Infrared spectroscopy of substellar objects in Orion

P. W. Lucas,1* P. F. Roche,2 France Allard3 and P. H. Hauschildt4

1Department of Physical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB
2Astrophysics Department, University of Oxford, 1 Keble Road, Oxford OX1 3RH
3CRAL, Ecole Normale Superieure, 46 Allee d’Italie, Lyon, Cedex 07, 69364 France
4Department of Physics and Astronomy and Centre for Simulational Physics, University of Georgia, Athens, GA 30602-2451, USA

Accepted 2001 April 27. Received 2001 April 18; in original form 2001 March 7

ABSTRACT
We present broad-band spectra of a sample of 21 low-luminosity sources in the Trapezium cluster, with masses in the range 0.008–0.10 M⊕ (assuming an age of 1 Myr). These were selected for low extinction in most cases, and are located west of the brighter nebulosity. The spectra are in the H bandpass (1.4–1.95 μm) and K bandpass (1.9–2.5 μm) also for most of the brighter sources, with a resolution of 50 nm. They were taken with the United Kingdom Infrared Telescope (UKIRT) using the CGS4 spectrometer. Absorption by water vapour bands is detected in all the substellar candidates except one, which is a highly reddened object with strong H2 emission and an anomalously blue (I − J) colour, implying that it is a very young cluster member with circumstellar matter. The observation of prominent water vapour bands confirms the low effective temperatures implied by our I − J colour measurements in an earlier paper, and would imply late-M or L spectral types if these were older field dwarfs. However, the profiles of the H-bandpass spectra are very different from those of field dwarfs with similar water absorption strength, demonstrating that they are not foreground or background objects. In addition, the CO absorption bands at 2.3 μm and the Na I absorption feature at 2.21 μm are very weak for such cool sources. All these features are quite well reproduced by the AMES-Dusty-1999 model atmospheres of Allard et al., and arise from the much lower gravities predicted for the Trapezium sources log g, 4.0 compared to evolved objects log g, 5.5. This represents a new proof of the substellar status of our sources, independent of the statistical arguments for low contamination, which are re-examined here. The very late spectral types of the planetary mass objects and very low-mass brown dwarfs demonstrate that they are cluster members, since they are too luminous to be field dwarfs in the background. We also present additional UKIRT photometry of a small region in the south of the Trapezium cluster where the extinction and nebular brightness are low, which permitted the detection of objects with 1-Myr masses slightly lower than our previous least massive source at 8 MJup. Following a minor update to our previous J-band photometry, due to a new UKIRT filter calibration, there are ~15 planetary mass candidates in the full data set.

Key words: circumstellar matter – stars: formation – stars: low-mass, brown dwarfs – stars: pre-main-sequence.

1 INTRODUCTION
Brown dwarf candidates have been discovered in large numbers in many star formation regions and very young stellar clusters, through deep infrared photometric searches (e.g. Comeron et al. 1993; McCaughrean et al. 1995; Comeron, Rieke & Rieke 1996; Bejar, Zapatero-Osorio & Rebolo 1999). Some of these surveys have yielded objects of planetary mass, in the Chamaeleon I molecular cloud (Tamura et al. 1998; Oasa, Tamura & Sugitani 1999) in the σ Orionis cluster (Zapatero-Osorio et al. 2000) and in the Trapezium cluster in Orion (Lucas & Roche 2000, hereafter Paper I; Hillenbrand & Carpenter 2000, hereafter HC). In most cases there is a very high probability that photometric candidates are indeed substellar cluster members. Some candidates with near-infrared JHK photometry exhibit K-bandpass excesses due to hot circumstellar dust, which demonstrate their youth (e.g. Oasa et al.

*E-mail: pw1@star.herts.ac.uk

© 2001 RAS
1999), although this criterion will miss the majority of young stellar objects (YSOs). In the Trapezium cluster, even substellar candidates without K-bandpass excesses can generally be assumed to be cluster members, because any measured extinction precludes confusion with foreground field dwarfs, while the dense backdrop to be cluster members, because any measured extinction precludes candidates without K-stellar objects (YSOs). In the Trapezium cluster, even substellar 1999), although this criterion will miss the majority of young sources which complicate the interpretation of their spectra. These are (1) light scattered and emitted by circumstellar matter, which modifies the signal from the photosphere, (2) reddening by the cluster medium, which can be only imperfectly removed, and (3) the lower gravity of the atmosphere. The low gravities mean that the spectra cannot be simply compared to those of luminosity class V dwarfs, and such spectra have not been successfully modelled in the near-infrared until now. However, the new AMES-Dusty-1999 models of Allard et al. (2000, 2001), which employ the NASA Ames water line list and a more detailed treatment of dust, appear to be considerably more successful than previous models (see Section 4). Evidence for low-gravity spectral features has been seen in the Pleiades (Martin, Rebolo & Zapatero-Osorio 1996) which have an age of ~ 100 Myr. Luhman & Rieke (1998) and Luhman et al. (1998a) published optical spectroscopy of large samples of YSOs in IC 348 and L1495E, including some substellar objects. They allowed for the effects of low gravity by fitting spectra to templates formed from the average of class V dwarfs and class III giants, which produced a good match to the data. However, this approach is not appropriate for the very low-mass sources in the Trapezium and σ Orionis, since the few good-quality infrared spectra of late-M type class III and class I giants in the literature (e.g. Lançon & Rocca-Volmerange 1992) do not have similar profiles to those presented here, and correspond to even lower gravity objects ($-2 < \log g < 1$). Moreover there are no L-type giants to compare with the cooler sources found in Orion.

Wilking, Greene & Meyer (1999) analysed K-bandpass spectra of brown dwarfs in ρ Ophiuchus by comparison with class V dwarfs, which may lead to errors in the derived effective temperatures. We experienced the same problem in Paper I when deriving temperatures and luminosities by comparison with class V IJH colours. Fortuitously, this does not appear to have caused significant errors because: (a) many sources with low extinction were observed with $J - H = 0.5$ to 0.6, indicating that this colour does not increase to red giant branch values ($J - H \sim 0.9$) in very young brown dwarfs, and (b) the AMES-Dusty-1999 models indicate that low gravity causes only small changes in the broad-band colours, comparable to our typical photometric uncertainty of 0.1 mag.

In this paper we present low-resolution H- and K-bandpass spectra of a sample of Trapezium cluster members including low-mass stars, brown dwarfs and planetary mass objects. The spectra are analysed by comparison with both the AMES-Dusty-1999 models and published spectra of class V dwarfs. Optical spectra will be presented in a future paper. New photometric data are also presented covering the southern region of the Trapezium cluster. We also readdress the arguments concerning the nature of these sources, in the light of the spectroscopic data.

1.1 Note on nomenclature

In this paper we use the less controversial but not very descriptive term ‘planetary mass objects’ to describe sources below the deuterium burning threshold. Some in the extrasolar planets community object to the term ‘free floating planets’ to describe objects which are not orbiting a star, and probably form in a molecular cloud core in a manner similar to stars (although the word planet originally meant ‘wanderer’). As a possible alternative, we suggest the more compact term ‘planetary’ as a contraction of ‘planetary mass object believed to have formed like a star’. A large amount of theoretical work is now in progress, examining a variety of different formation scenarios. There may prove to be more than one mode of formation for these low-mass bodies, as is believed to be the case for stars.

2 OBSERVATIONS

2.1 Spectroscopy

Long-slit spectroscopy of sources in the Trapezium cluster was carried out at the United Kingdom Infrared Telescope (UKIRT) on 1999 November 27–30, using CGS4, a near-infrared Cooled Grating Spectrograph. The observer was PWL. Sources were observed in pairs aligned along the slit of the spectrograph, and the sample was selected from the data set of Paper I and the new imaging data presented here, with the intention of sampling the mass range from 0.008 to 0.10 M_\odot, i.e., from planetary mass to very low-mass stars. 21 such sources were observed, as well as two sources of higher mass. There were the following additional criteria. (1) Location in a region of low nebular surface brightness in order to improve sensitivity. (2) Low extinction towards at least one member of a pair, defined by $(J - H) < 1.5$ or $A_V \leq 7.5$, also to improve sensitivity. (3) Most sources were selected for ‘normal’ $(I - J)$ colours in an attempt to minimize contamination by light scattered from circumstellar matter (see Paper I), but two sources with the anomalously blue colours shared by 14 per cent of the cluster population were observed to see whether their spectra were different from the others. (4) Location within ~ 40 arcsec of a sufficiently bright star ($J < 15$) to permit precise location of optically invisible targets within the slit by offsetting to the target. In practice, all 21 of the low-mass targets were located at least 105 arcsec west of θ_1, Orionis C at the cluster centre.

CGS4 has a 256×256 InSb array sensitive from 1 to 5.5 μm and a spatial scale of 0.62 arcsec pixel$^{-1}$. The 40 line mm$^{-1}$ grating was used in first order, which yields a spectral dispersion of 25 nm pixel$^{-1}$ but a 1.2-arcsec wide slit was employed in most cases, yielding an instrumental profile with a width of 50 nm. This corresponds to a spectral resolution of $R = 330$ in the H-bandpass and $R = 440$ at K. The wide slit was used to ensure that most of the flux from both members of a widely separated pair would fall in the slit. Each spectrum covers a 0.62-μm wavelength range. The H-bandpass spectra were centred at 1.65 μm and the K-bandpass spectra at 2.2 μm, overlapping in the 1.9-μm region. One pair of sources was observed at 25-nm resolution with a 0.6-arcsec slit, though not in very good conditions; no additional narrow-line features were revealed. This pair of sources was observed with H-bandpass spectra centred at 1.58 μm on the first night, in an attempt to include the steep J-band water edge at 1.34 μm, but the instrument efficiency in this configuration was found to be essentially zero for wavelengths $\lambda < 1.4 \mu$m, so the longer wavelength setting was used thereafter. The relative throughput of the instrument and the atmosphere in the H bandpass is shown in Fig. 1. The observations and source notes are detailed in Table 1. For all other pairs, the array was stepped over 2 pixels in a whole
pixel step to remove bad pixels, and the telescope was nodded along the slit in order to subtract the background, with background-limited individual integrations of 30- to 60-s duration. Total exposures time ranged from 10 min for the brightest sources to 1.5 h for the faintest. 21 primary sources were observed in the H bandpass, and 11 of these in the K bandpass also. We also present H-bandpass spectra of two fairly low-mass sources which appeared in the long slit by chance. The smaller number of K-bandpass observations was due to constraints on observing time (weather and computer failures). Priority was given to H-bandpass observations because of anticipated complications owing to emission by hot dust in the K bandpass, and because the water absorption troughs are slightly more prominent in the H bandpass. A small number of red main-sequence stars were also observed in order to check the reliability of the data. Their spectra agree very well with those published by Leggett et al. (2000) for the same objects, also obtained with CGS4 at UKIRT.

The data were co-added into background-subtracted ‘reduced groups’ using the CGS4DR software package, and spectra were optimally extracted using the TWODSPEC package in IRAF, the Image Reduction and Analysis Facility. Argon arc spectra, tungsten lamp flat-fields and standard stars were observed frequently to compensate for changes in the wavelength calibration when the slit orientation was changed, and to accurately correct for the changing telluric water vapour column density. F-type stellar standards were generally used in preference to A-type standards, since they have weaker H I absorption lines. The fairly weak Brackett series lines were removed from the stellar standards by fitting the continuum with a high-order cubic spline, dividing the fit by the data to produce a line spectrum, and multiplying the data by the line spectrum. The strong Paschen α line at 1.875 μm coincides with a deep trough due to telluric water absorption and could not be adequately removed, so we have removed a small section of the spectra near this wavelength. The Brackett series limit occurs at 1.46 μm and coincides with a narrow telluric feature at the short-wavelength edge of the H bandpass, making it impossible to remove accurately. Inspection of the NextGen models of Hauschildt et al. (1999) indicates that the Brackett series limit is

Figure 1. Relative transmission of atmosphere and spectrograph per unit wavelength.

<table>
<thead>
<tr>
<th>Source</th>
<th>H^α</th>
<th>A_V</th>
<th>Mass a (M$_\odot$)</th>
<th>Exposure (s) b</th>
<th>Paired with</th>
<th>Source Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>095-100</td>
<td>13.25</td>
<td>0.0</td>
<td>0.090</td>
<td>2700</td>
<td>–</td>
<td>084-104</td>
</tr>
<tr>
<td>019-108</td>
<td>15.08</td>
<td>8.6</td>
<td>0.090</td>
<td>5376</td>
<td>5376</td>
<td>023-115</td>
</tr>
<tr>
<td>055-231</td>
<td>13.27</td>
<td>0.0</td>
<td>0.080</td>
<td>640</td>
<td>069-210</td>
<td>055-231</td>
</tr>
<tr>
<td>069-210</td>
<td>13.67</td>
<td>0.0</td>
<td>0.074</td>
<td>640</td>
<td>055-231</td>
<td>069-210</td>
</tr>
<tr>
<td>068-020</td>
<td>13.83</td>
<td>1.0</td>
<td>0.073</td>
<td>560</td>
<td>091-019</td>
<td>068-020</td>
</tr>
<tr>
<td>053-503</td>
<td>13.57</td>
<td>0.0</td>
<td>0.073</td>
<td>1080</td>
<td>047-436</td>
<td>053-503</td>
</tr>
<tr>
<td>091-019</td>
<td>13.68</td>
<td>0.0</td>
<td>0.071</td>
<td>560</td>
<td>068-020</td>
<td>091-019</td>
</tr>
<tr>
<td>019-354</td>
<td>14.08</td>
<td>1.5</td>
<td>0.067</td>
<td>900</td>
<td>014-113</td>
<td>019-354</td>
</tr>
<tr>
<td>066-433</td>
<td>16.54</td>
<td>12.6</td>
<td>0.066</td>
<td>5376</td>
<td>–</td>
<td>066-433</td>
</tr>
<tr>
<td>043-014</td>
<td>13.92</td>
<td>0.0</td>
<td>0.061</td>
<td>896</td>
<td>–</td>
<td>043-014</td>
</tr>
<tr>
<td>047-436</td>
<td>14.39</td>
<td>5.5</td>
<td>0.06</td>
<td>1080</td>
<td>1080</td>
<td>053-503</td>
</tr>
<tr>
<td>014-413</td>
<td>14.44</td>
<td>1.3</td>
<td>0.056</td>
<td>900</td>
<td>900</td>
<td>014-354</td>
</tr>
<tr>
<td>013-306</td>
<td>15.61</td>
<td>6.4</td>
<td>0.056</td>
<td>3584</td>
<td>–</td>
<td>016-309</td>
</tr>
<tr>
<td>096-1944</td>
<td>14.96</td>
<td>0.8</td>
<td>0.042</td>
<td>2240</td>
<td>1792</td>
<td>084-1939</td>
</tr>
<tr>
<td>084-1939</td>
<td>15.15</td>
<td>0.6</td>
<td>0.034</td>
<td>2240</td>
<td>1792</td>
<td>095-104</td>
</tr>
<tr>
<td>084-104</td>
<td>16.89</td>
<td>0.0</td>
<td>0.016</td>
<td>2700</td>
<td>–</td>
<td>095-104</td>
</tr>
<tr>
<td>016-319</td>
<td>17.26</td>
<td>1.9</td>
<td>0.016</td>
<td>3584</td>
<td>–</td>
<td>016-309</td>
</tr>
<tr>
<td>038-627</td>
<td>17.71</td>
<td>2.2</td>
<td>0.014</td>
<td>3584</td>
<td>–</td>
<td>038-627</td>
</tr>
<tr>
<td>061-401</td>
<td>17.71</td>
<td>0.0</td>
<td>0.011</td>
<td>5376</td>
<td>–</td>
<td>061-401</td>
</tr>
<tr>
<td>023-115</td>
<td>18.41</td>
<td>2.1</td>
<td>0.008</td>
<td>5376</td>
<td>5376</td>
<td>019-115</td>
</tr>
<tr>
<td>017-410</td>
<td>12.23</td>
<td>1.2</td>
<td>0.30</td>
<td>900</td>
<td>900</td>
<td>014-113</td>
</tr>
<tr>
<td>073-205</td>
<td>15.94</td>
<td>11.8</td>
<td>0.080</td>
<td>960</td>
<td>–</td>
<td>055-231</td>
</tr>
<tr>
<td>178-232</td>
<td>12.17</td>
<td>14.5</td>
<td>0.4</td>
<td>240</td>
<td>–</td>
<td>055-231</td>
</tr>
<tr>
<td>GI406</td>
<td>6.57</td>
<td>0.0</td>
<td>–</td>
<td>24</td>
<td>–</td>
<td>M6V dwarf</td>
</tr>
<tr>
<td>BRI0021-0214</td>
<td>11.85</td>
<td>0.0</td>
<td>–</td>
<td>480</td>
<td>–</td>
<td>M9.5V dwarf, 25 nm resolution at H.</td>
</tr>
<tr>
<td>DBD0205-1159</td>
<td>13.59</td>
<td>0.0</td>
<td>–</td>
<td>720</td>
<td>720</td>
<td>L7V dwarf</td>
</tr>
</tbody>
</table>

Notes:
(a) H magnitudes are in the UKIRT – UFTI system.
(b) The quoted masses are derived from the BM97 tracks, assuming an age of 1 Myr.

weaker than the telluric feature in F-type standards, and it does not appear to be noticeable in the spectra presented here.

In addition to background shot-noise, a significant source of noise arises from the spatial gradients in the nebular surface brightness, which make the background subtraction difficult. Owing to these gradients the reduced group images are not flat, but show the effects of subtracting two frames separated by distance of the nod along the sky: either 10 or 20 arcsec was used, depending on the separation between the members of a pair. The images also show the spectral residuals due to fluctuations in the strength of telluric OH emission lines. A polynomial was interactively fitted to the residual background at each wavelength and subtracted, using the APALL package in TWDOSPEC, and this procedure was generally very successful in removing both nebulosity gradients and residual OH emission. The problem was greatest for the fainter sources, whose peak brightness is comparable to fluctuations in nebular surface brightness on a scale of a few arcsec, even for sources selected in regions of low nebular background. Where necessary, two iterations were used to produce a flat background. For the faintest sources, the background may be slightly over- or under-subtracted, but agreement between spectra taken at the two nod positions was used as a check to prevent this occurring. Only one spectrum was lost due to this problem: the K-bandpass spectrum of the faintest source, 051-147, was rendered useless by a small step in the surface brightness on the same scale as the nod length, but an H bandpass spectrum was successfully extracted. We recommend that a nod length of 5 arcsec or less be used in star formation regions when taking long-slit spectra of faint sources.

2.2 Photometry

Additional photometry in the IJH bands was obtained at UKIRT, using the infrared camera UFTI, in the manner described in Paper I, using 900-s exposures. The new data were taken on the nights of 1999 November 11–12 by observatory staff. They consisted of three contiguous 1.5-arcmin UFTI fields located 3 arcmin south of θ_1 Ori C, oriented east–west as shown in Fig. 2. This region was selected because our existing data indicated that the nebular surface brightness and average extinction would be low in this region, and published K-bandpass maps showed that the stellar density is reasonably high (Hillenbrand 1997). These features assisted in the detection of some new very faint sources, as described in Section 3.1. The seeing conditions were fairly good,

![Figure 2](https://inacademic.oup.com/mnras/article-abstract/326/2/695/1007767/1007767)

Figure 2. J-bandpass image of the full photometric data set. The region of new data is below the horizontal line. The spectroscopic sample was taken from sources to the west of the brightest nebulosity. The locations of very low-mass candidates (dereddened mag $J_{\mathrm{H}} > 17.5$, or $M \leq 0.016 \, M_\odot$) are marked with circles.
with a FWHM of 0.5–0.6 arcsec in all three filters, aided by the tip/tilt image stabilization of the UKIRT secondary mirror.

Photometry was performed using the DAOPHOT crowded-field photometry package in IRAF as in Paper I, using both manual photometry and automated crowded field photometry. The former was generally preferred in order to accurately subtract the highly structured nebulous background, except when the image profiles of sources overlapped significantly. Several sources were contained in the overlap region between the new data and the data set of Paper I. The measured magnitudes typically differed by 0.1 mag or less, which is approximately the photometric error described in Paper I. The main source of error in the brighter sources is the image profiles, which are spatially variable in the overlap region, since this is the very edge of both the old and new data sets. Each UFTI field is made up of a 9-point image mosaic with small jitters.

2.2.1 Calibration update

The J-band magnitude system for UFTI at UKIRT has recently been updated by observatory staff, who discovered that the transformations from the old IRCAM system to the new UFTI system are different for cool red stars than other main-sequence stars. This is because these stars have water absorption bands in similar locations to the water bands in the Earth’s atmosphere, and UFTI employs the new J-band filter developed for the Mauna Kea Consortium, optimized for the low water column above this observing site. The new transformation has been thoroughly calibrated via measurements of late M-type and L-type stars. Since our Paper I data set was calibrated using red stars (in order to calculate transformations from Cousins I to the UFTI J band), this requires us to update our J-band photometry, and consequently the I-band transformations also (see UKIRT web pages for the details).

The new J-band magnitudes are typically 0.1 mag brighter than before, which leads to a slightly lower luminosity for sources with significant extinction, since the calculated extinction is reduced. Sources with near-zero extinction are slightly more luminous than had been thought. However, changes of this order are of very little consequence, since the mass–luminosity relation is quite steep throughout the brown dwarf regime, and the change is similar to both the typical photometric uncertainty and the theoretical uncertainty in the mass–luminosity conversion.

The bolometric correction, BC_J, formerly used to convert dereddened J magnitudes, J_{dr}, to luminosities is also updated in consequence:

$$BC_J = 2.01; J_{dr} \geq 13.71$$

$$BC_J = 0.209J_{dr} - 0.855; J_{dr} < 13.71.$$

The new models used here predict the fluxes in each filter directly without the need for a bolometric correction.

3 RESULTS

3.1 Photometry

43 new sources were detected in both J and H bands in the new data, of which 31 were detected in the I band. A colour–luminosity plot, with the new data added to those of Paper I, is shown in Fig. 3 for all 557 unsaturated sources. We plot two different 1-Myr isochrones as almost vertical solid lines at the left of the picture, to which sources may be dereddened. Both of these are self-consistent predictions using the same model atmospheres for colour predictions and to provide the boundary condition for the evolutionary calculations. This removes the need to use uncertain bolometric corrections. Furthest to the left is an isochrone supplied by Baraffe et al. (in preparation), using the non-grey AMES-Dusty-1999 model atmospheres (Allard et al. 2000, 2001). The isochrone slightly to the right is the prediction of Baraffe et al. (1998), recently extended to 1 Myr and to the deuterium burning threshold (Chabrier et al. 2000). This second isochrone has evolution and colours based upon the NextGen model atmospheres. It is useful to see both because the NextGen atmospheres correctly predict the colours of main-sequence stars with effective temperatures above 2500 K, whereas the AMES-Dusty models successfully fit the colours of field brown dwarfs, below 2200 K, where dust has an important influence on the photosphere. The temperature at the deuterium burning threshold lies near the low-temperature end of the NextGen regime, but we cannot be sure which model will predict the $(J - H)$ colours better in very young, low-gravity photospheres. The true colour probably lies between the two predictions, as discussed below.

Recalibrated photometry of the full data set is available electronically.\footnote{Photometry and spectra are available via anonymous FTP to star.herts.ac.uk, in pub/Lucas/Orion.} The O’Dell & Wong (1996) coordinate-based naming system is used as in Paper I. The advantageous features of the new data set, as described above, permitted the detection of some very low-luminosity sources: four new planetary mass candidates, three of which appear to be less massive than any of the sources described in Paper I, assuming an age of 1 Myr and employing either the isochrones of Burrows et al. (1997, hereafter BM97) or the new isochrone of Baraffe et al. (1998, hereafter BCAH). However only one of these three faint sources has good photometry: 189-659 has $m_J = 19.23$, $(J - H) = 0.63$, which indicates a notional mass of $6.2\,M_{\text{Jup}}$ at 1 Myr (on the BM97
Figure 4. (a). Observed H-bandpass spectra of Trapezium sources, with dereddened spectra overplotted as the upper line for each source when extinction is non-zero. Masses derived from the BM97 1-Myr isochrone are indicated. The noise is indicated by the pixel-to-pixel variations, since no narrow spectral features are detected in the H bandpass.
Figure 4(b). Observed and dereddened H-bandpass spectra, as in Fig. 4(a). 047-436 shows no water absorption and 2 others have very weak water absorption.
isochrone) and apparently negligible extinction. The other two sources have large photometric uncertainties in both the J and H bands, so their masses are highly uncertain. Intriguingly, these three faint sources are all located close together on the sky, in a 1-arcmin2 region 3 arcmin due south of θ Ori C, on the far side of the Orion Bar from the cluster centre. The Orion Bar is the ionization front of the OMC-1 cloud, viewed edge-on as it curves into the line of sight. Sources which are located beyond it lie on lines of sight passing deep into the molecular cloud. Hence we might expect such sources to be younger than the rest of the cluster and therefore less massive for a given luminosity. However, the very low extinction toward 189-659 indicates that this source probably lies in front of the cloud and might possibly be a minimum-mass star in the foreground. The locations of all the sources with dereddened J magnitudes $J_{dr} \geq 17.5$ (i.e., $M \leq 0.012$ to 0.016 M_\odot at 1 Myr) are plotted in Fig. 2.

There are now approximately 15 planetary mass candidates in the data set, following the filter recalibration. The number of sources below the deuterium burning threshold cannot be specified very precisely, mainly because of the uncertainty in the $(J - H)$ colour of their photospheres mentioned earlier. Most evolution calculations are in very good agreement concerning the minimum mass for deuterium burning, at $0.012 - 0.013 M_\odot$ (Saumon et al. 1996; BM97; Chabrier et al. 2000). In addition, the 1-Myr isochrones of BM97, D’Antona & Mazzitelli (1998, hereafter DM98, update to 1997 publication) and BCAH are in fair agreement (within 0.2 to 0.3 mag) with regard to source luminosities for low-mass brown dwarfs. However, the small uncertainty in the $(J - H)$ colours can slightly

Figure 4(c). Observed and dereddened H-bandpass spectra for the least massive candidates, with some Gaussian smoothing applied. The apparent absence of flux at $\lambda \leq 1.5\mu m$ in 023-115 is attributed to the decline in S/N at those wavelengths, due to atmosphere, instrument efficiency, extinction and (presumed) water absorption in the source itself.
change the number of planetary mass objects by moving the lines of constant mass in Fig. 3 to the right or to the left by 0.1–0.15 mag, since a number of sources appear to lie very close to the deuterium burning threshold. Applying the new BCAH isochrone, there are ~13 planetary mass objects (below the $M < 0.012 M_\odot$ threshold calculated by Chabrier et al.), whereas the NextGen-based BCAH isochrone indicates there are 16 such objects. Using the main-sequence colours and bolometric corrections as in Paper I, and the BM97 isochrone for luminosity, indicates that there are 15 such objects. Given that the J-bandpass photometric errors are typically 0.1–0.2 mag for these faint candidates, the important issue is not the precise number but whether the IMF extends below the deuterium burning threshold, which appears to be the case.

The NextGen colour predictions, using the Miller–Tennyson water line list, are only very slightly too red for main-sequence stars, but these atmospheres poorly reproduce the observed profiles of both field dwarfs with strong water absorption (Leggett et al. 2001) and the low-gravity spectra presented here. The AMES-Dusty-1999 colour predictions, using the NASA AMES water line list (Partridge & Schwenke 1997), are 0.1 to 0.2 mag too blue in main-sequence stars (see Allard, Hauschildt & Schwenke 2000b) but reproduce the profiles of the spectra presented here quite well. A small colour discrepancy in $(J - H)$ would appear to arise from incompleteness in the water line list in the 1.7–2.2 μm water absorption band, which is shown directly for Trapezium sources in Section 4.1.

Note that we have made a conservative choice of reddening law (see Paper I). The choice has little effect in any case, because the planetary mass candidates necessarily have low extinction and because extinction laws have little variation in the infrared (see Cardelli, Clayton & Mathis 1989) except in extremely dense environments such as the accretion discs of embedded protostars, which may contain dust grains larger than 1 μm in radius.

There may be small but unquantified effects on the $(J - H)$ colours due to scattering by circumstellar matter and a small percentage of emission by hot circumstellar dust in some cases. Cold dust would make sources appear slightly redder (see Section 4) and overmassive; the direction of any scattering effect depends very much on assumptions about the circumstellar structure and viewing angle. The additional uncertainties of cluster membership and candidate ages are discussed in Section 6.

Erratum
We note that one planetary mass candidate from Paper I was found to be double-counted owing to a typing error. An internal view of the data set of 557 unsaturated sources detected in the J and H bandpasses.

3.2 Spectroscopy

3.2.1 H band

21 H-band spectra were taken of sources with masses $M \leq 0.1 M_\odot$. These are plotted in Figs 4(a)–(c), as F_ν spectra in order to suppress the apparent noise at short wavelengths. Dereddened spectra are plotted above the observed spectra for those sources with non-zero extinction. These spectra are not flux-calibrated, since for some observations observing conditions were not photometric. The fainter sources are Gaussian-smoothed to enhance low-resolution features. Nearly all of the spectra are dominated by strong water absorption bands to either side of a sharp peak located between 1.68 and 1.70 μm. The exceptions are plotted in the lower part of Fig. 4(b). No real narrow spectral features are unambiguously detected in the H bandpass. Pixel-to-pixel variations therefore illustrate the noise in each spectrum, which has wavelength-dependent contributions from narrow telluric OH emission lines and broad-band telluric water absorption, both of which vary on a time-scale of minutes during an exposure. The noise is most obvious in very faint sources, such as 084-104 (Fig. 4c) in which many spurious narrow features remain despite some smoothing. The data quality is poor in the 1.8–1.95 μm region owing to strong telluric water absorption, and also becomes less reliable at $A < 1.5$ μm, due to both telluric water absorption and the declining instrument efficiency. Some of the spectra are strongly reddened, with the result that the water absorption appears weaker on the long-wavelength side of the peak and stronger on the short-wavelength side, e.g., object 013-306. In most cases the effect is minor owing to our preferential selection of sources with low extinction. The extinction toward each source is calculated using the JH photometry, by comparison with measured main-sequence star colours as described in Paper I, and noted in Figs 4(a)–(c). The Deredden task in IRAF was used, which is based on the Cardelli et al. (1989) extinction law, with reddening parameter $RV = 5.5$ as before and $A(A) \propto \lambda^{-0.6}$ in the infrared. This is a somewhat imprecise procedure, because our typical photometric uncertainty of 0.1 mag in each filter leads to an uncertainty of 0.14 mag in the $(J - H)$ colour, which corresponds to an uncertainty of 0.25 mag in H-band extinction and 1.2 mag in V-band extinction. However, the errors will be less for the brighter sources in the region of the spectroscopic sample, which was selected for faint nebulous background. The use of main-sequence colours gives similar results to the NextGen atmospheres: the atmospheric models predict changes of no more than ~0.1 mag in $(J - H)$ due to lower gravity in young sources, so we do not think that this uncertainty will be larger than measurement error.

The peaked H-bandpass profiles in Figs 4(a)–(c) are very different from those of late-M and L-type dwarfs in the local neighbourhood with strong water absorption bands, as shown by our spectra of two red standards in Figs 5(a) and (b), compared with a composite spectrum of the Orion sources. The composite spectrum is an average of 12 reasonably high-quality spectra with fairly strong water absorption, weighted according to the apparent noise in each spectrum. The composite has slightly weaker water absorption than the average of the sample, since it is weighted toward warmer, brighter sources near the stellar/substellar boundary. Comparison with the data of Leggett et al. (2001) (overplotted in Fig. 5a) for the same red standards demonstrates that the spectra are reliable and that the differences from field stars are real. In spectra of field dwarfs there is strong water absorption at $\lambda < 1.55 \mu$m and $\lambda > 1.70 \mu$m, but a shallower slope in between, which appears as a flat plateau in F_ν plots of the data (Fig. 5b). This is clearly seen in the F_ν plots of a large sample of late-M and L dwarfs presented by Leggett et al. (2001), marked by clear changes in slope at 1.70 μm and in the 1.55–1.60μm interval. The peaked profiles of the Trapezium objects, which show no plateau, appear to be a consistent signature of youth and cluster membership. They are modelled in Section 4. There are no other clearly seen atomic or molecular features in the Trapezium sources in the H band, which is unsurprising given the low spectral resolution and modest signal-to-noise ratio (S/N). Atomic absorption lines of Na and Ca have been observed in field dwarfs (e.g. Jones et al. 1994) in high S/N spectra, but many atomic lines also appear to be weaker in very young brown dwarfs (e.g. Bejar, Zapatero-Osorio & Rebolo 1999.) The water absorption depths are quantified in Table 2, and discussed in Section 4.

Only 3/21 sources have weak or zero water absorption. 019-108
and 066-433 suffer very high extinction ($A_V = 8.6$ and 12.6 respectively) and have very weak water absorption, consistent with late K-type or very early M-type spectra. These earlier spectral types are not consistent with the temperatures expected at age 1 Myr even for these relatively luminous sources. (At 1-Myr masses, $M = 0.090$ and 0.066 M_\odot, and $T_{\text{eff}} = 3400$ and 2800 K respectively are derived photometrically, using the BM97 isochrone.) Therefore the H-band spectra indicate that they are either even younger and hotter systems (age ~ 0.1 Myr) or background field stars. The dereddened fluxes of these stars, are faint enough to be consistent with late K-type dwarfs at $d = 440$ pc ($m_1 = 13.72$ and 14.45 for 019-108 and 066-408 respectively) judging by comparison with both the luminosity class V sequence of Tokunaga (2000) and the models of BCAH for low-mass stars at

Figure 5. Red standards and Orion composite spectrum. Left (panel a): F_ν spectra. Leggett et al. (2001) data are overplotted as a solid line for the field dwarfs to demonstrate the reliability of the spectra. Right (panel b): spectra plotted as F_λ, illustrating the plateau seen in field dwarfs in the H bandpass. The composite is a weighted average of the warmer, more massive sources, so it has slightly weaker water absorption than the average of the sample. Weak, narrow absorption features in the composite are generally attributed to telluric OH lines.
Table 2. H$_2$ emission in 047-436.

<table>
<thead>
<tr>
<th>Measured λ (μm)</th>
<th>Line</th>
<th>Equivalent Width (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.945</td>
<td>(2–1) S(5)</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>1.956</td>
<td>(1–0) S(3)</td>
<td>18 ± 2</td>
</tr>
<tr>
<td>2.032</td>
<td>(1–0) S(2)</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>2.122</td>
<td>(1–0) S(1)</td>
<td>15 ± 2</td>
</tr>
<tr>
<td>2.202</td>
<td>(3–2) S(3), (4–3) S(5)</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>2.223</td>
<td>(1–0) S(0)</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>2.249</td>
<td>(2–1) S(1)</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>2.345</td>
<td>(4–3) S(3)</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>2.407</td>
<td>(1–0) Q(1)</td>
<td>15 ± 3</td>
</tr>
<tr>
<td>2.423</td>
<td>(1–0) Q(3)</td>
<td>9 ± 3</td>
</tr>
<tr>
<td>2.453</td>
<td>(1–0) Q(5)</td>
<td>9 ± 3</td>
</tr>
<tr>
<td>2.474</td>
<td>(1–0) Q(6)</td>
<td>7 ± 3</td>
</tr>
</tbody>
</table>

Figure 6. Observed H-bandpass spectra of two more massive sources (0.3–0.4 M$_\odot$). 178–232 is a proplyd; the weak water absorption and red spectrum are consistent with an embedded, warmer source.

late-K dwarf temperatures. 019-108 would have to lie just behind the OMC-1 cloud at 440 pc; while 066–433 would lie at only a slightly greater distance. It therefore seems slightly more probable that these two hotter, highly reddened sources are background stars, but the alternative of extreme youth is not excluded, especially since the stellar mass proplyd source 178-232 shows a similar spectrum (see below).

Only one source, 047-436, shows no water absorption in the H-bandpass, simply a very red continuum in Fig. 4(b). This source is one of the 14 per cent from Paper I with an anomalously blue ($I – J$) colour (though not an extreme case, $I = 18.277$, $(I – J) = 3.21$), and so its extinction cannot be well measured. At present, we attribute such colours to light scattered by circumstellar matter. An attempt to apply the standard procedure leads to an insufficiently dereddened spectrum, shown in Fig. 4(b). The youth and cluster membership of 047-436 is demonstrated by the K-bandpass spectrum, discussed below.

Two additional H-bandpass spectra of more massive sources are presented in Fig. 6. One of these, 017-410, is a YSO with a mass of $\approx 0.3 M_\odot$ which appeared in the slit by chance, owing to the crowded nature of the cluster. It shows fairly strong water absorption but more on the long-wavelength side of the 1.7 μm than the short-wavelength side, which is different from the less massive sources; this may reflect the higher gravity of this source. Luhman et al. (2000) have obtained K-bandpass and optical spectra of stellar mass Trapezium sources, but there do not appear to be many H-bandpass spectra of Trapezium stars in the literature to use for comparison. The second source is 178-232, a more massive star ($M \approx 0.4 M_\odot$) with an anomalously blue ($I – J$) colour around which an emission line ‘proplyd’ structure was resolved by the Hubble Space Telescope (O’Dell & Wong 1996). This has a very red spectrum, perhaps due to extinction by circumstellar matter rather than dust in the cluster medium, and shows relatively weak water absorption, which would be expected for a hotter, younger object.

3.2.2 K band

11 K-band spectra are shown in Figs 7(a) and (b), and dereddened $H + K$ spectra are plotted in Figs 8(a) and (b). The H and K spectra are joined by averaging the overlap region from 1.89 to 1.97 μm, with some uncertainty (≈ 10 per cent) in the flux level owing to the telluric water absorption at those wavelengths. 9/11 of the K-band spectra show strong water absorption bands on either side of a maximum near 2.25 μm, as expected for young brown dwarfs. The other two spectra, of 019-108 and 047-436, are consistent with very weak or zero water absorption, similar to the H-band data. The noise is indicated by the pixel-to-pixel variations as in the H-bandpass data.

The $\nu = 2$–0 vibration-rotation bands of CO at $\lambda > 2.29 \mu$m are detected in 4/11 sources (see Table 3) via the edge at 2.29 μm, and marginally detected in one other source. Only one source, 053-503, shows the multiple bandheads clearly at 2.29, 2.32, 2.35 and 2.38 μm, but they are also visible in 014-413. The weakness or absence of CO absorption is surprising for the low-temperature photospheres indicated by the strong water absorption. However, it appears to be a feature of the youth and low gravity of cluster members, as demonstrated by the AMES-Dusty-1999 models in Section 4. Veiling by hot circumstellar dust cannot explain it, since the spectra decline steeply toward 2.5 μm, showing that water absorption is not significantly veiled at these wavelengths.

In the K band we might expect that hot dust would redden the spectra but, if this is occurring, the effect is too small to be unambiguously identified, except in the cases of 014-413 and 047-436, the only sources in Figs 8(a) and (b) showing much more flux in the K bandpass than at H. 014-413 appears to be associated with a weak wind collision shock front in the data of Bally, O’Dell & McCaughrean (2000), but shows no evidence of emission lines in the spectrum shown in Fig. 8(a). The possible effect of hot dust is shown in Fig. 11; see Section 4. We do not have K-band photometric data, but HC published HK photometry of the central...
Figure 7. (a). Observed K-bandpass spectra of Trapezium sources. The noise is indicated by pixel-to-pixel variations, as in Figs 4(a)–(c). 069-210 and 055-231 are Gaussian-smoothed, because they were observed in poor conditions.
Figure 7(b). Observed K-bandpass spectra of Trapezium sources. The stronger H$_2$ emission lines in 047-436 are marked, together with a telluric feature at 2.0 μm.

region of the Trapezium cluster. In combination with extinction values derived from our IHH data, these data should identify any sources with large K-band excesses. The HC data contain photometry for only two of the 11 sources in our K band spectroscopic sample (which lies to the west of the cluster core). The H-band fluxes of HC agree with our data to within 0.18 mag for the two sources, which is broadly consistent with the photometric uncertainties, but may indicate T Tauri-like variability. Neither of these has any uncertainties, but may indicate T Tauri-like variability. Neither of the two sources, which is broadly consistent with the photometric photometry for only two of the 11 sources in our K sources with large K-bandpass excess, which is consistent with the spectra. Some sources in the much larger photometric data set do appear to have K-bandpass excesses (see Section 6 and Table 4). Wilking, Greene & Meyer (1999) calculated the contribution of hot dust using JHK photometry for low-mass stars and brown dwarfs in the ρ Ophiuchus star-forming region. They found that hot dust contributed 0 to 20 per cent of the total flux in the K bandpass in the majority of cases, which would have only a small effect on spectral profile. Star formation is nearly complete in the Trapezium cluster, and the average age of this sample of low-extinction sources is probably greater than that of sources in ρ Ophiuchus, so it is not too surprising that we do not see many large infrared excesses here.

The NaI line at 2.21 μm is the strongest atomic absorption line in the H- and K-band spectra of field dwarfs (see Jones et al. 1994). It is clearly visible in the K-band spectra (see Fig. 16), but is not seen in the Trapezium sources. We would expect it to be seen in the high-quality spectrum of 053-503 (see Fig. 16), but there is only a small local minimum near that wavelength, which cannot be distinguished from noise. This weakness of this feature is also predicted by the AMES-Dusty-1999 models as a signature of low gravity, as described in Section 4.1.2.

The K band spectrum of 047-436 (Fig. 7b) has a very red continuum in which water absorption is weak or absent, following the trend seen at H band. However, there is a rich sequence of H$_2$ emission lines, with strong lines at 2.12, 2.41 and 1.96 μm, and several weaker lines are apparent also (see Table 2). As mentioned above, this is an anomalously blue source in the I band, and these are usually also resolved as proplyds by the Hubble Space Telescope (O’Dell & Wong 1996), as discussed in Paper I. This particular source is listed as being stellar in the data of O’Dell & Wong, however, perhaps because it is located a large distance (3 arcmin, or 0.4 pc) from the cluster centre, leading to less excitation of the optical emission lines that mark a proplyd, and insufficient contrast with the faint nebulous background for a silhouette disc to be observed. 047-436 lies <1 arcmin north of the complex of bow shocks associated with LL Ori., observed in Hα by Bally et al. (2000).

The H$_2$ emission is the signature of a very young system with plentiful circumstellar gas. Such a signature can be caused by shocked gas in a molecular outflow, or by UV excitation of gas in a circumstellar accretion disc or envelope, i.e., a proplyd similar to those discovered by O’Dell & Wen (1994). In Orion the UV radiation is supplied mostly by θ Ori C. Chen et al. (1998) resolved the 2.12-μm H$_2$ from two proplyds with NICMOS, and found that it was confined to the subarcsecond disc silhouettes seen in continuum imaging. However, the emission from the three strongest H$_2$ lines in 047-436 is extended along the slit of the spectrograph by at least 3 arcsec (1300 au) in a southerly direction, the peak of the emission being coincident with the continuum source. There is no extension in the continuum, and seeing conditions were fairly good (~0.6 arcsec) at the time the spectrum was taken. The slit was oriented 18° west of north. The large extension of the H$_2$ emission in 047-436, relative to the Chen et al. proplyds, may be due to the high extinction and much larger projected distance from the Trapezium stars, which would allow molecular material to survive for a greater period of time. The reduced group image is not very sensitive to larger scale emission, because a nod length of only 10 arcsec was used in taking the spectra and subtracting the background. However, the extended emission appears to be weaker in the northerly direction, extending for <1.5 arcsec. The strength of the emission in the southern direction declines monotonically with distance from the peak, dropping by a factor of ~2 at a distance of 2 arcsec from the central source. There do not appear to be any H$_2$ emission-line spectra of proplyds in the literature, although there are spectra of shocked gas in the vicinity of the BN object. Theoretical models of optical proplyd spectra (e.g., Storzer & Hollenbach 1999) predict that some of the lines, e.g., the (1–0) S(1) line at 2.12 μm, may be collisionally excited in the dense environment of the circumstellar disc, not excited by UV fluorescence. This makes it more difficult to understand the relative
Figure 8. Dereddened spectra for Trapezium sources observed at both H and K. Noise in the 1.8–2μm region is due to time-variable telluric water absorption.
source for a given luminosity, but an extinction of $A_V = 10$ is required to produce a flat F_{ν} spectrum, which might be more appropriate. Hence the mass is highly uncertain, and it is possible that it is a very low-mass star rather than a brown dwarf.

Object 019-108 also has high extinction and shows only weak water absorption at H, but its K-bandpass spectrum shows no sign of emission by H$_2$ or by hot dust. This suggests that it is a background star rather than a cluster member, as discussed in Section 3.2.1. However, the evidence is not conclusive: circumstellar matter could be entirely swept away by the photoionizing UV radiation field in ≤ 1 Myr (e.g. Storzer & Hollenback 1999), so it might be a very young cluster member.

4 ANALYSIS

We analyse the spectra by comparison with both the AMES-Dusty-1999 model spectra calculated by Allard et al. (2000, 2001) and with local field dwarfs. Since the spectra are dominated by water absorption bands, a water index of some sort is the natural tool to use to derive spectroscopic effective temperatures (T_{eff}). We do not fit the full 1.4–2.5 μm spectra to those of field dwarfs or giants, after the fashion of Luhan et al. (1998a) at optical wavelengths, since the H-bandpass profiles are clearly different (see Section 1). The synthetic spectra are believed to be most accurate at $\lambda \approx 1.7 \mu$m (see Section 4.1). In addition, the most strongly temperature-sensitive broad-band feature at the observed wavelengths is the wing of the 1.35-μm water band in the 1.4–1.7 μm region, the other bands being nearly saturated for all late-M and L spectral types. Hence we define a water index $W = F_{\nu}(1.50\mu m)/F_{\nu}(1.682\mu m)$. The model spectra are rebinned to the same dispersion as the data, and convolved with the instrumental profile as measured in the arc spectra. For the model spectra the 1.5- and 1.682-μm fluxes are averaged over 0.02 μm (or nine data points) at both wavelengths, while the observed spectra have their ‘continuum’ fitted with high-order cubic splines to reduce the measurement errors. The 1.50–1.682 μm range covers most of the depth of this water absorption band, the data being less precise at shorter wavelengths. The model spectra peak at 1.682 μm in the 2500–3300 K range, and the dereddened data also peak at or very close to this wavelength.

The choice of water index is always somewhat arbitrary, so we also compute a reddening-independent index of the type used by Wilking et al. (1999) in the K band, but applied here to the H-band spectra. This index is defined by $Q = (F1/F2)/(F3/F2)$, where $F1$ is the F_ν flux at 1.57 μm, $F2$ is the F_ν flux at 1.682 μm, and $F3$ is the F_ν flux at 1.79 μm. The 1.57- and 1.79-μm wavelengths are chosen because they must be roughly equidistant from the flux peak for good precision, and because the data are often of poor quality at $\lambda \approx 1.8 \mu$m, and therefore not used in the continuum-fitting process. We also tested an index similar to that of Delfosse et al. (1999), based on the slope in the 1.51–1.57 μm region. However, the measurement errors for the slope in this narrow region are generally too large for that index to be very useful here, and K-bandpass data are required to normalize the index as defined by Delfosse et al. The measured W and Q indices are listed in Table 3, along with spectroscopic temperatures derived by fitting the W indices to those of the models. Temperatures are rounded to the nearest 50 K, since the model grid has an interval of 100 K.

We assign approximate spectral types to each source (see Table 3), by the comparison of their W and Q indices with those of the local field dwarfs observed by Leggett et al. (2001), whose spectra types are defined using the 2MASS Kirkpatrick et al. (1999)
Tables

Table 3. Spectral types and temperatures.

<table>
<thead>
<tr>
<th>Source</th>
<th>Water Indices</th>
<th>T_{eff}(K)</th>
<th>Sp.Type</th>
<th>Mass (M$_\odot$)</th>
<th>Source Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>Q</td>
<td>[g] = 3.5</td>
<td>[g] = 4.0</td>
<td></td>
</tr>
<tr>
<td>095-100</td>
<td>0.667 ± 0.11</td>
<td>0.558 ± 0.18</td>
<td>2950</td>
<td>2750</td>
<td>L0</td>
</tr>
<tr>
<td>019-108</td>
<td>0.998 ± 0.08</td>
<td>0.936 ± 0.15</td>
<td>4850</td>
<td>4900</td>
<td><M1</td>
</tr>
<tr>
<td>055-231</td>
<td>0.585 ± 0.13</td>
<td>0.479 ± 0.15</td>
<td>2600</td>
<td>2550</td>
<td>L3</td>
</tr>
<tr>
<td>089-210</td>
<td>0.724 ± 0.17</td>
<td>0.597 ± 0.31</td>
<td>3400</td>
<td>2950</td>
<td>M7</td>
</tr>
<tr>
<td>068-020</td>
<td>0.734 ± 0.27</td>
<td>0.555 ± 0.21</td>
<td>3450</td>
<td>3000</td>
<td>M7</td>
</tr>
<tr>
<td>053-503</td>
<td>0.671 ± 0.40</td>
<td>0.631 ± 0.44</td>
<td>3050</td>
<td>2750</td>
<td>L0</td>
</tr>
<tr>
<td>091-019</td>
<td>0.776 ± 0.23</td>
<td>0.615 ± 0.24</td>
<td>3550</td>
<td>3200</td>
<td>M5</td>
</tr>
<tr>
<td>019-354</td>
<td>0.717 ± 0.13</td>
<td>0.596 ± 0.14</td>
<td>3400</td>
<td>2900</td>
<td>M8</td>
</tr>
<tr>
<td>066-433</td>
<td>0.945 ± 0.51</td>
<td>0.973 ± 0.66</td>
<td>4450</td>
<td>4500</td>
<td><M1</td>
</tr>
<tr>
<td>043-014</td>
<td>0.631 ± 0.44</td>
<td>0.545 ± 0.33</td>
<td>2700</td>
<td>2650</td>
<td>L1</td>
</tr>
<tr>
<td>047-436</td>
<td>0.785 ± 0.19</td>
<td>0.921 ± 0.47</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>014-413</td>
<td>0.672 ± 0.14</td>
<td>0.615 ± 0.43</td>
<td>3100</td>
<td>2750</td>
<td>M9</td>
</tr>
<tr>
<td>013-306</td>
<td>0.618 ± 0.03</td>
<td>0.594 ± 0.18</td>
<td>2650</td>
<td>2600</td>
<td>L2</td>
</tr>
<tr>
<td>096-1944</td>
<td>0.632 ± 0.03</td>
<td>0.562 ± 0.22</td>
<td>2700</td>
<td>2650</td>
<td>L1</td>
</tr>
<tr>
<td>084-1939</td>
<td>0.581 ± 0.05</td>
<td>0.455 ± 0.35</td>
<td>2550</td>
<td>2550</td>
<td>L3</td>
</tr>
<tr>
<td>084-104</td>
<td>0.471 ± 0.06</td>
<td>0.396 ± 0.91</td>
<td>2350</td>
<td>2350</td>
<td>L8</td>
</tr>
<tr>
<td>016-319</td>
<td>0.359 ± 0.094</td>
<td>0.394 ± 1.10</td>
<td>2150</td>
<td>2100</td>
<td>>L8</td>
</tr>
<tr>
<td>038-627</td>
<td>0.601 ± 0.072</td>
<td>0.453 ± 0.44</td>
<td>2600</td>
<td>2600</td>
<td>L3</td>
</tr>
<tr>
<td>061-401</td>
<td>0.552 ± 0.054</td>
<td>0.480 ± 0.085</td>
<td>2500</td>
<td>2500</td>
<td>L5</td>
</tr>
<tr>
<td>023-115</td>
<td>–</td>
<td>0.582 ± 1.50</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>017-410</td>
<td>0.851 ± 0.047</td>
<td>0.617 ± 0.30</td>
<td>3850</td>
<td>3900</td>
<td>–M0</td>
</tr>
<tr>
<td>073-205</td>
<td>0.693 ± 0.280</td>
<td>0.469 ± 0.082</td>
<td>3300</td>
<td>2800</td>
<td>M9</td>
</tr>
<tr>
<td>178-232</td>
<td>–</td>
<td>0.834 ± 0.017</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(a) The three sources below the line are not in the primary sample; see Section 3.1.
(b) The W and Q water indices are defined in the text. The quoted errors are based on apparent noise and do not include uncertainties in dereddening or the background subtraction.
(c) Effective temperatures are derived from the best fit of the AMES-Dusty-1999 spectra to the 1.45–1.7 µm data at two different gravities.
(d) Spectral types are derived from the W and Q indices, calibrated by field dwarfs from Leggett et al. (2001).

Table 4. CO v = 2–0 detections.

<table>
<thead>
<tr>
<th>Source</th>
<th>K_{CO}</th>
<th>CO Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>053-503</td>
<td>0.095 ± 0.005</td>
<td>yes</td>
</tr>
<tr>
<td>014-413</td>
<td>0.097 ± 0.030</td>
<td>yes</td>
</tr>
<tr>
<td>096-1944</td>
<td>0.059 ± 0.035</td>
<td>yes</td>
</tr>
<tr>
<td>055-231</td>
<td>0.119 ± 0.055</td>
<td>yes</td>
</tr>
<tr>
<td>068-020</td>
<td>0.063 ± 0.030</td>
<td>uncertain</td>
</tr>
<tr>
<td>084-1939</td>
<td>0.032 ± 0.047</td>
<td>no</td>
</tr>
<tr>
<td>091-019</td>
<td>0.023 ± 0.053</td>
<td>no</td>
</tr>
<tr>
<td>047-436</td>
<td>0.034 ± 0.026</td>
<td>no</td>
</tr>
<tr>
<td>019-108</td>
<td>0.039 ± 0.080</td>
<td>no</td>
</tr>
<tr>
<td>069-210</td>
<td>0.153 ± 0.082</td>
<td>no</td>
</tr>
<tr>
<td>019-354</td>
<td>0.058 ± 0.040</td>
<td>no</td>
</tr>
<tr>
<td>DBD0205-1159</td>
<td>0.196 ± 0.025</td>
<td>yes</td>
</tr>
<tr>
<td>BRI0021-0214</td>
<td>0.154 ± 0.007</td>
<td>yes</td>
</tr>
<tr>
<td>G4106</td>
<td>0.102 ± 0.007</td>
<td>yes</td>
</tr>
</tbody>
</table>

Note: Sources with no CO detection typically have $K_{\text{CO}} = 0.02–0.03$ due to the wing of the H$_2$O absorption band H$_2$O centred at 2.7 µm.

system. The reddening-independent Q index should be the more reliable for measuring water depth and for spectral typing, but the W index generally produces very similar spectral types, as shown in the table.

It is important to note that these are not real spectral types as might be derived at optical wavelengths — they are merely the spectral types that the H-bandpass water depth would correspond to if the Trapezium sources were high-gravity field dwarfs. Low-gravity sources have stronger water absorption for a given T_{eff} than field dwarfs. Hence the spectral types appear rather late for the corresponding spectroscopic temperatures in Table 3, and we would expect many of the L-type sources to have late M-type spectra at optical wavelengths. The behaviour of the W and Q indices as a function of spectral type is shown in Fig. 9 for the field dwarfs. Most of the 15 field sources follow a linear relation quite well, but there is some interesting scatter (which is definitely real).

The spectral types of the Trapezium sources lie in the range 0.1 M$_\odot$–5 M$_\odot$ for the 18 low-mass sources (<0.1 M$_\odot$) which show strong water absorption. The two objects with later spectral types are faint and might have imperfect background subtraction (see Section 2). The fitted spectroscopic temperatures (2100 and 2350 K) are consistent with the new predictions for planetary mass sources by BCAH and by BM97, but are slightly low for these two sources with M ~ 0.016 M$_\odot$ at 1 Myr, unless they are younger, less massive objects of equivalent luminosity but greater size. It might
be useful to define a new luminosity class or spectral type to
describe these young, low-gravity objects, but since the gravities
increase continuously over a period of several hundred Myr, this is
probably not a valuable concept. Instead, we regard these low-mass
sources as a low-luminosity extension to the region occupied by T
Tauri stars in the HR diagram.

4.1 Synthetic spectra

The AMES-Dusty-1999 spectra appear to represent a significant
improvement over previous models (such as NextGen) of cool
dwarfs at infrared wavelengths, as discussed by Allard, Hauschildt
Tennyson list do not accurately reproduce the infrared profiles of
Tennyson list do not accurately reproduce the infrared profiles of
either these data or field dwarfs (see fig. 9 of Leggett et al. 2001).

By contrast, the AMES-Dusty-1999 spectra, which use the newer
NASA Ames water line list, provide quite a good fit to the
H-bandpass profiles of the Orion data (see Figs 10a–d), and go
some way toward reproducing to the plateau seen in spectra of field
dwarfs. The synthetic spectra decline a little more steeply on the
long side of the H bandpass than the data, unless $T_{\text{eff}} \approx 3300$ K.
Such a high temperature would not be consistent either with the
photometric temperatures obtained from the dereddened $(I - J)$
colours in Paper I, or with the evolutionary predictions of BM97
and BCAH. As noted in Section 3.1, there appears to be
incompleteness in the water line list for the absorption band
centred near 1.95 μm. This compromises the predicted spectral
profiles in the 1.7–2.2 μm region and leads to small errors in the
predicted H- and K-bandpass fluxes, as discussed by AHS. By
contrast, the water absorption band centred at 1.35 μm is well fitted
by the AMES-Dusty-1999 spectra (see AHS), and the fluxes and
spectral profiles are believed to be more accurate at $\lambda \leq 1.7$ μm. It
is generally not possible to fit both sides of the H-bandpass spectra
simultaneously. This is one of the reasons why the short-
waveband is used to derive spectroscopic temperatures, the
other reason being the greater temperature dependence of that part
of the synthetic spectra.

The discrepancy at 1.7–1.9 μm seen in Figs 10(a)–(d) could in
principle be caused by hot circumstellar dust emitting detectable
flux on the long-wavelength side of the H bandpass. However, as
shown in Fig. 11, this would lead to strong and obvious excess
emission in the K-bandpass spectra, and some veiling of the water
absorption near 2.5 μm, which is not seen in most of the sources in
Figs 8(a) and (b).

The evolutionary calculations of BM97, DM98 and BCAH
predict surface gravities between $\log g = 3.5$ and 4.0 for sources of
brown dwarf and planetary mass in the 0.3–2 Myr age range
expected for most Trapezium sources. AMES-Dusty-1999 spectra
in this gravity range reproduce the constant slope of the data at
$\lambda < 1.68$ μm and the wavelength of the flux peak. Higher gravity
synthetic spectra show a flatter profile near the flux peak, and a
steeper slope at shorter wavelengths. This is most easily seen in an
F_{ν} plot, shown in Fig. 12, which may be compared with the
composite Orion spectrum and field dwarf spectra in Fig. 5(b). This
is qualitatively more similar to the profile of field dwarfs (with
$\log g \approx 5.5$), although the abrupt change in slope observed in the
1.55–1.60 μm interval is not reproduced. The higher gravity models
also decline more steeply on the long-wavelength side of the H
bandpass than the low-gravity ones, which leads to a greater
discrepancy with the data at those wavelengths than is seen in the
low-gravity fits in Figs 10(a)–(d).

In the K bandpass the behaviour of synthetic spectra is somewhat
similar to that in the H bandpass, but less clear-cut. The low-gravity
models have a fairly constant slope on the wing of the water
absorption band in the 2.05–2.25 μm region, whereas the high-
gravity models show a curved profile similar those in the H
bandpass. The water vapour absorption is less deep in the K
bandpass, and the profile of the flux peak is apparently affected by
H_2 absorption longward of 2.2 μm in some field L dwarfs (Tokunaga & Kobayashi 1999). One might argue that some of the
spectra shown in Figs 8(a) and (b), such as the high-quality
spectra of 053–503, lack the flat profile seen in K bandpass F_{ν}
spectra of late-M and L dwarfs (e.g. Jones et al. 1994), but there is
more variation between sources than in the H band, both in our data
and in field dwarf spectra. Owing to these factors and the relatively
poor quality of most of our K-band spectra, the water absorption
bands are not clearly distinguished from those of field dwarfs.

Figure 9. W and Q spectral indices as a function of spectral type for field
dwarfs. Best-fitting lines are plotted, excluding the divergent L4 source and
the two M9-types. Including these would lead to later types for the coolest
sources. Measurement errors are very small for these nearby sources.

The spectroscopic temperatures fitted in Table 3 generally lie in the range 2150–3300 K for the 18/21 sources in the sample which have strong water absorption. All but two of the sources have $T_{\text{eff}} \geq 2500$ K, so there is insufficient dust in the photospheres to have a significant effect on the synthetic spectra. The fitted values of T_{eff} differ by some 450 K between log $g \approx 3.5$ models and log $g \approx 4.0$ models at the high-temperature end, with the higher gravity models giving lower temperatures. At 2500 K and below the same temperatures are fitted for both gravities. These temperatures are in good agreement with the evolutionary calculations of BM97 in the 0.008–0.080 M_\odot mass range, for which they predict $2150 < T_{\text{eff}} < 3230$ at 1 Myr, $2310 < T_{\text{eff}} < 3290$ at 0.3 Myr, and $2030 < T_{\text{eff}} < 3180$ at 2 Myr. The BCAH and DM98 models generally predict very similar temperatures to BM97 (within 50–150 K), and in our view the difference is less than the uncertainty in the calibration of the absolute temperature scale with observed spectral type. The log $g = 4.0$ models produce better agreement for the higher mass sources of the sample than the log $g = 3.5$ models.

The spectroscopic temperatures fitted at log $g = 4.0$ also agree well with the photometric temperatures derived from the dereddened $(I - J)$ colours from Paper I, by comparison with the colours of field dwarfs (predicted for main-sequence stars by BCAH using the NextGen model atmospheres). This is illustrated in Fig. 13, which shows an excellent correlation between the two independently derived temperature scales, but a systematic offset toward lower temperatures of about 250 K in the photometric temperatures. The scatter is largely due to photometric measurement errors magnified by dereddening rather than the spectroscopic measurements, and fits in well with the estimated
uncertainty of 0.25 mag in the dereddened \((I - J)\) colours given in Paper I. The NextGen atmospheres are known to fit main-sequence infrared colours quite well, (better then the AMES-Dusty models at \(T_{\text{eff}} > 2500\) K) despite the very poor fit to the spectral profiles at \(H\) and \(K\) seen by Leggett et al. (2001). Hence the 250-K offset must be due either to the lower gravity of the sample or to errors in the AMES-Dusty models. The NextGen spectra predict that \((I - J)\) colours differ by only of order 0.1 mag between \(\log g = 3.5\) models and \(\log g = 5.5\) sources, which corresponds to an interval in temperature of \(\sim 50\) K. However, the lower gravity also changes the predicted \((J - H)\) colours by \(\sim 0.1\) mag, which leads to a larger difference in the \((I - J)\) colours via the dereddening process. Hence it is quite possible that the offset of 250 K is due solely to gravity effects, and the spectroscopic temperatures at \(\log g = 4.0\) are correct. They are more consistent with the evolutionary calculations for age 1 Myr than the photometric temperatures and are derived from the well-fitted 1.4–1.7 \(\mu\)m region. Broad-band \((J - H)\) fluxes produced by the NextGen and AMES-Dusty model atmospheres at these gravities are not yet more reliable than the assumption of main-sequence colours, owing to the problems with the water line list referred to above. (The AMES-Dusty models produce most accurate colours for high-gravity field dwarfs below 2500 K, while the NextGen models work best at higher stellar temperatures, above 3000 K). Hence, at present we continue to use empirical main-sequence colours in the dereddening procedure.

There is a trend for less luminous, less massive sources to be cooler (see Fig. 14), as indicated by the trend for water absorption to increase with decreasing mass. The BCAH models predict that water absorption increases monotonically with decreasing temperature in these substellar pre-main-sequence objects. A mass-temperature relation correlation is predicted by all the published pre-main-sequence isochrones. The derived luminosities, and hence masses, are nearly independent of temperature owing to the very weak temperature dependence of the \((J - H)\) colour, so this is not a trivial result. The correlation is imperfect, presumably because of the dispersion in ages.

4.1.1 Carbon monoxide and other molecules

The synthetic spectra also show a strong gravity dependence in the strength of the CO absorption bands near 2.3 \(\mu\)m, which is largest at low temperatures. This is illustrated in Fig. 15, with \(K\)-bandpass spectra of high- and low-gravity model atmospheres at 2500 and 2900 K. We define a CO index, \(K_{\text{CO}} = (F_{22} - F_{23})/F_{22}\), where \(F_{23}\) is the integrated \(F_{\lambda}\) flux in the 2.295–2.315 \(\mu\)m region, and \(F_{22}\) is the integrated \(F_{\lambda}\) flux in the 2.2675–2.2875 \(\mu\)m region. The indices for models and data are listed in Table 3. All of the Trapezium sources have \(K_{\text{CO}} < 0.12\), i.e., an average absorption depth across the first CO band of \(< 12\) per cent. The observed CO indices of 0.09–0.12 observed in 053-503, 014-413 and 055-231 are in good agreement with the model predictions for \(\log g = 3.5\) to 4.0 and 2500 < \(T_{\text{eff}} < 3200\) K. The data are much less consistent with high-gravity models, particularly for the cooler sources. For example, we observe \(K_{\text{CO}} = 0.119 \pm 0.055\) for 055-231, consistent with \(K_{\text{CO}} = 0.12\) at \(T_{\text{eff}} = 2575\) K (with \(\log g = 3.5\)) but not \(K_{\text{CO}} = 0.21\) (with \(\log g = 5.5\)). Similarly, we observe \(K_{\text{CO}} = 0.059 \pm 0.035\) for 096-1944, roughly consistent \(K_{\text{CO}} = 0.106\) at \(T_{\text{eff}} = 2700\) K (\(\log g = 3.5\)) but not \(K_{\text{CO}} = 0.167\) (\(\log g = 5.5\)). The model predictions for \(\log g = 3.5\) and \(\log g = 4.0\) are almost identical.

In 6/11 sources CO is not unambiguously detected in these low-resolution spectra, since the drop in flux seen in all sources at
\(\lambda > 2.3 \mu \text{m} \) may be due to \(\text{H}_2\text{O} \) as well CO, and the bandheads are not sufficiently resolved. We place upper limits on the \(K_{\text{CO}} \) index for these sources in Table 3. Again these are consistent with low-gravity models, but not with high-gravity models in the case of the cooler sources, since CO depths of order 20 per cent would be detected. This strong absorption is observed in local dwarfs, as evidenced by our spectra of three red standards in Fig. 16.

Figure 13. Spectroscopic temperatures \([g = 4.0] \), correlated with independent photometric temperatures for sources with measured (dereddened) \((I - J) \) colours. The correlation is excellent, but the spectroscopic temperatures are higher by 250 K, as indicated by the dashed line for perfect agreement.

Figure 14. Spectroscopic temperature (indicated by water index \(Q \)) versus mass. Masses are from the BM97 1-Myr isochrone. A weak correlation is observed, and the temperatures are consistent with the essentially independent BM97 prediction.

In field dwarfs a fairly strong feature is often observed near 1.62 \(\mu \text{m} \), with uncertain identification at present. The AMES-Dusty-1999 spectra resolve this into a complex feature with possible contributions from several lines of OH, Ca I, and Fe I, with an OH doublet at 1.624 \(\mu \text{m} \) predicted to dominate in low-gravity atmospheres. Giant spectra show the \((v = 6 - 3) \) CO bandhead at 1.619 \(\mu \text{m} \) in low-resolution spectra, which increases in strength in very low-gravity supergiants (Origlia, Moorwood & Oliva 1993), but this is not predicted to be important at \(\log g = 3.5 \) to 4.0. An absorption feature is marginally detected at the 1.624-\(\mu \text{m} \) wavelength in the composite Orion spectrum in Figs 5(a) and (b), but it is not unambiguously distinguished from noise and is much weaker than the \(\log g = 3.5 \) models indicate for the OH-dominated features at \(T_{\text{eff}} \gtrsim 2800 \text{K} \). At \(\log g = 4.0 \) the 1.624-\(\mu \text{m} \) feature is no stronger than at \(\log g = 5.5 \), for the same temperature, so at that gravity the absence of a clear detection would be consistent with the data. (The AMES-Dusty-1999 grid has a sampling interval of 0.5 dex in gravity).

Considering that the \(\log g = 4.0 \) models also produce fitted spectroscopic temperatures more consistent with the evolutionary tracks than the \(\log g = 3.5 \) models, this might be taken as evidence that the gravities are closer to the higher value, although a finer grid in gravity would be needed to demonstrate this. On the BM97 1-Myr isochrone the \(3.5 < \log g < 4.0 \) interval covers an age range from \(< 0.1 \text{Myr} \) to several Myr for 0.008-\(M_{\odot} \) planetary mass objects, so a very precise gravity measurement would be needed to determine the age with useful precision. A slightly greater than average age might be expected for this spectroscopic sample of sources with low extinction.

4.1.2 Atomic lines

The absence of the Na I line at 2.21 \(\mu \text{m} \) in 053-503 (our best \(K \) band spectrum) is also indicative of a low-gravity atmosphere, as shown by the AMES-Dusty-1999 spectra in Fig. 15. 053-503 shows only a weak local minimum at the 1 \(\sigma \) level: this cannot be distinguished from noise, but is consistent with the model. The weakness of Na I at 2.21 \(\mu \text{m} \) has been observed in a low-gravity YSO by Luhman et al. (1998b). In addition, the weakness of optical Na I and K I features in very young brown dwarfs has been observed by Bejar et al. (1999) in the \(\sigma \) Orionis cluster, by Luhman, Liebert & Rieke (1997) in a brown dwarf in the \(\rho \) Ophiuchus region, and by Briceño et al. (1998) in pre-main-sequence stars and brown dwarfs in Taurus.

4.2 Comparison with \(\sigma \) Orionis spectra and IC 348 data

We note that the \(H \)- and \(K \)-bandpass spectra of two very low-mass candidates in the \(\sigma \) Orionis cluster (estimated age \(< 5 \text{Myr} \)), plotted as low S/N smoothed spectra by Zapatero-Osorio et al. (2000), do not resemble those presented in Figs 4(a)–(c). At \(H \) they show the plateau seen in field dwarfs, and they also appear to be redder in the ratio of \(K:H \) bandpass fluxes than all of the sources plotted in Figs 8(a) and (b) with strong water absorption, except 014-413, which appeared to have an infrared excess due to hot circumstellar dust. After converting the spectra to \(F_{\nu} \), the apparent ratios of flux near the bandpass peaks are \(K: H \approx 1.6 \) and 1.2 for S Ori 47 and S Ori 60 respectively. The presence of the plateau feature might be taken as evidence that these two \(\sigma \) Orionis objects are field L dwarfs, given that Zapatero-Osorio et al. expect \(\sim 33 \) per cent contamination by these in their much larger survey area. However, there is separate evidence for the relative youth of one of the two
objects, S Ori 47, via low-gravity features in its optical spectrum (Zapatero-Osorio et al. 1999) similar to those seen in Pleiades dwarfs. It would have to be an unusually young (\(100\) Myr) field L dwarf to have those optical features. In our view it is more likely that the \(H\)-bandpass spectra and larger \(K:H\) ratios reflect the greater age of the \(\sigma\) Orionis cluster than the Trapezium cluster. At 5 Myr, sources at or below the deuterium burning threshold are predicted to be 300 or 500 K cooler than at 1 Myr (BCAH and BM97 calculations respectively), corresponding to an effective temperature \(T_{\text{eff}}\) of 1600–1800 K for an object with mass \(8 M_{\text{Jup}}\) and

Figure 15. Gravity effects on CO and Na I (\(F_\lambda\) spectra): (left) 2500 K; (right) 2900 K. Both CO and Na I are much weaker in the low-gravity \([g = 3.5]\) AMES-Dusty spectra (offset upper plots) than the \([g = 5.5]\) atmospheres. \([g = 3.5]\) and \([g = 4.0]\) are nearly identical at these wavelengths.

Figure 16. Field dwarf spectra and 053-503. Late-M and L-type spectra of high-gravity field dwarfs show very strong CO. 053-503 has similar CO to the M6 field dwarf, but shows no Na I and stronger water absorption.
\[\sim 2200 \text{K at } 15 M_{\odot} \text{ according to both calculations. This is} \]

substantially cooler than the Trapezium sources and similar to the temperature of L-type field dwarfs which exhibit the plateau feature. This is well into the \(T_{\text{eff}} < 2500 \text{K} \) region in which dust in the photosphere starts to have a large influence upon the emergent spectrum, according to the AMES-Dusty-1999 models. The larger ratio of \(K:H \) band flux is also predicted for a lower temperature, being caused by the underlying Planckian shift of flux to longer wavelengths rather than circumstellar dust. There is some indication of a plateau feature in the AMES-Dusty models at 2200 K in the 1.64–1.68 \(\mu \text{m} \) region (not shown), but it is much less broad than that observed by (Zapatero-Osorio et al. 2000) and weakens at lower temperatures. This might be due either to difficulties with the treatment of water or to dust in the model or differences in the stratification of dust at this very early evolutionary stage. We emphasize that our \(H \)- and \(K \)-bandpass spectra of three field dwarf standards in Figs 5 and 16 are in excellent agreement with the prior observations of Jones et al. (1994), Delfosse et al. (1999), Tokunaga & Kobayashi (1999) and Leggett et al. (2001), so we have no reason to doubt the reliability of the Trapezium spectra. Scattering in the circumstellar environment might affect the spectral profiles in subtle ways, but would not erase features at specific wavelengths such as the \(H \)-bandpass plateau.

Najita, Tiede & Carr (2000) have discovered six sources at or below the deuterium threshold in the very young cluster IC 348 (typical age 3 Myr), extending the work of Luhman et al. (1998a). Although they did not have spectra, they were able to obtain approximate spectral types via narrow-band imaging across the 1.9-\(\mu \text{m} \) water band with NICMOS on the Hubble Space Telescope. They came to very similar conclusions to those presented here: the water absorption strength implied late-M or L spectral types, and they also argue that the subtypes could be due to the low S/N and the possibility of imperfect background subtraction. However, we are confident that the \(H \)-bandpass spectra of the very low-mass candidates are of type M7 or later by any logical definition. For example, spectra of M0–M6 dwarfs do not decline significantly in flux/pixel (i.e., \(F_{\lambda} \)) on the short-wavelength side of the \(H \) bandpass, going from 1.68 to 1.5 \(\mu \text{m} \), whereas the very low-mass candidates all do, as illustrated in Fig. 17 for the candidates with weakest water absorption. Early M-type spectra rise from 1.7 to 1.25 \(\mu \text{m} \), since water absorption is weak at these types in disc population dwarfs and even weaker in halo extreme subdwarfs.

On the CIT photometric system an M7V dwarf has an absolute magnitude \(M_H = 10.22 \), according to a fit to sources with known parallaxes by Leggett (1992), or \(M_H = 10.26 \), averaging two sources from Leggett et al. (2001) with measured parallaxes in the Yale Catalogue (van Altena, Lee & Høfleit 1995). Adopting the brighter value, this leads to \(m_H = 18.44 \) for a source just behind OMC-1 at 440 pc, or \(m_H = 18.57 \) on the UFTI magnitude system. This is more than a magnitude less luminous than the three very low-mass brown dwarfs in Fig. 4(c) and 0.6 to 0.9 magnitudes less luminous than the two planetary mass candidates (with \(H_d = 17.71 \) and 17.95 on the UFTI system). Uncertainties in the dereddened \(H \)-band fluxes for these five sources are expected to be \(0.2 \) mag via the random photometric error and 0.15–0.2 magnitudes possible systematic error due to the uncertainty in the \((J - H) \) colour of the isochrone. Later type dwarfs decline rapidly in brightness, e.g., \(M_H = 10.90 \) at M9, and 10.98 at L0 on the CIT system, as fitted by Kirkpatrick et al. (2000) using sources with measured parallaxes. Hence our very low-mass sources are almost certainly too luminous to be background main-sequence dwarfs, even assuming zero extinction by the OMC-1 cloud. In fact, the background of the OMC-1 cloud provides substantial extinction in the region of the spectroscopic sample, as discussed below, which further reinforces this result. The luminosities are higher because they are physically much larger and have higher effective temperatures than field dwarfs with equivalent water absorption depths.

The profiles shown in Fig. 4(c) also resemble those of higher mass Trapezium objects rather than that of a late-M or L-type field dwarf, illustrated in Fig. 17 with noise added to aid the comparison. The field dwarf has a plateau from 1.57–1.70 \(\mu \text{m} \), whereas the very low-mass candidates appear to peak near 1.68 \(\mu \text{m} \) like their brighter counterparts.

If background contamination were significant, we would expect a range of lightly reddened M0–M6 dwarfs to appear in our sample, since these are the commonest stars which are luminous enough to be detected at \(d = 400 \) pc, assuming very low extinction by OMC-1 in the outer regions of our survey. The earlier M-types of the Trapezium spectra. Scattering in the circumstellar environment might affect the spectral profiles in subtle ways, but would not erase features at specific wavelengths such as the \(H \)-bandpass plateau.
are less common than the later types but would be detectable to a greater distance, so the distribution would be fairly even across spectral types M0–M6. Since they are not seen among our planetary mass candidates, we suspect that HC have underestimated the extinction for two reasons. The first reason is that the extinctions derived from our J - H colours show that the A_V column extends beyond the spatial pattern indicated by C18O maps, which are sensitive only to high-density gas. High extinction ($A_V > 14$) is measured toward many sources at the edges of our survey (see Fig. 18), which we attribute mainly to lower density molecular gas and also to the neutral cluster medium (O’Dell & Yusef-Zadeh 2000). The near-infrared extinction measurements are direct, whereas values derived from radio measurements are always uncertain by a factor of a few. Nevertheless, there is radio waveband confirmation of the extinction. The 13CO and CS(1–0) maps of Tatematsu et al. (1993) sample the less dense molecular gas and show that the OMC-1 cloud has a low-density wing extending far to the west of the main ridge in the cluster centre, beyond the location of our sources. The column density of the wing corresponds to $A_V \approx 4$ in the outer parts of the wing (using the transformations of Lada et al. 1994) for 13CO, and may be higher in the inner part where our sources lie; this region is not well resolved spatially from the very high-density ridge in the map of Tatematsu et al. In addition, the cold dust is seen directly in the 850-μm SCUBA data of Johnstone & Bally (1999), who measure continuum emission of 0.5–2.0 Jy beam$^{-1}$ in the spectroscopic survey region. Applying their adopted emissivity index ($\beta = 2$), temperature (20 K) and 100:1 ratio of gas:dust, we calculate $2–8 \times 10^{29}$ kg per beam (14-arcsec diameter). Adopting the relation $A_V/N(H) = 5.3 \times 10^{-26}$ m2 leads to $4.8 < A_V < 19$ in the survey region, where the very low-mass sources are detected. The uncertainties in grain emissivity, temperature and $A_V/N(H)$ mean that this is only an order-of-magnitude estimate (e.g. Ward-Thompson et al. 1994), but it is consistent with the near-infrared and 13CO data. The second reason to expect significant extinction is that HC used an optical:infrared extinction conversion based on the interstellar medium, which significantly underestimates the infrared extinction in Orion (Cardelli et al. 1989) because of the presence of slightly larger dust grains in the environment of the molecular cloud. The substantial contribution of these slightly larger grains to extinction can be seen from calculations using Mie theory (e.g. fig. 15 of Lucas & Roche 1998). In some very young sources the measured infrared extinction may be local to the young star. However, comparison of Figs 18 and 3 does not show any less extinction in the outer region of our survey than in the full survey sample, which indicates that there is strong extinction by the low-density molecular gas throughout the survey region. Moreover, the L-bandpass data of Lada et al. (2000) show that very young, embedded protostars are strongly concentrated towards the high-density ridge, so the case for significant extinction by lower density gas in the outer cluster is clear. It therefore appears that any background stars of type M7 or later would appear more than a magnitude fainter than all the low-mass candidates in Fig. 4(c), and even background binaries would not be bright enough to cause confusion.

Our assumption in Paper I that the OMC-1 cloud prevented any

Figure 17. F_λ spectra of 061-401 (0.011 M\odot) and 038-627 (0.014 M\odot) compared with field dwarf BRI0021-0214. The field dwarf spectrum is given added noise and smoothed for comparison.

Figure 18. Colour-magnitude plot for the region of the spectroscopic sample. High reddening is observed toward many sources, similar to Fig. 3. The new BCAH isochrone is plotted on the left.
background contamination in the survey region in the J band may prove to be an overstatement however. In Section 3.2.1 we discussed the two candidates near the stellar/substellar boundary (019-108 and 066-433) in our spectroscopic sample which suffer high extinction ($A_V = 8.6$ and 12.6 respectively) and have weak water absorption, consistent with late K-type or very early M-type spectra. If they are embedded YSOs, then we can say that there is no background contamination in our sample, which is highly encouraging for future work in this cluster. It is very possible that they are background field stars, since their fluxes are consistent with that interpretation and the extinction is broadly consistent with what we might expect from the radio data. This would also be encouraging, since the high extinction towards these two sources would indicate that background contamination can be avoided by studying sources which have low extinction.

In Paper I we had assumed that lightly reddened background sources are not present because of the large near-infrared extinction of cluster members, and because the cluster profile at infrared wavelengths is apparently identical to that at visible wavelengths. A large population of field sources would be expected to produce a broader profile at infrared wavelengths, since these sources are uniformly distributed and more easily seen at the edges of the cluster, where extinction is lower. This argument was first used by Hillenbrand & Hartmann (1998), but not at such faint sensitivity limits. We apply it here using our I- and H-bandpass data, in Fig. 19, plotting the number of detections in each filter as a function of distance from θ Ori C. Inspection of the profile gives no hint of a background population, since the ratio of H/I bandpass detections is fairly uniform and may even decrease slightly between radii of 200 and 300 arcsec. This demonstrates that any population of faint sources ($H \geq 17$ to be undetected at I) must be small in order to have no observable impact on the cluster profile. This method is not precise enough to exclude the presence of a small background population, and there are selection effects in Fig. 19 because the detectability of sources increases more rapidly at large radii in the I bandpass than at H, owing to the greater effect of the nebular background at I. Nevertheless, the absence of any obvious background population in the profile at H suggests that contamination is likely to be small at J.

Could the planetary mass objects be foreground dwarfs? About half of the 15 candidates have sufficient reddening, $(J - H) > 0.85$ (UFTI system) or $(J - H) > 0.94$ on the CIT system, for us to be confident that they are significantly reddened. Only field dwarfs of type L2 and later can reach these colours according to Kirkpatrick et al. (2000) (or L6 and later according to the smaller sample of Leggett et al. 2001). These provide very small contamination, since mid and late L-types are detected only at small distances, sampling a much smaller volume than late M-types $m_L = 20.0$ (Kirkpatrick et al. 2000). The expected number of foreground objects is only 5 or 6 in the full survey region (~ 1 per cent contamination) according to both the Tinney et al. (1993) luminosity function and the 2MASS data (Reid et al. 1999), mainly M dwarfs in magnitude range $15 < J < 19$. We expect to detect ≤ 1 foreground L dwarf in the full survey region of 40 arcmin2, using the space density estimate of Zapatero-Osorio et al. (2000). Although the volume density of field L dwarfs is uncertain, the number cannot rise by more than a factor of 3, since Zapatero-Osorio et al. calculated 33 per cent contamination in their much larger survey area at very similar galactic coordinates (contamination cannot exceed 100 per cent). Planetary mass candidates ($\leq 0.012 M_\odot$) are detected in no more than 60 per cent of our survey area, where the nebular surface brightness is sufficiently low. Hence we derive an upper limit of one or two late-M and L-type sources which could appear to be planetary mass objects.

\section{6 AGE AND MASS OF SOURCES}

The interpretation of very faint cluster members as planetary mass objects might be incorrect if they are far older (≥ 20 Myr) than the bulk of the higher mass cluster members. The luminosity of a 0.020-M_\odot object does not decline to that of the six candidates with $M \leq 0.008 M_\odot$ until an age of 27 Myr, according to the BM97 calculations. The age distribution of the population has been studied in detail by Hillenbrand (1997) over the wider Orion nebula cluster, within a radius of 20 arcmin, using two evolutionary tracks in the HR diagram. This analysis concluded that most star formation in Orion has occurred within the past 2 Myr, and that the youngest sources are highly concentrated towards the cluster centre, which is the region covered by our relatively small-scale survey. The data set did not include planetary mass sources, but indicated that the lowest mass and highest mass sources are most strongly concentrated toward the cluster centre, with less concentration by intermediate (solar-mass) sources. Specifically, Hillenbrand calculated that < 2 per cent of the population has an age > 20 Myr, using the D’Antona & Mazzitelli (1994) tracks, which agree well with more recent calculations (BM97; DM98; BCAH). The Swenson et al. (1994) tracks, which indicated lower temperatures for brown dwarfs than more recent calculations, put the proportion at ~ 5 per cent, which gives some indication of the uncertainty in this type of calculation. Conservatively, we assume that the old (> 20 Myr) population is only 3 times less concentrated within our survey region (radius $= 4$ arcmin) than the young population (see fig. 22 of Hillenbrand 1997). This yields a contamination of 0.6–1.7 per cent by such old objects in our sample, or 4 to 11 objects spread over all masses in the sample of ~ 650 sources detected at both J and H (including bright, saturated

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure19.png}
\caption{Trapezium cluster profile $n(r)dr$ as a function of distance from θ Ori C. Solid lines show I-band detections, and dotted lines show H-band detections. The profile is incomplete beyond 160 arcsec, because the survey region is not circular, but extends to the west.}
\end{figure}
sources. The more recent assessment of the age distribution in the core of the cluster by HC gave a similar result. Expressed as \(N(\log M)\), the IMF in Orion has been demonstrated to have a broad maximum somewhere between 0.1 and 0.6 \(M_\odot\) (Paper I; HC; Luhman et al. 2000) and declines slowly at substellar masses. In the 0.03–0.08 \(M_\odot\) interval a relation \(N(\log M) \propto M^{-1}\) is consistent with our data in Paper I. If this trend continues below our completeness limit to 0.013 \(M_\odot\), then we would expect there to be \(-0.16\) to 0.44 old brown dwarfs with sufficiently low mass \((-0.013\) to 0.03 \(M_\odot\)) to masquerade as a planetary mass object. Even if the substellar IMF were flat, we would not expect there to be more than one such source, whereas there are \(-15\) planetary mass candidates. In the event of a flat substellar IMF it would be difficult to argue for an abrupt cut-off above the deuterium threshold.

We note that the status of one brown dwarf candidate, 014-413, as a youthful Trapezium cluster member has been confirmed by direct imaging of a wind bow shock interaction with the cluster medium in \(H\alpha\) in a Hubble Space Telescope survey (Bally, O’Dell & McCaughrean 2000), which unfortunately overlaps only a small part of the spectroscopic survey region. Outflow activity is correlated with accretion rate in YSOs, which decreases with age. Hence this is probably a younger than average cluster member, which is also indicated by the presence of a large \(K\)-bandpass excess in Fig. 8(a).

\(K\)-bandpass excesses are a good indicator of youth, since they are most common at ages \(\approx 1\) Myr. Is there evidence for \(K\)-bandpass excesses in our planetary mass candidates? 6/15 of our planetary mass candidates were detected in the \(H\) and \(K\) bandpass data of HC, which only partially overlaps our survey area. These can be dereddened with the addition of our \(J\)-bandpass data. The \(H\)-bandpass fluxes measured by HC agree well with ours in 3/6 cases, the measurements differing by \(\approx 0.13\) mag; see Table 5. We note that the 3/6 sources with poor agreement all lie near the edge of the survey of HC, and are believed to suffer from substantially shorter exposure times (25 or 50 s total), whereas the other three are believed to have the full 100-s exposure time. The poor agreement is therefore probably due to low S/N in the HC data, given that all these faint sources are near the sensitivity limits of both surveys. Alternatively, large-amplitude variability may occur in a small minority of sources, which has been demonstrated at stellar mass by Carpenter, Hillenbrand & Skrutskie (2001) and Skrutskie et al. (1996). If we accept that the three sources with good agreement have well measured \(H\)-bandpass fluxes, then there appear to be large \(K\) band excesses in 2/3 cases. It is risky to compare photometry from different surveys in this way, but these colour excesses, \(E(H – K) = 0.6\) mag, are large enough to be fairly convincing despite the uncertainty of order 0.1 mag in the \((J – H)\) colour of the photospheres. If they are genuine, then this indicates that these are very young sources, probably with ages of \(<1\) Myr, and therefore are very good planetary mass candidates.

Oasa et al. (1999) were cautious in interpreting very faint sources in the Chamaeleon I cloud as planetary mass objects, despite the detection of large \(K\)-bandpass infrared excesses requiring the presence of a substantial mass of hot dust in the accretion disc. However, they found that even at 10 Myr, their presumed upper age limit for sources with substantial quantities of hot dust, a planetary mass was still indicated for their faintest source.

At present, there is no easy way to actually measure the ages of individual sources, because luminosity and temperature are degenerate with respect to mass and age, and because of the need to deredden sources. In principle, the tracks of more massive sources might be separated in an HR diagram (older, more massive sources should be smaller and hotter than planetary mass objects of equal luminosity). At present, however, the uncertainty in temperature measurement and prediction at these very early ages is too large to make such a distinction (see Table 3). A small bias toward greater ages might be expected for the spectroscopic sample of sources with low extinction (see Section 4.3). Precise measurements of surface gravity via high-resolution spectroscopy of absorption-line profiles may permit this at some future date, but this will be difficult owing to the weakness of atomic lines in low-gravity atmospheres. A promising alternative would be to use well-modelled lines of simple molecules such as CO, and perhaps the \(K_{\text{CO}}\) index, because some molecular features increase in strength with decreasing gravity. Another option might be to search for deuterium, the defining attribute of these ‘free floating planets’. Deuterium is predicted to be absent in sources more that 10\(^7\) yr old, for masses \(M < 0.03 \)\(M_\odot\). This is illustrated by Bejar et al., using the calculations of D’Antona & Mazzitelli (1997), and examined in more detail by Chabrier et al. (2000).

7 GEMINI DATA

We have conducted a pencil-beam search for sources in the Trapezium even fainter than those detected in our UKIRT survey, using the Gemini North Telescope with the Adaptive Optics system Hokupa’a and the infrared camera QUIRC. The data will be described more fully in a future paper, but preliminary indications are that no such ultralow-luminosity sources were detected in five QUIRC fields containing \(-25\) stars and brown dwarfs. This tends
8 CONCLUSIONS

Low-resolution H- and K-bandpass spectra of brown dwarfs and planetary mass candidates show strong water absorption bands, equivalent in depth to those seen in L-type and late M-type spectra, which is entirely consistent with the predictions of evolutionary tracks (BCAH; BM97; DM98) at ages near 1 Myr. The new evolutionary tracks provide self-consistent flux predictions, permitting luminosities and masses to be derived without the need for bolometric corrections. The results are very similar to our previous work. The H-bandpass profiles shown here are very different from those of field dwarfs with strong water absorption, which appears to be a clear signature of youth and low mass. Strong evidence for the expected low surface gravities is provided by fitting the spectra to the AMES-Dusty-1999 models. The low-gravity models are quite successful at reproducing (a) the H-bandpass profiles, (b) the weakness of CO absorption in the K-bandpass spectra, and (c) the absence of NaI absorption at 2.21 μm, though with stringent limits in only one source. There is an excellent correlation between independently derived spectroscopic temperatures and photometric temperatures, with a relatively small systematic offset of 250 K.

Spectra of two planetary mass candidates and three very low-mass brown dwarfs (M \(\leq 0.016 M_\odot \)) at 1 Myr) show very strong water absorption consistent with L-type spectra, and have lower spectroscopic temperatures than the higher mass brown dwarfs, which is also predicted by the evolutionary tracks. The late spectral types confirm that these are cluster members, since they are too luminous to be background field dwarfs, and the modest extinction seen in most cases indicates that they are not foreground dwarfs. We would expect many of the L-type sources to show M-type spectra at optical wavelengths, since water absorption is deeper in low-gravity dwarfs than high-gravity dwarfs, according to the AMES-Dusty-1999 spectra. The fitted temperatures are higher than those usually associated with L-type sources. The trend of CO absorption to be significantly weaker at low gravities, for effective temperatures in the range 2100–2900 K, is a potentially powerful tool for identifying very young brown dwarfs, provided there is an independent means of measuring the effective temperature. An opposite trend has been observed before in even lower gravity giants and supergiants (e.g. Orighia et al. 1993) at both 2.3 and 1.62 μm, relating to both gravity and microturbulence. This shows that the trend can only be determined by careful modelling of the atmosphere in question.

While the ages of the individual sources cannot be precisely measured, it is very unlikely that the 15 photometric planetary mass candidates could be much more massive sources with ages >20 Myr, since statistically we would expect <1 such source in our data set. There is also some evidence for large K-bandpass excesses in two of the planetary mass candidates, obtained by combining our JH data with the HK data of HC; however, this must be confirmed by a single, deep JHK survey.

ACKNOWLEDGMENTS

We thank the staff of UKIRT, which is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council (PPARC). We are very grateful to Sandy Leggett for providing her spectroscopic data of field dwarfs electronically, permitting a detailed comparison between these sources and our substellar candidates without the need to repeat all of the same observations. We are indebted to Isabelle Baraffe for providing self-consistent theoretical isochrones, without which the interpretation of the photometry would be considerably less secure. We thank Hugh Jones, Antonio Chrysostomou and Suzanne Ramsay-Howat for helpful discussions, and the referee for a useful report. We also thank the UKIRT, Gemini and WHT Panels for the Allocation of Telescope Time for supporting this project, and the University of Hawai‘i’s Hokupa’a team and Gemini Observatory staff for carrying out Gemini observations for us. PWL is supported by PPARC via a Post-Doctoral Fellowship at the University of Hertfordshire.

REFERENCES

Allard F., Hauschildt P. H., Alexander D. R., Tamanai A., Schweitzer A.,
(BCAH)
Chen H., Bally J., O'Dell C. R., McCaughrean M. J., Thompson R. L.,
Delfosse X., Tinney C. G., Forveille T., Epchtein N., Borsenberger J.,
MNRAS, 267, 413
Leggett S. K., Allard F., Ferrimman G., Dahn C. C., Hauschildt P. H., 1996,
ApJS, 104, 117

Downloaded from https://academic.oup.com/mnras/article-abstract/326/2/695/1007767 by guest on 07 April 2019
Infrared spectroscopy of substellar objects in Orion

This paper has been typeset from a TeX/LaTeX file prepared by the author.