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Parameter optimisation is a significant but time-consuming process that is inherent in conceptual

hydrological models representing rainfall–runoff processes. This study presents two modifications

to achieve optimised results for a Tank Model in less computational time. Firstly, a modified

genetic algorithm (GA) is developed to enhance the fitness of the population consisting of

possible solutions in each generation. Then the parallel processing capabilities of an IBM 9076

SP2 computer are used to expedite implementation of the GA. A comparison of processing time

between a serial IBM RS/6000 390 computer and an IBM 9076 SP2 supercomputer reveals that

the latter can be up to 8 times faster. The effectiveness of the modified GA is tested with two

Tank Models for a hypothetical catchment and a real catchment. The former showed that the

parallel GA reaches a lower overall error in reduced time. The overall RMSE, expressed as a

percentage of actual mean flow rate, improves from 31.8% in a serial processing computer to

29.5% on the SP2 supercomputer. The case of the real catchment – Shek-Pi-Tau Catchment in

Hong Kong – reveals that the supercomputer enhances the swiftness of the GA and achieves its

objective within a couple of hours.

Key words | genetic algorithm, parallel processing computers, parameter optimisation,
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INTRODUCTION

Of the various conceptual models to represent the rainfall–

runoff process, the Tank Model, first introduced by

Sugawara et al. in 1984 (Sugawara et al. 1984), is one of

the earliest. It is a simple representation of the catchment

surface and the underlying system of soil strata by a series of

tanks that store the rainfall and subsequently discharge it at

a rate proportional to their capacities. Since then, several

applications based on the Tank Model and their combi-

nations with other conceptual models have been completed

by various researchers (e.g. Jayawardena 1998; Elhassan

et al. 2001). In a comparative analysis of several conceptual

rainfall–runoff models, Franchini & Pacciani (1991) men-

tioned that the Tank Model, despite its abstract nature of

representing the runoff formation without any physical

correspondence to the actual phenomena, produces equally

good or better results with relative ease compared to other

models.

Calibration of the parameters is the main challenge in

the development of hydrological models representing rain-

fall runoff. Use of automatic calibration techniques which

enables the hydrologist to rely less on subjective judgement

have been reported (Sorooshian & Dracup 1980; James &

Burges 1982; Sorooshian & Gupta 1983; Hendrickson et al.

1988; Franchini 1996). For the Tank Model, rather than

calibration or numerical definition of the parameters

characterising the equations which describe a certain

phenomenon, it seems to be more appropriate to speak of

fine-tuning a mechanism with its own internal structure

which emulates the behaviour of a watershed in runoff

formation (Franchini & Pacciani 1991). Investigations into
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procedures for optimisation of Tank Model parameters

have been carried out by Setiawan et al. (2003) and

Tanakamaru (1995). However, these optimisations are

largely limited to the use of long continuous daily rainfall

and runoff. Optimising parameters for discrete, shorter

events can be different and more time-consuming as there

could be numerous permutations and combinations for the

values of the model parameters satisfying the objective

function, which generally is the model output error.

In this study two significant modifications are made to

attempt to achieve optimisation in a reduced time. Firstly,

an established genetic algorithm (GA) is modified to

improve overall performance and, secondly, the time-

consuming computations of the GA, usually implemented

serially, are parallelised using a supercomputer with the

capacity to perform parallel computations.

Other global optimisation algorithms such as “con-

trolled random search2” (CRS2), “adaptive cluster covering

with local search” (ACCOL) and “multiple downhill

simplex” (M-SIMPLEX), some of which are much faster

and require fewer evaluations of the objective function than

GA, were not considered, as the focus of this study is to

highlight the benefits of using a supercomputer to paralle-

lise the GA.

BACKGROUND OF TANK MODEL

Figure 1 shows the configuration of a simple Tank Model

with 3 tanks (A, B and C) in series. The topmost Tank A

receives the rainfall. The surface runoff, sub-surface runoff

and the base flow are represented by the lateral discharge

from tanks A, B and C, respectively. Tank A has three side

outlets to cater for rapid responses for flood situations.

Infiltrations are represented by the downward flow from

each of the tanks. The total runoff undergoes a channel

routing that is represented by a fourth tank D with one

bottom and one side outlet. Discharges are proportional to

the storage capacity or the available water head in each of

the tanks, and the discharge coefficient of the outlets. The

variable parameters are the heights of the side outlets, HA1,

HA2, HA3, HB, HC and HD and their discharge coefficients

A0, A1, A2, A3, B0, B1, C0, C1, D0 and D1 and the initial

storage in each tank XAIN, XBIN and XCIN, bringing the

total number of parameters to be optimised to 19. It has

been reported that for modelling runoff in steep Hong Kong

catchments, the parameters HA3, A3, XAIN, XBIN and

XCIN can be irrelevant (Jayawardena 1998).

GENETIC ALGORITHM AND REPRESENTATION OF

TANK MODEL PARAMETERS

John Holland (Holland 1975) is the founder of the field of

Genetic Algorithms (GAs) which was inspired by the

natural evolution of biological species. The adaptive nature

of the GA lends itself to be applied to problems that require

progressive modification such as parameter optimisation.

The GAs operate on a coding of the tank model

parameters, rather than on the parameters themselves.

Each parameter is encoded into a string of finite length

made up of binary numbers. These strings are then

concatenated to form one long string that is regarded as

one individual or a structure; several such individuals

compose a population. The “fitness” of an individual is

equivalent to the value of the objective function determined

collectively by the structure (made up of one possible set of

Figure 1 | Representation of tank model.
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model parameters). Genetic rules are then applied to the

whole population, with a selection procedure that has a

guided randomness leading the structures in the subsequent

iterations increasingly towards the optimum. The basis for

this is Holland’s Schema theory (Holland 1993). details of

which can be found in Goldberg (1989).

Each iteration of the algorithm is expected to produce a

population of structures superior in fitness to the former.

The fitness of the population as well as the “best so far”

structure that corresponds to the minimum error (the

discrepancy between the actual and model-predicted run-

off) is recorded over the iterations.

Wang (1991) applied a GA to calibrate a conceptual

rainfall–runoff model. In Wang’s work (Wang 1991), and in

this study, a constant string length has been used for all the

parameters.

The GA proposed by Wang (1991) begins by arbitrarily

generating an initial population of m sets of strings

representing m possible parameter sets. The objective

function is computed for each set. Each set is then given a

ranking based on its fitness such that the fittest set assumes

the highest rank and the most unfit the lowest. Each set is

assigned a probability for being chosen for the

reproduction process. For a population of m, the average

probability is 1/m. Wang assigned the value of C times the

average probability, C/m, to the fittest set where C . 1. He

suggested a probability distribution for the jth individual, pj,

in the form of

pj ¼ p1 þ
pm 2 p1

m2 1
ðj2 1Þ

where pm is the highest probability corresponding to the

highest ranking set and p1 corresponds to the lowest

ranking one. The summation of all probability values should

be equal to unity, i.e.
Pm

j¼1pj ¼ 1, and therefore the

probability of the lowest ranking individual is (2 2 C)/m.

To ensure non-negativity for the probabilities C $ 2 and

Wang assigned value of 2 to C. The genetic operations are

then carried out as follows.

(i) Two distinct sets, SET1 and SET2, are selected from

the population of m at random according to the

probability distribution pj, j ¼ 1,2, … ,m. Two bit

positions k1 and k2 are selected at random giving all

the bit positions the same chance. If k1 . k2 they are

interchanged.

(ii) A new set is formed by taking the values of the bits

from k1 to k2 2 1 of the SET1 coding and the values of

the bits from k2 to the end and from 1 to k1 2 1 from

the SET2 coding. Occasionally a bit value of the newly

formed set is changed from 0 to 1 or vice versa.

Steps (i) and (ii) are repeated until m new sets of the

next generation are formed. The whole process is repeated

until a prescribed number of generations have been

reproduced. The best set so far is recorded during the entire

process.

METHODOLOGY

In this study the above algorithm is modified with the aim of

preventing the most unfit sets from taking any part in the

regeneration. This is achieved by changing the probability

distribution such that the probability of the lowest ranking

one-eighth of the population being involved in the

regeneration process be zero as can be expressed below:

pj ¼ 0 for j ¼ 1;2; … ; ðm=8Þ

pj ¼ pðm=8Þþ1 þ
pm 2 pðm=8Þþ1

½m2 ðm=8Þ2 1�
½j2 ðm=8Þ2 1�

for j ¼ ðm=8Þ þ 1; ðm=8Þ þ 2; … ;m

where pm ¼ C/[m 2 (m/8)],

p[(m/4)þ1] ¼ (2 2 C)/[m 2 (m/8)].

Figure 2 shows the two probability distributions in

graphical form. It may appear that the diversity of the group

Figure 2 | (a) Probability distribution (Wang 1991). (b) Proposed probability distribution.

321 A. K. Fernando and A. W. Jayawardena | Use of a supercomputer to advance parameter optimisation Journal of Hydroinformatics | 09.4 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/4/319/392914/319.pdf
by guest
on 21 January 2019



is restrained by this. If the value of m is large enough,

however, it is expected that the proposed distribution would

enhance the fitness of the group. Moreover, it appears to

agree with reproduction patterns of nature where some of

the most unfit individuals cease to exist before any

reproduction is possible. The proportion of the total group

thus restrained from regenerating, however, is not known.

One-eighth was chosen in this study. Other proportions

could also be tested to gauge its sensitivity to the overall

performance of the algorithm.

As a result of this proposed probability distribution,

one-eighth of the group having the lowest ranking becomes

extinct following each iteration. The rest of the group take

part in the regeneration, forming a new group of size m.

Figure 3 shows a disk divided according to the probabilities

of the reproducing sets. It illustrates that the higher ranking

structures have higher chances of being pointed at (and thus

chosen for regeneration) by the pointer when the disk stops

after a random rotation. A total of (m £ 2) such rotations

will determine which pairs of structures undergo genetic

operations to produce the new group.

Natural genetic evolution is slow and takes millions of

years to bring about a significant change in a species.

Similarly, its artificial counterpart, the genetic algorithm,

requires a large number of iterations to complete an

optimisation it is required to perform. The time required

for these lengthy computations is extremely long compared

to other conventional methods. To be able to compete with

existing techniques of optimisation and to be an efficient

method in its own right, the implementation of GA must

somehow be accelerated. The SP2 supercomputer installed

in the University of Hong Kong offered an ideal environ-

ment to test the viability of the GA. With its swiftness and

parallel computing facility, the SP2 supercomputer provides

the GA programmer with the flexibility to parallelise those

computations in the GA that need not necessarily be

performed in a serial manner.

The major steps of a sequence in an evolution and its

counterparts in the context of GA as applied to optimising

the parameters of a Tank Model are shown in Figure 4. One

complete iteration involves steps II to IV.

Figure 3 | Probability of the reproducing structures.

Figure 4 | Major steps in the genetic computation procedure: (a) in general genetic terms, (b) as applied to Tank Model parameter optimisation.
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In the conventional serial computer all the steps will be

carried out in sequence. However, it can be observed that

Step II in the above sequence can be implemented in a

parallel manner as the objective function (or the error)

corresponding to one set of parameters is independent of

that for the other sets. Considering the large number of sets

(of the order of hundreds), and the lengthy and repetitive

nature of computing the error (based on the Tank Model

output and the “actual” runoff), a significant time-saving

can be expected if this step or group of such steps can be

carried out simultaneously, rather than sequentially.

Ideally, the objective function for all the N sets of

parameters would be computed simultaneously by N

numbers of processors. Distributing the task among p

(p ! N) processors would still be much faster than

performing it serially. This is what can be accomplished in

the SP2 supercomputer by distributing the task of comput-

ing the objective function among many processors, as

shown in Figure 5.

IBM RS/6000 390 computer

An IBM RS/6000 390 computer was used in this study for the

serial implementation of the GA. This has 128 MB memory

with 8 GB disk storage space. The choice of this machine was

based on the fact that it allowed the user to access the IMSL

(International Mathematical and Scientific Library) subrou-

tines which form an essential part of the GA code.

IBM 9076 SP2 supercomputer

This computer, installed in Hong Kong University, has 48 IBM

P2SC RISC processors, each with a 160 MHz CPU, 2 GB local

disk storage and capable of performing 640 MFLOPS. The

processors are connected by high-performance switches.

The communications between the processors follow a

message passing (MP) model. The message passing model is

defined as a set of processors having only local memory,

communicating by sending and receiving messages. The

transfer of data between the processors requires cooperative

operations to be performed by each processor. The MP model

has full parallel functionality.MPI (Message Passing Interface)

is the de facto standard MP library.

The GA code written for the IBM RS/6000 390 computer

had to be altered to include the MPI commands to be run in

the IBM 9076 SP2 supercomputer. Care was taken to use the

most relevant MPI commands that were necessary for the

error-free, efficient communication among the processors.

RESULTS AND DISCUSSION

To test the effectiveness of GA in finding suitable para-

meters for the Tank Model and also to gauge the

improvement achieved by using the SP2 supercomputer to

parallelise the GA, two catchments, one hypothetical and

one real, were considered. The actual values of the Tank

Model parameters were set a priori for the hypothetical

catchment, while for the real one they were unknown.

Hypothetical catchment

A set of parameters was assumed for a hypothetical

catchment. Four real rainfall events recorded in Hong

Kong were used as input to simulate the events in the Tank

Model and the “actual” runoff of this hypothetical catch-

ment was computed. The assumed parameters and the

catchment characteristics are shown in the first three

columns of Table 1.

A string length of 16 was used to encode each

parameter. Assumptions were made regarding the ranges

within which the parameters were expected to lie. They are

shown in the last two columns of Table 1. Wang (1991) used

a population size of 100. In this study m ¼ 96, a figure

divisible by 8, was used (the reason for this being that the

number of processors in the SP2 supercomputer used for

parallelisation was 8 and the proportion of the population

to become extinct after each iteration was one-eighth).

The 12 ( ¼ 96/8) lowest ranking individuals were excluded

Figure 5 | Parallel computation of the objective function (error) with p processors.
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from each generation and the remaining 84 were chosen

according to the probability distribution shown in

Figure 2(b) to reproduce a new population of 96. The

objective function used was the total squared error between

the actual and computed runoff for all four events. A

mutation rate of 0.001 was applied.

The parameter optimisation was carried out on three

platforms, namely, serial conventional, serial SP2, and

parallel SP2 platforms. On the SP2 platform, 4 and 8 parallel

processors, respectively, were tested. In this experiment,

which involved four rainfall-runoff events, Events 1 and 3

were used for parameter optimization.

Table 2 summarises the time required for the implemen-

tation of the GAs. Several runs were carried out and the

time refers to the average time. It shows that, compared to

the conventional serial implementation, the parallel

implementations with 4 and 8 processors are 27 and 53

times faster, respectively.

In terms of optimization results, Figures 6(a, b) compare

and contrast the final values of the Tank Model parameters

corresponding to the lowest value of the objective function

from serial computation with SP2 parallel computations

with 8 processors.

Figure 7 shows the comparison between the actual and

model-predicted hydrographs for the four events for the

above parameter values. By visual comparison, the actual

and model-predicted hydrographs closely follow each other.

However, a quantitative measure of the discrepancy,

expressed in terms of RMSE (Root Mean Squared Error)

expressed as a percentage of the actual mean and tabulated

below (Table 3), shows that the performance of each Tank

Model calibrated in the various methods varies.

A careful observation shows that parallel GA produces

the lower error overall in a shorter time. This is predictable

given that the parallel GA performs a higher number of

iterations, albeit in shorter time. Although the errors appear

small, the parameters obtained seem somewhat different

from the “actual” values. One reason that can be given for this

observation is that the sensitivity of these parameters to the

outcome of the Tank Model may not be so significant that a

wide range of values can result in an equal or very similar

output. Another reason may be that the inter-relationships

among the parameters, if there are any, have not been

Table 1 | Details of assumed parameters in the hypothetical catchment

Parameter

number (i) Parameter

Assumed

value (cm)

Minimum value

of the parameter

(xi) (cm)

Maximum value

of the parameter

(yi) (cm)

1 HA1 5 0 7

2 HA2 10 7 15

3 HA3 15 15 15

4 A0 0 0 1

5 A1 0.2 0 1

6 A2 0.3 0 1

7 A3 0 0 0

8 HB 5 0 10

9 B0 0.4 0 0.5

10 B1 0.2 0 0.5

11 HC 2 0 40

12 C0 0.1 0 0.5

13 C1 0.2 0 0.5

14 HD 15 0 30

15 D0 0.01 0 0.5

16 D1 0.5 0 0.5

17 XAIN 0 0 0

18 XBIN 0 0 0

19 XCIN 0 0 0

Table 2 | Summary of GA implementation time

Feature Serial SP2 Serial SP2 Parallel SP2 Parallel

String length 16 16 16 16

Iterations 2000 2000 5000 5000

No. of processors – – 4 8

Time required (h:min) 13:10 03:50 02:23 01:14
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included as part of the objectives to be met and that allows

more freedom for the parameters to “wander” from their

actual values-to-be. It will be useful to incorporate such

knowledge of any interdependence of the parameters, if such

knowledge exists, into the GA optimisation procedure.

It is also possible that the discrepancies in the input

data, such as noise, erroneous records and spatial variations

in the rainfall, can affect the accuracy and execution times

of the algorithms and their implementations. However, in

this hypothetical case, there is no room for such noise.

Figure 6 | Actual and GA-optimised values of the Tank Model parameters.

Figure 7 | Actual and calibrated Tank Model outputs using serial and parallel GA.
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The real case to be presented later suffers from such effects

as a consequence of inaccurate data.

The observations reveal that minimising the objective

function using a GA can be done effectively. Implementing

a parallel GA, instead of a serial one, enables results to be

obtained more swiftly i.e. within a reasonable time. The

type of GA used here with its sole objective to minimise

the error between the actual and computed runoff appears

to be ideal for problems where the actual values of the

parameters are not so significant, which is the case in the

Tank Model.

Next, two SP2 parallel runs were completed with

Wang’s probability distribution function to compare with

those from the proposed distribution. The cumulative

objective function for the population at the end of each

iteration, using all four events, was plotted and a linear

trend line fitted to the values. The equations of the fitted

lines are as shown in Table 4 where y is the sum of the

objective functions (cumulative error) and x is the number

of iterations. As indicated by the slope of the lines, the

proposed distribution gives marginally steeper negative

slopes. While this experiment alone is not conclusive, this

is indicative of marginally improved fitness of the popu-

lation as a whole during evolution.

Table 3 | Root mean squared error expressed as a percentage of the actual mean

Serial SP2 – Parallel

Event 1 17.4 16.9

Event 2 41.3 33.1

Event 3 40.8 41.6

Event 4 21.5 21.9

Overall 31.8 29.5

Table 4 | The equations of the linear trend lines for population fitness

Simulation Equation

Wang – Run 1 y ¼ 20.0059x þ 54093

Wang – Run 2 y ¼ 20.0974x þ 57521

Proposed – Run 1 y ¼ 20.0481x þ 54196

Proposed – Run 2 y ¼ 20.1091x þ 56470

Table 5 | Parameter ranges for the Tank Model for Shek Pi Tau (SPT) Catchment

Parameter

number (i) Parameter

Minimum value

of the parameter

(xi) (cm)

Maximum value of the

parameter (yi) (cm)

1 HA1 0 20

2 HA2 20 40

3 HA3 40 80

4 A0 0 1

5 A1 0 1

6 A2 0 1

7 A3 0 1

8 HB 0 40

9 B0 0 1

10 B1 0 1

11 HC 0 40

12 C0 0 1

13 C1 0 1

14 HD 0 40

15 D0 0 1

16 D1 0 1

Figure 8 | The variation of the best-so-far objective function.
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Shek Pi Tau Catchment – Hong Kong

Rainfall and runoff data for four flood events that occurred in

the Shek Pi Tau catchment in Hong Kong in May 1983,

August 1983, May 1984 and August 1985, each lasting for 4, 4,

7 and 9 days, respectively, were used to calibrate and test

the Tank Model representing that catchment. The area of the

catchment is 27.92 km2. The parameters of the model and

the ranges used for their variations are shown in Table 5.

Figure 8 shows the variation of the objective function

during the parallel implementation of the proposed GA for

three separate computer runs with 8 processors.

The parameters for the lowest objective function, namely

Run 2, are tabulated in Table 6.

Since the actual parameters, if such exist, are not

known in this case, it is not possible to make any comparison.

Table 6 | Optimum values of the parameters of the tank model obtained by the

proposed GA

Tank model

component

Discharge

coefficient

of the bottom

outlet

Height of lateral

outlets (cm)

Discharge coefficients

of the lateral outlets

Tank A A0 ¼ 0.9338 HA1 ¼ 17.45 A1 ¼ 0.5832

HA2 ¼ 39.82 A2 ¼ 0.9734

HA3 ¼ 63.23 A3 ¼ 0.8247

Tank B B0 ¼ 0.0217 HB ¼ 0.4 B1 ¼ 0.0258

Tank C C0 ¼ 0.0030 HC ¼ 6.1 C1 ¼ 0.0063

Channel D D0 ¼ 0.3600 HD ¼ 67.93 D1 ¼ 0.55

Figure 9 | Observed and GA-optimised Tank Model estimated hydrographs for calibration events for Shek Pi Tau.

Figure 10 | Observed and GA-optimised Tank Model estimated hydrographs for validation events for Shek Pi Tau.
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Figures 9 and 10 illustrate the calibration and validation

hydrographs, respectively, which show that the observed and

the computed runoff for the storm events match fairly well.

The discrepancies may be attributed to the data used for this

study. From the hydrograph for Calibration Event 1 it is

apparent that the rainfall of high intensity at the beginning of

the storm event does not produce a peak in the observed

hydrograph but a low intensity (of the order of 1–2 mm/

15 min) which generates a disproportionate peak flow. In

Event 2, however, a high intensity rainfall at the outset of the

flood event has produced a peak. These mixed signals have

probably confused the parameter optimisation technique and

it has failed to capture this strange behaviour of the

catchment. It may be that parameters that perfectly represent

these data do not exist.

In terms of total flow rates and flood volumes, Table 7

summarises the performance of the Tank Model for the four

events.

CONCLUSIONS

The conclusions from this study are:

1. The proposed modified GA with the exclusion of a

portion of the weakest individuals in a population

appears to marginally enhance the overall fitness of the

population. However, further research with different

proportions of extinction as well as larger numbers of

iterations should be attempted to conclusively declare

the superiority of one distribution over the other.

2. When a GA is used for parameter optimisation, a

considerable amount of time is required to execute the

algorithm over a reasonable number of iterations. This

may appear prohibitive on computer platforms of

conventional configuration. However, given access to

an IBM 9076 SP2 supercomputer, it was possible to

parallelise part of the lengthy process, thereby reducing

the time to acceptable limits. This proves that GA is a

viable method to achieve the objective within hours

using the SP2. While not many institutions have access

to a supercomputing facility, this study highlights the

achievable computation time-saving using one.

3. The values of the parameters obtained at the end of the

GA are somewhat different from the “actual” ones

although the difference between the resulting runoff is

very low. The optimisation is aimed at only minimising

the total error, subject to the limits assigned to

the parameters. If any inter-relationship among the

parameters is known that too can, and should, be tailored

into the optimisation objectives.
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