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Abstract
Lung cancer remains the most common cause of cancer deaths worldwide, yet there is currently a lack of

diagnostic noninvasive biomarkers that could guide treatment decisions. Small molecules (<1,500 Da) were
measured in urine collected from469 patients with lung cancer and 536 population controls using unbiased liquid
chromatography/mass spectrometry. Clinical putative diagnostic and prognostic biomarkers were validated by
quantitation and normalized to creatinine levels at two different time points and further confirmed in an
independent sample set, which comprises 80 cases and 78 population controls, with similar demographic and
clinical characteristics when compared with the training set. Creatine riboside (IUPAC name: 2-{2-[(2R,3R,4S,5R)-
3,4-dihydroxy-5-(hydroxymethyl)-oxolan-2-yl]-1-methylcarbamimidamido}acetic acid), a novel molecule identi-
fied in this study, andN-acetylneuraminic acid (NANA)were each significantly (P< 0.00001) elevated in non–small
cell lung cancer and associated with worse prognosis [HR¼ 1.81 (P¼ 0.0002), and 1.54 (P¼ 0.025), respectively].
Creatine riboside was the strongest classifier of lung cancer status in all and stage I-II cases, important for early
detection, and also associated with worse prognosis in stage I-II lung cancer (HR ¼ 1.71, P ¼ 0.048). All
measurements were highly reproducible with intraclass correlation coefficients ranging from 0.82 to 0.99. Both
metabolites were significantly (P < 0.03) enriched in tumor tissue compared with adjacent nontumor tissue (N¼
48), thus revealing their direct association with tumor metabolism. Creatine riboside and NANA may be robust
urinary clinical metabolomic markers that are elevated in tumor tissue and associated with early lung cancer
diagnosis and worse prognosis. Cancer Res; 74(12); 3259–70. �2014 AACR.

Introduction
Lung cancer is the leading cause of cancer deaths inmen and

women in the United States (1, 2) and worldwide (3), and
survival rates are dismal. When the disease is detected while it
is still localized, the 5-year survival rate is 53%, but that rate

drops to 24% for regional disease and, even more significantly,
to <5% for distant tumors (4). However, these survival rates
could be improved substantially with the identification of
biomarkers to support the accurate and reliable diagnosis and
prognosis of lung cancer.

Current clinically accepted methods for detecting lung
cancer include low-dose spiral computed tomography (LDCT)
scanning in smokers between the ages of 55 to 74 years and a
history of smoking 30 packs of cigarettes per year (5, 6).
However, LDCT scanning provides a high rate of false posi-
tives—96.4% overall and 24% in combination with invasive
testing (7). Moreover, LDCT scanningmay be of concern due to
an increased lung cancer risk associated with radiation expo-
sure (8). As a result, the medical community requires a con-
cordant biomarker to better identify patients who should be
screened or who should undergo invasive diagnostic work-ups.
However, to date, no molecular biomarker for early-stage lung
cancer has been validated (9, 10).

Several biomarkers currently support the assessment of
overall prognosis and guide therapy decisions. For example,
the KRAS mutation in non–small cell lung cancer (NSCLC)
confers a significantly shorter survival (HR ¼ 121) in stage IV
disease (11), and the presence of an ALK or EGF receptor
mutation indicates a responsive tumor to targeted therapies
and longer survival (12–15). However, these biomarkers for
lung cancer outcomes are based on tumor assays, an invasive
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approach that can be hindered by the limited availability of
tissue.

Urine is now attracting increased attention as a biospecimen
for detecting cancer biomarkers (16), not only because it is
collected noninvasively, but also because it is abundant and
requiresminimal preparation. For instance, one urinary cancer
biomarker, PCA3, is currently applied clinically to detect
prostate cancer (17). No clinically applied biomarkers exist
yet for lung cancer. Nonetheless, promising urinary biomarkers
include modified nucleosides (18–21), whose high levels indi-
cate an increased RNA turnover and degradation and whose
utility is being evaluated in clinical trials. However, modified
nucleosides are elevated in many different tumor types, and
therefore may not be cancer-type specific (22).

Mass spectrometry (MS)-based metabolomic approaches
are increasingly used for uncovering new biomarkers for
diagnosis (23–28) and customized treatment (29), as well as
for evaluating pathologic characteristics of metastatic cells
(30) and carcinogenic tobacco-smoke constituents (31, 32).
The reliability and reproducibility of such approaches are
robust (33) and the technologies are currently in place in
clinical practice (34), making them strong candidates for
uncovering potential biomarkers. Unfortunately, most studies
suffer from limited sample sizes, poor quality control, and a
lack of technical and biologic validation.

To address these current limitations, we have taken a com-
prehensive approachutilizing state of the artmethodology and a
large sample size, and have uncovered robust and technically
validated biomarkers that can aid diagnosis and guide thera-
peutic decisions in NSCLC. Initially, we measured small (<1,500
Da) urinary molecules from 1,005 individuals with and without
lung cancer (training set) to uncover metabolites that most
strongly distinguished the two groups. We found that levels of
four metabolites were elevated in patients with lung cancer and
best predicted their lung cancer status, independent of their
gender, race: creatine riboside (a novelmolecule identified in our
study), N-acetylneuraminic acid (NANA), cortisol sulfate, and an
as-yet-unidentified glucuronidated compound referred to as
561þ. These results were confirmed in a validation set com-
prising 158 individuals, and abundances of significant metabo-
lites were further validated through absolute quantitation and
values normalized to urinary creatinine levels to control for
kidney function.Theapplicabilityof thesefindings to lung cancer
diagnosis in clinical practice is primarily focused on two of the
urinary metabolites, creatine riboside and NANA, which were
significantly more abundant in stage I tumors when compared
with adjacent nontumor lung tissues. This association in the
tissue provides a direct link to altered tumor metabolism and
importantly, elevated levels of these metabolites can be nonin-
vasively detected in the urine. Notably, elevated levels of these
metabolites are also associated with worse prognosis.

Patients and Methods
Study subjects

Urine samples from 469 patients with NSCLC and 536 popu-
lation controls collected from 1998 to 2007 from the greater
Baltimore, MD, area were used as a training set (Table 1).

Patients were recruited from pathology departments, pulmo-
nary, and thoracic clinics with the cooperation of attending
physicians in seven hospitals: Baltimore Veterans Administra-
tion Medical Center (Baltimore, MD), Bon Secours Hospital
(Cork, Ireland), MedStar Harbor Hospital (Baltimore, MD),
Sinai Hospital (Baltimore, MD), Johns Hopkins Bayview Med-
ical Center, The Johns Hopkins Hospital, and University of
Maryland Medical Center (Baltimore, MD). Population con-
trols were identified from the Department of Motor Vehicles
(DMV) lists and frequency matched to cases by age, gender,
and self-reported race. Patients with lung cancer were not
diagnosed with other cancer types. Findings from the training
set were replicated in an additional set of 80 recently diagnosed
cases (years of diagnosis 2008–2010) and 78 population con-
trols (recruited through the DMV), a sample set we refer to as a
validation set (Table 1). These validation set samples have a
similar distribution of demographic and clinical characteris-
tics when compared with the training set. We also utilized 48
tumor and adjacent nontumor stage I tissue pairs, of which 20
were a subset of the training set. Survival times were calculated
as time of diagnosis to time of death or to follow-up (2010);
death due to cancer was determined from the National Death
Index extraction of the death certificates. This study was
approved by the Institutional Review Boards of the seven
institutions. Urine samples were collected at the time of
interview when possible. If collected at a different time, a brief
intake questionnaire was administered including recent
smoking information. In each case, urine was collected in
a plain, sterile 50 mL container and transported to the
University of Maryland where it was split into 10 mL aliquots
and stored at �80�C until used. Urines were thawed on wet
ice at the time of use. Subjects were not required to fast or
undergo any other preparatory procedure before urine col-
lection. The time of interview and subsequent urine collec-
tion was recorded with the questionnaire data.

Detailed clinical information derived from extensive ques-
tionnaires is available for each patient, including age, gender,
self-reported race, self-reported smoking status (never smo-
kers, having smoked less than 100 cigarettes in their lifetime;
former smokers, having quit smoking at least 6 months before
the interview date), pack years, histology, American Joint
Committee on Cancer (AJCC) staging, and survival (Table
1). Lung cancer diagnosis was pathologically determined.
Staging was performed by a pathologist using the seventh
edition of the AJCC's Cancer Staging Manual (35).

Study design
All initial analyses were performed in a training set com-

prising 1,005 samples (Table 1). Results from Random Forest
(36, 37) classifications and univariate Cox analysis were com-
bined to identify four metabolites that were predictive of both
lung cancer diagnosis and prognosis. Results were then con-
firmed in a quantitation set (N ¼ 198) comprising a subset of
the training set samples, and a validation set of 158 urine
samples independent of the training set samples (Table 1).
Finally, the four metabolites of interest were measured in 48
matched tumor and adjacent nontumor tissue pairs. The
overall study design is depicted in Supplementary Fig. S1.
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Untargeted metabolite profiling using UPLC-ESI-
QTOFMS
We analyzed urine samples using a quadrupole time-of-

flight (QTOF)mass spectrometer (Premier,Waters), in positive
(ESIþ) and negative (ESI�) electrospray ionization modes,
using a 50 � 2.1 mm Acquity 1.7 mm C18 column (Waters
Corp). Urine samples were diluted with an equal volume of
50% aqueous acetonitrile containing debrisoquine (ESIþ inter-
nal standard) and 4-nitrobenzoic acid (ESI� internal standard).
Samples were centrifuged at 14,000 � g for 20 minutes at 4�C
to precipitate proteins. Five mL was chromatographed on a
50 � 2.1 mm Acquity BEH 1.7 mm C18 column (Waters) using
an Acquity UPLC system (Waters). The gradient mobile phase
consisted of 0.1% formic acid (A) and acetonitrile containing
0.1% formic acid (B). A typical 10-minute sample run (at
0.5 mL/minute) consisted of 0.5 minute of 100% solvent A
followed by a linear gradient to 80% A at 4 minutes, to 5% A at
8 minutes. After a 0.5-minute wash step, the column was
equilibrated to initial conditions for 1.5 minutes. The eluent
was introduced by electrospray ionization into the QTOF
mass spectrometer (Premier, Waters) operating in ESIþ or
ESI�. The capillary and sampling cone voltages were set to
3,000 and 30 V, respectively. Source and desolvation tempera-

tures were set to 120�C and 350�C, respectively, and the cone
and desolvation gas flows were set to 50.0 and 650.0 L/hour,
respectively. To maintain mass accuracy, sulfadimethoxine at
a concentration of 300 pg/mL in 50% aqueous acetonitrile was
used as a lock mass and injected at a rate of 50 mL/minute.
For MS scanning, data were acquired in centroid mode from
50 to 850 m/z and for tandem MS, the collision energy was
ramped from 5 to 35 V.

To avoid artifacts based on sample injection order, the order
was randomized. Five different quality control sets were
included with the runs to assess machine sensitivity and
sample carry over. First, 169 "pooled" samples, containing
aliquots from 108 randomly selected urine samples were
processed randomly throughout the run. Second, a standard
cocktail containing theophylline, caffeine, hippuric acid, 4-
nitrobenzoic acid, and nortriptyline (designated as MetMix)
was injected every 100 samples. Third, 32 blanks were ran-
domly injected to assess sample carryover. Fourth, 48 samples
with four high-purity nicotine metabolite standards, including
cotinine, nicotine-N'-oxide, anabasine, and trans-30-hydroxy-
cotinine (Sigma-Aldrich), were spiked into urine. Fifth, 10% of
the samples were randomly selected and processed in dupli-
cate at the end of the run to evaluate chromatogram

Table 1. Sample characteristics of all sample sets presented in the study

Training set Validation seta Tissue set

All
(N ¼ 1,005)

Cases
(N ¼ 469)

Population
controls
(N ¼ 536)

All
(N ¼ 158)

Cases
(N ¼ 80)

Population
controls
(N ¼ 78)

Tumor/adjacent
normal pairs
(N ¼ 48)

Age (mean ¼ 66.4) (mean ¼ 66.2) (mean ¼ 66.6) (mean ¼ 66.7) (mean ¼ 64.2) (mean ¼ 68.7) (mean ¼ 68.9)
>Mean 519 240 279 82 35 47 27
� Mean 486 229 257 76 45 31 21

Smoking statusb

Ever 10
Current 293 222 71 46 38 8 17
Former 463 214 249 73 31 42 17
Never 249 33 216 39 11 28 4

Histology
ADC 216 51 31
SCC 122 14 16
NSCLC 131 10 1

Gender
Female 492 232 260 81 46 35 24
Male 513 237 276 77 34 43 24

Raceb

African-American 366 127 239 70 35 35 9
Caucasian 639 342 297 88 45 43 39

Stagec

I–II 213 31 48
III–IV 103 41 0

aFive samples are missing histology, and eight samples are missing stage information.
bSelf-reported smoking status and race.
cOnly pathologically staged cases, according to the seventh edition of the Cancer StagingManual of the American Joint Committee on
Cancer, were utilized for stratified analyses.
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consistency. Finally, debrisoquine and 4-nitrobenzoic acid
were spiked into samples for runs in ESIþ and ESI� modes,
respectively.

Raw chromatograms along with extracted and normalized
ion counts can be accessed in the MetaboLights database with
study identifier MTBLS28.

Metabolite quantitation
Urine samples were processed with an equal volume of 50%

aqueous acetonitrile containing chloropropamide and amino-
pimelic acid as internal standards and chromatographed on
a 50 � 2.1 mm Acquity BEH 1.7 mm C18 column using an
Acquity UPLC system (Waters). MRM transitions were mon-
itored using a Xevo TQMS (Waters). In addition, samples were
analyzed using hydrophilic interaction chromatography
(HILIC) columns (Acquity UPLC BEH Amide 1.7 mm 50 �
2.1 mm) for the quantitation of creatine riboside and NANA.
HILIC columns improve retention, separation, and detection of
highly polar metabolites.

Tissue metabolite extraction and quantitation
Tumor and matched adjacent nontumor tissues were pul-

verized by cryogenic grinding (Cryomill, Retsch GmbH) using a
5-mm stainless steel ball per sample. Average sample weight
was 15 mg (with a range between 3 mg and 30 mg). A
monophasic mixture of ice-cold chloroform:methanol:water
(2:5:2, v:v:v) was used for extraction. Samples were centrifuged
at 14,000 � g for 15 minutes at 4�C, dried down using vacuum
evaporator (SpeedVac), and reconstituted in 70% aqueous
acetonitrile, of which 5 mL was injected onto the Xevo TQMS
system for analysis.

Statistical analyses
Samples were classified as lung cancer or healthy controls

using an R package Random Forests (36, 37). For additional
details about Random Forests parameters used in data proces-
sing, please see Supplementary Materials and Methods.

Unconditional logistic regression was performed in STATA
(Stata Statistical Software Release 11.2), while controlling for
race, gender, interview year, smoking status, pack years, and
urine collection time. NANA levels do show some diurnal
variation (Supplementary Fig. S7), and therefore all analyses
were also adjusted for the time of day urine was collected.
Unconditional logistic regression analysis was performed on
categorical variables calculated by dichotomizing metabolite
abundances into high (�75th percentile) and low (< 75th
percentile) based on the distribution ofmetabolite abundances
in the population control subjects. Unconditional logistic
regression models were used to estimate ORs and 95% con-
fidence intervals (CI) for both univariate and multivariate
models adjusted for race, gender, interview year, smoking
status, pack years, and urine collection time. False discovery
rates (FDR)were calculated using the Benjamini andHochberg
method (38).

Survival analyses were performed on categorical variables of
dichotomizedmetabolite abundances in SAS EnterpriseGuide,
version 4.2 (SAS Institute Inc.), and all reported P values are two
sided. Cox models with left truncation were performed to

account for the lag time between diagnosis andurine collection
dates (up to 2 years). Multivariate Cox models were adjusted
for urine collection time, histology, stage, race, gender, inter-
view year, pack years, smoking status, chemotherapy/radia-
tion, and surgery status. The proportional hazards assumption
(39) was tested, and if it was not met, the HR function was
calculated separately before and after a given time point. This
cutoff was determined by the time at which the survival curves
started to diverge/converge and by ensuring that the b coeffi-
cients of the signal-time term before and after were no longer
significant.

Receiver operating characteristics (ROC) were conducted in
STATA 11.2 to assess the predictive value of identified meta-
bolites in lung cancer diagnosis using roctab and roccomp
functions. Models were built using logistic regression on the
continuous abundances of each metabolite individually, and
on the combination of the four metabolites. For the compar-
ison of ROC curves, rocreg function in STATA 11.2 was used.

Nonparametric Wilcoxon test in STATA 11.2 was utilized to
assess abundance differences of four metabolites, as detected
in the urine of patients with lung cancer when compared with
population controls, for three sets (training, validation, and
quantitation sets).

Paired Student t test in STATA 11.2 was used to assess
abundance differences between 48 tumor and 48 adjacent
nontumor tissue samples. All reported P values are double
sided.

Results
Quality control assessment of the metabolomics data

Initially, abundances of possible small (<1,500 Da) urinary
molecules in a training set comprising 1,005 urine and 521
quality control samples (Table 1 and Supplementary Fig. S1)
were measured using ultraperformance liquid chromatogra-
phy-electrospray-ionization-quadrupole time-of-flight (UPLC-
ESI-QTOF) MS. After signal filtering (see Supplementary Mate-
rials and Methods for additional detail), a total of 1,807 signals
were detected in the positive and 1,359 in the negative ioni-
zation mode, which represents a comprehensive pool of small
urinary molecules. Signals here refer to unique m/z and
retention time pairs and not unique metabolites. It is possible
that a metabolite could be represented by multiple signals due
to adduct formation and/or fragmentation occurring in the
mass spectrometer.

The quality and robustness of our measurements were
assessed using a variety of internal controls. First, the expected
clustering of quality control samples (blanks, MetMix, pools,
nicotine standards) apart from the lung cancer and population
control urine samples were observed in the multidimensional
scaling analysis (see Materials and Methods for additional
detail; Supplementary Fig. S2A). Second, measurement repro-
ducibility within a run was assessed by processing 169 (�15%)
randomly selected, duplicate samples, and a strong correlation
was observed with Pearson correlation coefficients >0.85 for
the large majority of samples (Supplementary Fig. S2B). Third,
the distribution of coefficients of variation (CV) was assessed
to ensure a small variation in quality controlmeasurements. As
expected, coefficients of variation were considerably smaller
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for the quality control samples compared with the study
subject samples (P < 0.00001; Supplementary Fig. S2C).

Predictions of smoking status
As a proof of principle, we aimed to classify individuals by

their smoking status (smokers vs. nonsmokers of self-reported
smoking status) to ensure that known metabolites related to
tobacco smoke were detectable and strongly predictive of the
self-reported smoking status. Random Forests (36, 37) was
applied to the training set comprising 469 lung cancer cases
and 536 population controls and 87% correct classification by
smoking status was obtained (Supplementary Fig. S3A). The
three most highly associated metabolites, ranked according to
the importance score given by Random Forests, were well-
known nicotine metabolites: cotinine, nicotine-N'-oxide, and
trans-30-hydroxycotinine. When stratified by smoking status, it
became evident that there was a global increase of these
nicotine metabolites in current smokers compared with those
who had formerly or never smoked (Supplementary Fig. S3B).
This finding established the quality of measurements and the
utility of our classification approach in identifying diagnostic
metabolites of lung cancer.

Predictions of lung cancer status
Classification of our training set samples using Random

Forests resulted in 78.1% accuracy [true positive rate (TPR)
¼ 76.5%, false positive rate (FPR) ¼ 18.4%], by using top
predictive signals (Supplementary Table S1; see Supplemen-
tary Materials and Methods for details about analysis). To
account for possible differences in smoking habits between
different genders and race, additional classifications of cases
and controls were performed on samples stratified by self-
reported race and gender. Using top predictive signals, we
accurately categorized the following proportion of samples
as lung cancer cases or controls: 77.7% for Caucasian males,
78.6% for Caucasian females, 84.9% for African-American
males, and 82.3% for African-American females. TPRs and
FPRs ranged from 70.0 to 81.7 and from 9.5 to 23.3, respec-
tively (Supplementary Table S1). Four metabolites contrib-
uted strongly to the classifications, independent of race and
gender (Supplementary Fig. S4): NANA, cortisol sulfate,
creatine riboside, novel metabolite identified in this study;
and 561þ, an unidentified metabolite with a mass/charge
ratio of 561.3432 detected in ESIþ that was confirmed to be a
glucuronidated compound. We have conducted extensive
validation methods to confirm the identity of novel creatine
riboside, including UPLC coupled to tandem mass spec-
trometry (UPLC/MS-MS) and two-dimensional nuclear mag-
netic resonance (Supplementary Figs. S5 and S6).
This study utilized a case control rather than a cohort

setting and, as a result, could not be used for risk assess-
ment. However, we took into account possible confounding
factors of lung cancer classification, performing logistic
regression in all cases and in stage I–II cases (Table 2),
adjusting for race, gender, interview year, smoking status,
pack years, and urine collection time (accounting for diurnal
effects; Supplementary Fig. S7). Metabolite levels were
dichotomized into high and low categorical variables based
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on the 75th percentile of population control abundances. As
expected, associations with diagnosis were confirmed after
adjusting for these potential confounders. ROC analysis
resulted in areas under the curve ranging from 0.63 to
0.76 for all cases, and from 0.59 to 0.70 for stage I-II cases
(Fig. 1), using individual metabolites. Models using creatine
riboside or all four biomarkers in all cases and in stage I-II
cases were significantly more predictive (P < 0.00001) than
models using the other three metabolites individually, and
these associations were independent of histology. Of note,
lung cancer cases presented in this study were staged
according to the latest seventh edition of the AJCC (35);
however, 153 of 469 cases could not be restaged because of
missing pathology reports, as reflected in the numbers of
staged cases in Table 1.

Association with tobacco smoke exposure
To investigate whether the urinary metabolomic markers

are correlated to tobacco smoke exposure, metabolite levels
stratified by cigarettes per day (cpd) were investigated. We
observed that the number of cpd was neither associated with
urinary levels of creatine riboside and NANA, nor was it
associated with cortisol sulfate and 561þ (Supplementary Fig.
S8). A correlation between abundances of each metabolite and
cotinine (accepted indicator of exposure to tobacco smoke)
was also investigated and no correlation was observed (data
not shown). In addition, logistic regression classification was
stratified by smoking status: all four metabolites are also
significantly associated with lung cancer status in never
smokers (data not shown), further confirming that these
metabolites are not associated with smoking.
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Association with prognosis
We next investigated whether the four metabolites found

to be most robust in predicting lung cancer status are
associated with prognosis, and whether they, therefore, may
have utility in predicting patient outcome. Metabolite levels
were dichotomized into high and low categorical variables
based on the 75th percentile of the population control
abundances. After adjusting for gender, race, stage, histol-
ogy, smoking status, pack years, interview year, urine col-
lection time, chemotherapy and/or radiation, and surgery
status, we found that high levels of NANA [HR ¼ 1.54 (P ¼
0.025) in the first 15 months], cortisol sulfate [HR¼ 1.63 (P¼
0.0001)], creatine riboside [HR¼ 1.81 (P ¼ 0.0002) in the first
45 months], and 561þ [HR ¼ 1.95 (P ¼ 0.0001) in the first 20
months] were associated with worse survival rates (Table
3; Fig. 2A). In stage I-II cases, creatine riboside [HR ¼ 1.71
(P ¼ 0.048)] and 561þ [HR ¼ 8.63 (P ¼ 0.001)] were also
associated with worse survival, independent of putative
clinical cofactors (Table 3 and Supplementary Fig. S9A).
The time cutoffs presented here are chosen to meet the
proportional hazards assumption test (39), details of which
can be found in the Materials and Methods.
Significantly, the combination of thesemetabolites and their

associations with survival demonstrates an independent and
additive effect (Fig. 2B and Supplementary Fig. S9B and Sup-
plementary Table S2), suggesting that in combination, these

four markers may be of value in therapy decisions, therefore
improving patient outcomes. Although this study was limited
in the representation of African-Americans, stratification by
self-reported race highlighted cortisol sulfate as most strongly
associated with survival in African-Americans (Supplementary
Table S3).

Validation in independent sample sets and assessment of
metabolite stability

When compared with the training set, creatine riboside,
NANA, and 561þ were confirmed to be elevated in the urine of
patients with lung cancer in an independent validation set
comprising 158 more recently diagnosed cases (P <
0.0007; Fig. 3A and B). Although cortisol sulfate was not found
to be significantly elevated in cases, possibly due to insuffi-
cient power, the expected trend of the levels being higher in
patients with lung cancer was observed. Measurements of
these metabolites were technically validated on a quantitative
Xevo triple quadrupole mass spectrometer in a subset (N ¼
198) of the training set, representing similar distributions
of age, gender, and racial composition to the training cohort
(P < 0.00001; Fig. 3C). Conscious of the importance of mea-
surement reproducibility, especially in clinical laboratory
practice, the stability of metabolites in storage over time
and after a freeze-thaw cycle was studied. The reproduc-
ibility of metabolite measurements obtained by a second

Table 3. Association of top fourmetaboliteswith lungcancer survival (Coxproportional hazards regression)
in the training set in all cases and cases of stages I–II

Univariate Multivariatea

Metaboliteb HR (95% CI) P FDRc HR (95% CI) P FDRc

All cases (N ¼ 469)
N-acetylneuraminic acid
�15 mo 1.74 (1.22–2.48) 0.002 0.06 1.54 (1.06–2.25) 0.025 0.09
>15 mo 1.14 (0.82–1.57) 0.44 1.27 (0.90–1.80) 0.17

Cortisol sulfate 1.53 (1.21–1.94) 0.0004 0.01 1.63 (1.27–2.08) 0.0001 0.02
Creatine riboside
�45 mo 2.05 (1.54–2.71) <0.0001 0.0005 1.81 (1.33–2.45) 0.0002 0.002
>45 mo 0.86 (0.38–1.95) 0.72 0.78 (0.34–1.83) 0.57

561þ
�20 mo 2.32 (1.70–3.15) < 0.0001 0.001 1.95 (1.39–2.74) 0.0001 0.009
>20 mo 1.05 (0.70–1.55) 0.83 0.86 (0.56–1.32) 0.48

Stage I–II cases (N ¼ 213)
NANA 0.70 (0.41–1.19) 0.18 0.89 0.56 (0.32–1.00) 0.052 0.80
Cortisol sulfate 1.45 (0.90–2.32) 0.12 0.89 1.39 (0.84–2.29) 0.20 0.84
Creatine riboside 1.78 (1.08–2.93) 0.02 0.81 1.71 (1.01–2.92) 0.048 0.67
561þ
�15 mo 7.83 (2.23–27.51) 0.001 0.60 8.63 (2.40–31.05) 0.001 0.27
>15 mo 0.83 (0.4 5–1.52) 0.54 0.84 (0.43–1.67) 0.63

NOTE: Bold data designate significant associations with a P value < 0.05.
aAdjusted for gender, race, stage (unless stratified), histology, smoking status, pack years, interview year, urine collection time,
chemotherapy and/or radiation status, and surgery status.
bLevels dichotomized into high and low based on the 75th percentile of population control abundances (low ¼ referent).
cFDR based on Benjamini and Hochberg.
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quantitation carried out 2 years later on the same samples
resulted in intraclass correlation coefficients (ICC) from 0.82
to 0.99 (Supplementary Table S4). These high ICCs strongly
suggest that these metabolites are sufficiently stable and
reproducible and may be used as biomarkers of lung cancer
diagnosis in clinical practice.

Link to tumor metabolome
We next assessed the presence of creatine riboside, NANA,

cortisol sulfate, and metabolite 561þ in 48 tumor tissues
resected from stage I adeno- and squamous cell carcinoma
patients. Their detection in tissue would indicate a direct
relationship to lung tumor metabolism. Creatine riboside and
NANA were significantly more abundant in tumor compared
with adjacent nontumor tissue. Creatine was also elevated in

the tumor compared with nontumor tissue (Fig. 4A) and
correlates with creatine riboside (Fig. 4B), further confirming
the formation of creatine riboside from creatine. These impor-
tant findings suggest that creatine riboside and NANA are
products of altered lung tumor metabolism that can be
detected in noninvasively obtained urine.

Discussion
A paucity of noninvasive biomarkers for detection and

prognostic assessment plagues the lung cancer field, and most
preclinical studies aimed to identify putative biomarkers suffer
from limited sample sizes (10). Our assessment of 469 cases
and 536 population controls revealed two urinary biomarkers
for the detection and prognosis of NSCLC: creatine riboside
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and NANA. Although we also identified cortisol sulfate and
561þ as robust putative biomarkers predictive of lung cancer
status, independent of race and gender, creatine riboside and
NANA were also elevated in tumor compared with adjacent
nontumor tissue, thereby providing a direct link with meta-
bolic changes in the tumor, and allowing for noninvasive
detection of these tumor-specific metabolites in easily obtain-
able urine. This finding may eventually be able to guide
therapeutic decisions in improving lung cancer patient out-
comes. However, the utility of these metabolites has not
been evaluated in other cancers, and their potential to aid
early diagnosis of lung cancer remains to be further evaluated.
Although there are currently accepted technologies for
early detection of lung cancer, such as LDCT, a complementary
biomarker is needed; although LDCT has a very high sensitivity
and almost no lung lesion goes undetected, it performs
poorly in distinguishing benign from malignant nodules. We

speculate that creatine riboside and NANAmay aid in the early
detection of lung cancer, possibly as an adjunct to LDCT, and
may perhaps decrease its high FPR of 96.4% (7). Of note,
creatine riboside was the strongest classifier of lung cancer
status in all cases but also in stage I-II lung cancer. Pending
future studies addressing the mechanism of creatine riboside
generation and potential causal relationship to lung cancer,
this novel metabolite may eventually serve as a therapeutic
target in clinical practice.

Therapeutic decisions, including surgery for earlier stages of
cancer, adjuvant chemotherapy, and/or radiation therapy, are
based on tumor size, molecular biomarkers, morphologic
features, and gross tumor characteristics (40). However, the
assessment of high risk requires refinement, especially for
completely resected stage I NSCLC, where no trial has shown
any significant survival benefit in stage IB (41, 42) and where
there is a possibly detrimental effect of adjuvant chemotherapy
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for stage IA patients (43). We propose that these metabolites
could be useful in guiding such therapy decisions. In particular,
the association of creatine riboside with worse prognosis in
stage I-II lung cancer patients and its elevated levels in tumors
make creatine riboside a candidate for aiding in therapeutic
decisions. Furthermore, the combination of all metabolites
should be explored, as the combination of all four metabolites
was most strongly associated with prognosis in all stages,
and the combination of creatine riboside and 561þ was most
strongly associated with prognosis in stage I-II NSCLC
patients.

Creatine riboside is also of special interest, as it has not been
previously reported. Markedly higher serum levels of the
creatine kinase isoenzyme BB, an enzyme responsible for the
conversion of creatine into a phosphocreatine, an important
energy reserve, have been observed in patients with lung
cancer (44, 45). In addition, cancer cells have a higher energy
requirement compared with quiescent normal cells (46); as a
result, creatine ribosidemay be a product of both high creatine
within the tumor, as reported in our study, and high phosphate
flux. Although creatine riboside as a compound has not been
described until now, increased mutagenicity of creatine and
ribose pyrolysis products in cooked foods has been reported
(47), suggesting a functional role of creatine riboside in tumor-
igenesis. Because creatine riboside is the strongest predictor of
lung cancer diagnosis in our study, including stage I-II cases, its
abundance may be a useful complement to LDCT in further
distinguishing malignant from benign nodules detected at
screening and preventing unnecessary and invasive diagnostic
work-ups.

NANA and cortisol sulfate have been previously reported in
the context of cancer. NANA is one of the two most common
forms of sialic acid and plays a role in cell signaling, binding

and transportation of positively charged molecules, attraction
and repulsion of cells and molecules, and immunity (48). In
cancer, these sialylated conjugates protect malignant cells
from cellular defense systems. Elevated levels of NANA have
been found in various cancer types, including lung cancer (49).
Sialic acid as a blood biomarker for prognosis has been
assessed with mixed results, although, to our knowledge, not
in lung cancer. Because of the role that NANA plays on the cell
surface of mammalian cells, this marker may not be lung
cancer specific, allowing for a possibility of its utility in other
cancers. As for cortisol sulfate, high urinary levels were
reported in breast cancer (50), and deregulated cortisol metab-
olismwas reported in critical illness (51), whichmay, in part, be
due to the induction of proinflammatory cytokines, activators
of cortisol production (52, 53).

This study and the conclusion that these metabolites may
have clinical applications for the diagnosis and prognosis of
lung cancer are notable for several reasons. First, urine is
abundant, allows for noninvasive sampling, and does not
require extensive processing (54). Second, MS-based
approaches are cost-effective on a per-sample basis and
allow for fast screening with minimal processing, making it
suitable for clinical settings. Third, measurements of the
metabolites reported here are highly reproducible, indicat-
ing their stability in urine over time, despite freeze-thaw
cycles (ICCs >0.82). And finally, the robustness of these
biomarkers against age, gender, and race points to their
universal applicability.

The current study, however, is not without its limitations.
Because metabolism can vary due to dietary and drug intake
(55, 56), we were unable to adjust for these factors. In
addition, we were unable to rule out selection, type of
controls, and participation rates biases. An evaluation of
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these putative biomarkers in a prospective setting and their
utility for risk assessment also remains to be carried out. The
majority of the patients (323) had urine specimens collected
before the administration of chemotherapy and/or radia-
tion. We have determined that there are no differences in
metabolite levels between those patients who had received
treatment and those who had not (Supplementary Fig.
S10A). Furthermore, only 37 out of 469 patients had under-
gone surgery before urine collection, with no significant
differences in metabolite levels between the two groups
(Supplementary Fig. S10B). The Cox regression survival
analysis was controlled for treatment and surgery status,
to ensure no confounding by the aforementioned variables.
Furthermore, normalization to urinary creatinine levels is
expected to eliminate the potential of altered kidney func-
tion to affect metabolite levels.
Overall, our findings indicate that creatine riboside and

NANA may be useful in the diagnosis and prognosis of
NSCLC, as they showed strong associations with these out-
comes and were deregulated in tumor tissue. Undoubtedly,
measurement of these metabolites in urine using MS pro-
vides great potential for the detection of lung cancer in the
clinic and may lead to the identification of novel therapeutic
strategies and targets. In addition, the results of this study
lay the groundwork for assessing the direct impact of these
metabolites in lung tumorigenesis (and possibly other
cancers).
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