Celestial Reference Frame (ICRF), which is combined from various radio catalogues by the International Earth Rotation Service (IERs). The Hipparcos stellar reference frame provides the primary realization of the ICRS at optical wavelengths. The Working Group (WG) on the ICRS, set up at the 23rd General Assembly of the IAU, is concerned with all aspects of the approved ICRS, including its use, its extension and its promotion to the astronomical community (Mignard 1998). The WG has the following tasks: maintenance and extension of the ICRS; densification in optics; linkage to dynamical systems, and so on. The construction of an extragalactic radio reference frame and the establishment of the link between radio and optical reference frames have moved to the forefront of astrometry.

The most direct method to realize the linkage between the conventional ground-based optical reference frame or Hipparcos reference frame and the radio reference frame is a precise determination of the optical positions for radio sources referred to the optical catalogue. As compared with photographs, CCDs have three advantages: higher quantum efficiency, higher linearity and greater convenience. The optical counterparts of radio sources, generally fainter than 18 mag which is too faint to be photographed by small-aperture telescopes, can be observed by CCDs, and the optical positions of radio sources with respect to reference stars can be determined more accurately.

In the work of Wang & Tang (1997) and Tang, Wang & Jin (1998a,b), the optical positions of six sources have been obtained. Besides these six sources, we present here the optical positions of another 17 radio sources (13 of them in the southern hemisphere), obtained with reference to the Astromatic/Tycho (ACT) Reference Catalogue (Urban, Corbin & Wycoff 1997), the Carlsberg Meridian Catalogue (CMC) (1997) and the Lick Northern Proper Motion (NPM) catalogue (Arnold, Robert & Burton 1993). The observations were completed with the 1-m telescope equipped with a CCD at the Yunnan Astronomical Observatory.

The results for the six sources published previously are given in Section 2 of this paper. The observations and data reduction for the 17 additional sources are presented in Section 3. Differences from the radio positions are given in Section 4. The comparison between our results and those of other studies is made in Section 5, and a discussion is also presented in that section.

The 17 sources are 0405—123, 0528—250, 0607—157, 0723—008, 0735+178, 0736+017, 0818—128, 0859—140, 1034—293, 1040—126, 1045—188, 1127—145, 1145—071, 1219+285, 1237—101, 1302—102 and 1510—089. Only the text of this paper is included in the printed version; the full paper, complete with tables and figures, is available in the electronic version of the article on Synergy (http://www.blackwell-synergy.com/issuelist.asp?journal=mnr).

2 RESULTS FOR THE SIX PREVIOUSLY OBSERVED SOURCES
Among the six previously observed sources, the observations of four sources (0851+202, 1228+126, 1442+101 and 1749+701)
were carried out with the 60/90-cm Schmidt telescope at the Xinglong station of Beijing Observatory, equipped with a 2048×2048 CCD (15 μm pixel⁻¹), while the other two sources (0716+714 and 0839+187) were observed with the 60-cm telescope at the Xinglong station of Beijing Observatory, equipped with a 1024×1024 CCD. The focal length of the first telescope was 1800 mm and the field of view was about 1 deg²; for the latter telescope, the focal length was 2400 mm and the field of view was 16.6 × 16.6 arcmin².

The data reduction for the six sources is similar to that introduced in the next section. The final results for the four sources, obtained from five reference catalogues, are listed in Table 1 (in the electronic version of the article on Synergy). In the table, the first column gives the object name, the second column the mean epoch of the observations, the third column the name of the reference catalogue, the fourth column the number of reference stars, the fifth and sixth columns the right ascension (J2000.0) and its standard error (i.e. rms), and the seventh and eighth columns the declination (J2000.0) and its standard error (i.e. rms). The differences between the results obtained with the CMC, the Positions and Proper Motions (PPM) Catalogue (Röser & Bastian 1991), the NPM catalogue and the Hipparcos (HIP) catalogue (ESA 1997), and those obtained with the ACT Reference Catalogue are summarized in Table 2 (on Synergy).

For a comparison between our results and those of other studies, we took the catalogues of de Vegt & Gehlich (1978), Geffert et al. (1989), Li & Jin (1996), Ma et al. (1990) and Russell et al. (1991) and the IERS Annual Report (1996) into account. The catalogue published in the 1996 IERS Annual Report gives the radio positions of sources, which were obtained from highly accurate very long baseline interferometry (VLBI) observations. The results of the comparison are given in Table 3 (on Synergy); here we choose the positions obtained from the ACT Reference Catalogue as representative of our results.

Tables 4 and 5 (on Synergy) list the results of positions and comparisons for the two sources 0716+714 and 0839+187; the contents are the same as those of Tables 1 and 2. Here the data from the CMC are kindly provided by Drs Argyle and Morrison.

3 OBSERVATIONS AND REDUCTION

The observations for the 17 sources were carried out with the 1-m reflector (F = 13 m) at Yunnan Astronomical Observatory (YNAO) on 1999 February 8 and 9. The receiver is a 1024×1024 CCD, with a 6.5 × 6.5 arcmin² field of view and 0.3737 arcsec pixel⁻¹ plate scale. Information on the sources observed is listed in Table 6 (on Synergy), where the first column gives the IERS designation of the source; the second and third columns give the radio position of the source at J2000.0 (Ma & Feissel 1997); the fourth column gives the category of the source [defining (D), candidate (C), other (O)]; the fifth column gives the type of the source [Q (quasar), L (BL Lac), G (galaxy)]; the sixth column gives the visual magnitude of the source; and the final column gives the number of observations. It can be seen from the table that most of the sources are quasars or BL Lacs.

During the reduction of the CCD data, after the flat-field, bias and dark corrections were carried out, the measured coordinates of the centres of the source and reference star images were determined with the center task in IRAF.

The field of view of the CCD is so small that almost all distortions may be ignored. The relationship between the measured and the standard coordinates may therefore be expressed by orthogonal linear equations. Using Murray’s reduction model (Murray 1983), the equations can be written as follows:

\[\xi - x = a_1 + a_2 x + a_3 y,\]
\[\eta - y = b_1 + b_2 x + b_3 y,\]

where
\[x = f_0^{-1}X, \quad y = f_0^{-1}Y,\]
\[a_2 = f_1^{-1}f_0 \cos \theta - 1, \quad a_3 = f_1^{-1}f_0 \sin \theta,\]
\[b_1 = -f_1^{-1}f_0 \sin \theta, \quad b_3 = f_1^{-1}f_0 \cos \theta - 1.\]

Here \(\xi, \eta\) and \(X, Y\) express standard and measured coordinates; \(\theta, \theta\) are the deviations of the \(X\) and \(Y\) axes from the standard coordinate directions \(U, V\); \(f_0\) is an assumed approximate value of the focal length; \(f_1, f_0\) are the values of the focal length expressed in units of the \(X\) and \(Y\) scales. In the equations, \(x, y, \xi, \eta\) are all expressed in absolute or angular units.

Although the CCD has three advantages when compared with photographs, it has an intrinsic shortcoming, i.e. the field of view of a CCD is much smaller than that of a photograph, which restricts its application to astrometry. Considering the situation, we chose three catalogues, ACT, CMC and NPM, as references to determine the positions of the radio sources. Among the 17 objects, there are three, eight and six sources respectively that have enough ACT, CMC and NPM reference stars in the field of view of the CCD.

The compilation of the ACT Reference Catalogue was completed in 1997 September by the US Naval Observatory; it contains 988 758 stars covering the entire sky. The motivation behind the ACT Reference Catalogue was to provide accurate proper motions for the majority of the stars in the Tycho Catalogue (ESA 1997). To do this, the positions from new reductions of the Astrometric Catalogue (AC 2000) were combined with those of Tycho. The large epoch span between the two catalogues yields proper motions about an order of magnitude more accurate than those published in the Tycho Catalogue.

The CMC (Carlsberg Meridian Catalogue, Number 9, 1997) contains 141 593 positions and magnitudes of 138 603 stars north of declination \(–40^\circ\), 117 559 proper motions, and 19 585 positions and magnitudes of 97 Solar system objects obtained with the Carlsberg Automatic Meridian Circle on La Palma during the period 1984 May to 1995 March. The CMC Number 9 includes the CMC Numbers 1 to 8; i.e. it comprises all the observations made since the instrument began operation on La Palma. Here we take the version of the catalogue with positions referred to the new ICRS. The limiting magnitude is \(m_0 = 15.4\) mag. Since the CMC Number 9 has some stars without measured proper motions, for these stars only if their observational epoch is close to our observational epoch of the sources will they be taken as reference stars.

NPM is the NPM1 catalogue of the Lick Northern Proper Motion programme. It provides absolute proper motions, positions and photographic photometry for some 149 000 stars with 8 \(< B < 18\) mag covering the sky outside the Milky Way north of declination \(–23^\circ\); the positions of the NPM catalogue are given for equinox B1950 and computed epoch 1950 (FK4 system). To compare the results at the same epoch, the positions and proper motions of the NPM catalogue were converted from the FK4 system to the FK5 system before it was taken as a reference.

4 RESULT AND ANALYSIS

With the ACT Reference Catalogue, the CMC and the NPM catalogue as reference catalogues, the optical positions of 17 radio
Optical positions for 23 extragalactic radio sources

5 COMPARISON AND DISCUSSION

For a comparison between our results and those of other authors, we took the catalogues of Assafin et al. (1997), Costa & Loyola (1992), Li & Jin (1996), Ma et al. (1990), Véron-Cetty & Véron (1996) and Walter & West (1986) into account. The results of the comparison ($\Delta \alpha \cos \delta, \Delta \delta$) are given in Table 9 (on Synergy).

The field of view of the CCD that we used is only 6.5×6.5 arcmin2. There are few reference stars in such a small field of view, so accidental errors in the positions and proper motions of individual reference stars will have a large effect on the final results. To have more reference stars and obtain more reliable position results, a larger CCD and reference catalogues with more stars are needed. In addition, images of faint sources on CCDs cover few pixels, and it is difficult to determine the centre precisely, so longer exposures and a larger telescope will be beneficial to improving the results. Linking the optical and radio reference frames generally requires a combination of transit circle, astrographic and large-aperture telescope observations in order to cover the large range of magnitude between bright stars and extragalactic objects (Stone 1994).

To link the optical and radio reference frames more precisely, long-term and regular observations of optical counterparts of radio sources with respect to optical reference catalogues are especially important. We are carrying out a programme with the purpose of obtaining the optical positions of about 100 compact extragalactic radio sources in the optical reference frame, using telescopes equipped with CCDs.

ACKNOWLEDGMENTS

We are indebted to Dr Argyle and Dr Morrison of the Royal Greenwich Observatory for sending the positions of CMC stars, which was of invaluable assistance to this article. We also thank Professor Chen Jiasheng, Professor Hu Jingyao and Dr Zheng Zhongyuan for their observational data. We are grateful to Professor Chen Peisheng and Dr Li Jingqian and the staff of the 1-m telescope for their help during the observations. The Carlsberg Automatic Meridian Circle on La Palma is operated jointly by Copenhagen University Observatory, the Royal Greenwich Observatory and the Real Instituto y Observatorio de la Armada en San Fernando. This work has been supported by the China National Natural Science Foundation (No. 19833030) and by the Chinese Academy of Sciences (KJ951-1-304 and No. 971142). We thank the Publication Editorial Board of Yunnan Observatory, Chinese Academy of Sciences, for allowing us to reproduce here data previously published in the journal Publications of the Yunnan Observatory.

REFERENCES

Arnold R. K., Robert B. H., Burton F. J., 1993, Northern Proper Motion catalogue. UCO/Lick Observatory, University of California, Santa Cruz. (NPM)

Carlsberg Meridian Catalogue La Palma, Number 9, 1997, Copenhagen University Observatory, Royal Greenwich Observatory and Real Instituto y Observatorio de la Armada en San Fernando (CMC)

ESA, 1997, The Hipparcos and Tycho Catalogues, SP-1200

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.