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A Modular Analysis of Breast Cancer Reveals a Novel Low-Grade
Molecular Signature in Estrogen Receptor — Positive Tumors
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Abstract

12,3

Purpose: Previous reports using genome-wide gene expression data to classify breast tumors
have typically used standard unsupervised or supervised techniques, both of which have known
limitations. We hypothesized that novel clinically relevant information could be revealed in these
data sets by an alternative analytic approach. Using a recently described algorithm, signature
analysis (SA), we identified “modules,” comprising groups of tightly coexpressed genes that are
conditionally linked to particular tumors, in a series of breast tumor gene expression profiles.
Experimental Design and Results: The SA successfully identified multiple breast cancer
modules specifically linked to distinct biological functions. We identified a novel module, TuM1,
whose presence was not readily discernible by conventional clustering techniques. The TuM1
module is expressed in a subset of estrogen receptor (ER)— positive tumors and is significantly
enriched with genes involved in apoptosis and cell death. Clinically, TuM1-expressing tumors are
associated with low histopathologic grade, and this association is independent of the inherent
ER status of a tumor. We confirmed the robustness and general applicability of TuM1 module by
demonstrating its association with low tumor grade in multiple independent breast cancer data
sets generated using different array technologies. /n vitro, the TuM1 module is down-regulated in
ER+ MCEF7 cells upon treatment with tamoxifen, suggesting that TuM1 expression may be depen-
dent on active signaling by ER. Initial data is also suggestive that TuM1 expression may be clinically
associated with a patient’s response to antihormonal therapy.

Conclusion: Our results suggest that modular-based approaches toward gene expression data
can prove useful in identifying novel, robust, and biologically relevant signatures even from data

sets that have been the subject of substantial prior analysis.

Breast canceris a significant cause of worldwide morbidity and
mortality in females (1). A major challenge in the diagnosis and
treatment of breast cancer is its heterogeneity, as individual
breast tumors can exhibit tremendous variations in clinical
presentation, disease aggressiveness, and treatment response
(2). In recent years, several groups have reported studies using
genome-wide gene expression data to classify breast cancers for
the purposes of molecular taxonomy, disease prognosis, and
treatment response prediction (3-7). To identify specific and
informative gene expression patterns (“molecular signatures”),
many of these studies have typically used standard supervised
or unsupervised learning techniques—in the former, signatures
are identified based on their direct association with various
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clinical traits (e.g., survival), whereas in the latter genes and
tumors are allowed to self-associate based on their overall
patterns of similarity. Despite the promising nature of these
initial studies, such conventional approaches are associated
with certain limitations. For example, expression signatures
obtained using supervised algorithms have been criticized for
their generally poor representation of biologically coherent
pathogenic mechanisms and disease pathways (8), and recent
studies have shown that these signatures tend to be surprisingly
unstable over different training sets (9, 10). Conversely,
unsupervised algorithms, such as hierarchical clustering,
typically cluster genes based on their global behavior across
all samples (tumors) in the data set, when in reality certain
genes may only show strong regulation in a certain subset of
tumors, and weak to minimal regulation in others (11, 12).
Because of these challenges, it is important to develop new
methods to mine the inherent richness of information present
in genome-wide expression data to further identify novel,
robust, and biologically relevant molecular signatures for the
purposes of tumor classification and patient stratification. In
particular, Barkai and colleagues (11, 12) have recently
described an algorithm called signature analysis (SA), which
was designed to overcome the limitations of conventional
clustering approaches. The SA adopts a modular approach to
gene expression data, identifying groups of tightly coregulated
genes that are conditionally linked to specific samples
(modules; ref. 11). Notably, SA and its variants have previously

www.aacrjournals.org

€202 Arenigad g0 uo 1sanb Aq Jpd-88ZE/6E 1596 1/88ZE/ 1 L/ L4Pd-ajoIE/SaLI80UEUID/BI0"S|EUINOfIoBR /ANy WO POpEOjUMOQ
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been shown to be superior to conventional clustering algo-
rithms for detecting gene function and defining biological
relationships (11, 12).

In this study, we tested the hypothesis that novel biological
information could be uncovered in these breast cancer data sets
using this modular technique. We applied the SA to a set of
breast cancer expression profiles and successfully defined
multiple tumor modules (TuM), each associated with a distinct
biological function. Most significantly, the SA identified a
previously unreported module (TuM1) in a subset of estrogen
receptor - positive (ER+) tumors containing genes significantly
enriched in cell death and apoptosis. The TuM1 module is not
discernible by conventional hierarchical clustering cluster
analysis and proved to be a robust signature by repeated
random sampling assays (see Results). To further characterize
the biological and clinical relevance of TuM1, we show that
tumors expressing the TuM1 module are associated with low
histologic grade (P < 0.001) and that this association is
independent of the inherent ER status of the tumor. The TuM1/
grade association is generally applicable as it is observed across
multiple independent data sets representing distinct patient
populations and array technologies. We also find that in vitro,
the TuM1 module is expressed in ER+ MCF7 cells but down-
regulated upon treatment with tamoxifen, suggesting that
TuM1 expression may depend on active ER signaling. Motivated
by this finding, we provide clinical data suggesting that TuM1
expression in primary tumors may identify patients more likely
to respond to antihormonal therapy. By identifying a novel
clinically relevant molecular signature in breast cancer, our
results thus show that modular approaches to gene expression
data, such as SA, can successfully reveal novel biological
information even from data sets that have received substantial
prior analysis.

Materials and Methods

Breast tissues and clinical information. Primary human breast
tumors were obtained from the National Cancer Centre of Singapore
Tissue Repository, after appropriate approvals from the repository and
ethics committees of the center. Profiled samples contained at least 50%
tumor content. Detailed descriptions of sample collection, archiving,
and histologic assessment of tumors, including techniques and
parameters, have been previously reported (ref. 7; also see Supplemen-
tary Information S1).

Cell culture and tamoxifen treatment. MCF-7 breast cancer cells
were obtained from American Type Culture Collection (Manassas, VA),
and cells were cultured in DMEM (Life Technologies, Grand Island, NY)
supplemented with 10% fetal bovine serum, 100 units/mL penicillin,
100 units/mL streptomycin, and 2 mmol/L L-glutamine. Before
tamoxifen treatment, cells were washed thrice in PBS and maintained
in phenol red-free DMEM with 5% dextran charcoal -stripped fetal
bovine serum (HyClone Laboratories, Pittsburgh, PA) for 24 hours.
Subsequently, cells were treated with 10 pmol/L tamoxifen (Sigma, St.
Louis, MO) and harvested at 48 hours. Control sister cultures were
treated with an equivalent volume of the vehicle (0.1% ethanol).

Sample preparation and microarray hybridization. RNA was
extracted from tissues and cell lines using Trizol (Invitrogen, Carlsbad,
CA) reagent and processed for Affymetrix Genechip (Affymetrix, Inc.,
Santa Clara, CA) hybridizations using U133A Genechips according
to the instructions of the manufacturer. The expression profiling of
MCEF-7 cell lines was done in duplicate from two independent sets of
RNA samples each comprising control untreated MCF7 cells, cells
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treated with 10 pmol/L tamoxifen for 48 hours, and cells treated with
vehicle (0.1% ethanol) for 48 hours. The expression profiling of MCF-7
cells was done on HG-U133 plus gene chips. The hybridization signal
on the chip was scanned and processed by GeneSuite software
(Affymetrix).

Data processing. Raw Genechip scans were quality controlled using
GeneData Refiner (Genedata, Basel, Switzerland). The expression data
was preprocessed by removing genes whose expression was absent in
>40% samples (i.e., “A” calls), subjecting the remaining genes (9,116
probes) to a log, transformation, and normalization by median-
centering of samples. The expression data has been deposited into the
Gene Expression Omnibus database (GSE2294).

SA and iterative signature algorithm. The basic SA methodology
consists of four major steps: (a) a predefined set of “input genes” is
selected; (b) using these input genes, the algorithm scans the expression
data set, selecting samples (i.e., tumors) where the average expression of
the input genes (tumor scores) is above a threshold value (“tumor
threshold”); (c¢) within the selected tumors, individual genes whose
weighted (by tumor scores) average expression exceeds a “gene
threshold” are then identified, resulting in (d) a TuM being outputted,
comprising a set of genes with expression levels above a particular
threshold in a specific group of tumors. A detailed description of the SA
methodology is provided in ref. 11. In this report, we use an extension
of SA, the iterative signature algorithm (ISA), which uses a large number
of random gene sets as the initial input and subsequently refines the
TuMs through multiple iterative rounds of SA (12). As the inputted
genes are random, ISA does not require prior knowledge and hence
constitutes an entirely unsupervised analytic approach. Specific details
about the ISA workflow and parameter settings are described in
Supplementary Information S2. Based on previous reports, a gene
threshold of 3.0 was selected as an optimal threshold for further in-
depth analysis (11).*

Recurrence analysis to measure module robustness. SA uses recur-
rence analysis to assess the robustness of a module. For a given gene set
(e.g., TuM1), a collection of new derived sets are created containing
both the input genes and genes randomly selected from the entire data
set. SA is then done on both the input set and the derivation sets. If the
input set has a meaningful coregulated pattern, then this pattern should
be strongly preserved in the derivation sets, and consequently the
various output modules will have a large overlap (ref. 11; see Results for
illustration). On the other hand, if there is no coregulated pattern
embedded in the input set, the output modules will be quite different
and little overlap will be observed. The details of recurrence analysis are
further described in ref. 11, which also provides a mathematical
definition of the recurrence metric.

Gene ontology and pathway analysis. We used the statistical web tool
GoStat to identify functional annotations or Gene Ontology groups that
are highly enriched in different gene sets (13). Fisher's exact test was
done to calculate the significance of the observed enrichment,
combined with a Benjamini and Hochberg correction to control the
false discovery rate.” Additional functional and pathway analysis was
done using Ingenuity pathway analysis,® a commercial database for
identifying networks and pathways of interest in genomic data that was
also been used in several other published reports (14, 15). The
Ingenuity pathway analysis system uses a proprietary ontology
representing over 300,000 classes of biological objects and semantically
encoded relationships from the public domain literature to assign
biological functions to a query data set (e.g., Affymetrix probes). The
significance of functional enrichment is computed by a Fisher's exact
test, and represented by a range of P values associated with either top-
level functions or related subfunctions.

4 The SA software is available for download at: http://barkai-serv.weizmann.ac.il/
GroupPage/software.htm.

5 GoStat is available at http://gostat.wehi.edu.au/cgi-bin/goStat.pl.

6 http://www.ingenuity.com/products/pathways_analysis.html.
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Associations between TuMs and clinical data. x> Tests were used to
calculate the association between each TuM and the following clinical
variables: patient age, lymph node status, ER status, progesterone
receptor status, tumor size, histologic grade (as continuous variable),
and lymphovascular invasion. The significance of each association was
also confirmed by hypergeometric probability density function analysis.
Linear regression was used to confirm the independence of the TuM1/
grade association from ER status in multivariate analysis. For multi-
data set analyses, we identified common Unigenes between the
Affymetrix U133A Genechip and Stanford, Rosetta, and Ma data sets
(see Results), whereas the Uppsala data sets were matched directly by
probe sets. Kaplan-Meier analysis was used for survival comparisons,
and Cox regression was used to confirm the prognostic significance of
TuM1 in multivariate analysis.

Gene set enrichment analysis. Gene Set Enrichment Analysis (GSEA)
methodology, a modification of the weighted Kolmogorov-Smirnov
statistic, provides a general statistical framework to test for the
enrichment of gene expression profiles (16). GSEA considers a priori
defined gene set, such as coregulated genes, and determines whether
these members are enriched at the top (or bottom) of a list of markers
ranked by the degree of correlation with a specific phenotype or class
distinction. Multiple hypothesis testing is adjusted by calculating false
discovery rates (16). The false discovery rate is the estimated probability
that the reported result is a false positive. The details of GSEA are
provided in ref. (16). The default parameter settings were used in the
analysis.

Results

Identification of TuMs in breast cancer by SA. The basic
methodology of the SA is described in the Materials and
Methods. Compared with other analytic methods, two major
features of SA are worth noting. First, because SA selects
individual tumors exhibiting elevated expression levels of the
input gene set, it is not necessary for genes in the input set to

exhibit coregulated expression across all the samples, unlike
other clustering techniques. Second, the gene selection process
for the output module is done independently of the original
input gene set. Thus, depending on the strength of coregulation
between the original input genes within the selected tumors,
the genes in the outputted module may contain either all, a
subset of, or very few of the original input genes. The extent of
overlap between the input set genes and genes in the outputted
module reflects the overall robustness of the module, which is
formalized as a “recurrence score” and used later in this report
(see Materials and Methods). In this report, we have used a
variant of SA, the ISA, which is purely unsupervised and
unbiased.

We applied the ISA to a set of 96 breast cancer gene
expression profiles, resulting in a modular decomposition of
the gene expression data at different gene thresholds (12).
Figure 1A illustrates this concept in the form of a “module tree.”
At low gene thresholds, only a few TuMs are initially identified,
where each TuM consists of a large number of loosely correlated
tumors and genes. At higher resolutions, the expression data is
decomposed into a larger number of TuMs, where each TuM
now contains a smaller set of tightly correlated tumors and
genes. At a gene threshold of 3.0, we defined eight TuMs in the
breast cancer expression data (TuMs 1-8). To place these
modules in a biological context, we used the GoStat tool to
identify biological or cellular functions that were significantly
overrepresented in each module. Consistent with previous
reports, many of these modules could be associated with
distinct biological functions, such as extracellular matrix and
collagen binding activities in TuM5 (corrected P values being
P =2.85 x 10°° and 8.72 x 10~ ° respectively), and cell cycle/
cellular proliferation in TuM7 (P = 4.08 x 107'¢; detailed
descriptions of each TuM and the GO analysis are provided in

Gene Threshold

Legend

1 5 (Stroma)

2 (ER+/Luminal) 6 (ER-Basal
J(ER+ID 7 (Cell Proliferation)
4 (Immune) 8 (ERBB24H

Low Grade)

Fig. 1. TuMs of breast cancer. A, a module tree of the
TuMs in the breast oncotranscriptome at different levels of
resolution. Each node (solid blue rectangle) represents a
TuM. Branches represent TuMs that originate from the same
roots over a range of thresholds. B, global gene expression
patterns within TuMs. Each row represents one gene and
each column represents one tumor. Eight diagonal blocks
(separated by yellow grid) represent eight modules

(under gene threshold 3.0 from A). The legend of the eight
modules is listed. The off-diagonal blocks reveal how genes
in one module function in other modules. Red arrows,
examples of genes and tumors that are shared between
different modules. Heat-map bar, scale of gene expression
value: red, high expression; green, low expression.
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Supplementary Information S3). Some modules were clearly
related. For example, three modules (TuM1, TuM2, and TuM3)
were commonly derived from a single larger module containing
genes previously reported as highly expressed in ER+ tumors,
such as ESR1, STC2, and BCL2 (3-7). Interestingly, this ER-
related gene set has previously been treated in other studies as
largely homogenous; however, its successful decomposition
into smaller distinct units by the ISA suggests that the larger
module may actually comprise multiple distinct and possibly
independent biological subprograms. Although TuM2 (38
genes) and TuM3 (30 genes) exhibit substantial overlaps
(~50%) in gene content (e.g., STC2, BCL2), >80% of the
genes in TuM1 (33 genes) are not found in either TuM2 or
TuM3. We did a survey of the literature and confirmed that
the TuM1 module was previously unreported. The identifica-
tion of TuM1 as a novel module thus shows the ability of the
modular approach to reveal new molecular patterns in genome-
wide expression data.

The TuM1 module is not obviously discernible by standard
hierarchical clustering. Given that several groups have previ-
ously published extensive analyses of breast cancer expression
data (3-6), the fact that hitherto the TuM1 module has
remained undetected is somewhat surprising. We thus investi-
gated if the TuM1 module could be obviously discerned using
standard analytic techniques. To test this, we did a standard
two-way unsupervised hierarchical clustering analysis on the
gene expression data. We used a SD filter to select the top 1,500
genes exhibiting the highest variation in expression among the
samples. This particular SD threshold was chosen to ensure the
presence of sufficient TuM1 genes (~50%) in the filtered data.
Average-linkage hierarchical clustering using a Pearson correla-
tion metric was done on this gene set. Consistent with previous
reports, the clustering analysis revealed a very large cluster of
ER-related genes (~560 genes), but importantly within this
group the TuM1 genes did not uniformly group with one other
to form a “subcluster’—indeed, some TuM1 genes failed to
localize within the ER cluster altogether (Fig. 2). Similar results
were obtained when the hierarchical clustering was done on the
global ISA-input gene set of 9,116 probes (Supplementary
Information S4). This result indicates that it would have been
highly unlikely for TuM1 to be readily discernible using
conventional clustering approaches, supporting our hypothesis
that novel biological information remains in these data sets
despite their having received substantial prior analysis, which
can be unearthed using alternative analytic methods such as SA.
For the remainder of this report, we now focus on the novel
TuM1 module in terms of its gene content, robustness, clinical
associations, and general applicability.

TuM1 is a robust apoptotic TuM expressed in a subset of
ER+ tumors. The TuM1 module was expressed in ~25% of
the ER+ breast cancers in our initial data set of 96 tumors.
Using a commercial database (Ingenuity), we did pathway
analysis on TuM1 and found that genes related to cell death
and apoptosis were significantly represented within this
module (P = 1.66 X 107> to 0.034), such as programmed cell
death 4 (PDCD4 ), mitochondrial ribosomal protein S30 (MRPS30),
and gap junction protein, o1, 43 kDa (connexin 43; GJA1). Other
genes in TuM1 include the xenobiotic-metabolizing enzymes
NAT1 and FMO5, and PCM1, which was recently reported to be
associated with histologic grade in breast cancer (17). A fully
annotated list of TuM1 genes is listed in Supplementary
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Fig. 2. A, unsupervised clustering of breast cancer gene expression data. The top
1,500 most highly varying genes were selected using a simple SD filter. This gene
number was used to ensure that at least 50% of TuM1 genes were contained in

the clustered gene set. Average linkage hierarchical clustering using a Pearson
correlation metric was done using CLUSTER software and displayed by TREEVIEW.
Fourteen of 16 TuM1 genes lay in the ER cluster, whereas the other two were outliers
(vellow frame). Hierarchical clustering was also done on the entire gene set and the
result is available in Supplementary Information S4. B, zoom-in of the ER gene
cluster from hierarchical clustering. The TuM1 gene members are highlighted.

Information S5. This pathway analysis result suggests that the
TuM1 module is likely to be biologically coherent and
functionally significant.

To confirm that the identification of TuM1 was not
dependent on the specific samples in our initial data set, we
evaluated the robustness of the TuM1 module using two
different techniques. First, we did recurrence analysis in an
independent data set—in this method, random genes are added
to TuM1 (33 members) to generate a series of TuM1-derived
input gene sets, and SA is done on both TuM1 and the derived
sets. The outputted modules are compared and the gene
content overlap between the different output modules is
determined. TuM1 is considered to be robust if the overall
overlap (or “recurrence score”) of the output modules is greater
than a threshold (Fig. 3A) based on random input data. Speci-
fically, we asked if the TuM1 module could be observed in an
independent data set of 86 breast tumors that were not used in
the original identification of TuM1. We did recurrence analysis
on this independent set and found that TuM1 indeed emerged
as a highly recurrent coregulated module (Fig. 3B), with the
TuM1 molecular signature in this independent set also being
confined to ER+ tumors at proportions similar to the original
data (data not shown). Second, we further tested the robustness
of TuM1 using repeated random sampling, a stringent
validation technique recently proposed by Michiels et al. (9)
to validate the reliability of gene signatures. We combined the
original and independent test set samples and randomly
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r Fig. 3. Recurrence analysis. A, illustration of
TuM1 + S_— Slg nature Ovarlap SA recurrence. The output modules of the
random genes set | A|gori-thm genes derived input sets are compared to assess their
overall overlap. A detailed explanation can be
found in ref. 11. B, recurrence analysis of TuM1 on
TuM1 + an independent set. uM1 (b/ue line) shows a
random genes set ] % large number of highly overlapping outputs
compared with random genes (red /ine), which

yield little or no overlap in output. X axis
(recurrence), overlap betweenTuM1 and 20
derivation signatures; Y axis, percentage of
derivation signatures under a certain recurrence
level. These variables are mathematically defined
in ref. 11. C, recurrence analysis on random
sampling validation (100 times). Each line
represents one run of SA recurrence analysis.
The recurrence of TuM1 (blue lines) is much
higher than by chance (red /ine—there are

100 red lines). In 85% of the 100 random
sampling validations, >70% of the derivation
signatures showed >50% recurrence with
TuM1.

Random Gene Set

w » - - - - - - -

Recurrence [%]

generated one hundred sets of 96 tumors (96 being the same
number as the original set). We did recurrence analysis on all
100 random sets, and found that in >85% of cases TuM1
displayed substantially higher recurrence scores compared with
random data (Fig. 3C). In the remaining 15%, the failure to
observe TuM1 could be attributed to the lack of TuM1-
expressing tumors in the random set (Y.K., data not shown).
We also independently repeated the entire ISA on a subset of
these randomly generated sets and confirmed that the TuM1
module could be rederived (Y.K., data not shown). These
results show that the TuM1 module is indeed highly robust
within our center, and later in this report we also show that the
TuM1 module is also present in breast cancer expression data
sets from other groups.

TuM1 expression is associated with low histologic grade in
an ER-independent fashion across multiple independent data
sets. To investigate the clinical relevance of the TuM1
molecular signature, we correlated the TuM1-expressing tumors
to various clinical and histopathologic variables. We observed
significant positive correlations between TuM1 expression and

ER positivity (P < 0.001), progesterone receptor positivity
(P =0.01), lymophovascular invasion (P = 0.015), small tumor
size (P = 0.015), and low histologic grade (P < 0.001), but not
age and lymph node status. As a comparison, TuM2 and TuM3,
which are related but distinct modules to TuM1, were also
significantly correlated with ER/progesterone receptor status,
and TuM2 is also significantly correlated with low histologic
grade (Table 1). This result suggests that despite the unsuper-
vised nature of the ISA, many of the TuMs identified by the SA
are nevertheless associated with observable and distinct clinical
characteristics of breast tumors, supporting their clinical
relevance (see Supplementary Information S6 for a similar
analysis of the other TuMs).

The fact that TuM1 and TuM?2 were significantly correlated
with both ER status and histologic grade made us consider if
these associations were occurring independently of one
another, or if these two clinical variables (ER and grade) were
mutually related. ER status has been previously shown to be
strongly associated with histologic grade in breast cancer (ref.
18-26; see Discussion), and consistent with these previous

Table 1. Correlations between TuMs and clinical characteristics

Age (/)55 y) Size (</»3 cm) Grade® LN ER PR LvI

TuM1 0.21 0.0152 (<3 1) €0.001 0.15 <0.001 (+) 0.0107 (+) 0.0152 (-)
TuM2 0.17 015 0.005 0.06 €0.001 (+) 0.0021 (+) 0.19

TuM3 0.22 018 0.105 0.08 €0.001 (+) 0.0015 (+) 0.94

and lymphovascular invasion negative.

NOTE: Significant correlations (P < 0.05) are highlighted in bold. TuM1 is positively correlated with small tumor size (<3), low grade, ER+, progesterone receptor positive,

Abbreviations: LN, lymph node; PR, progesterone receptor; LVI, lymphovascular invasion.
*Grade is used as a continuous variable (also see Supplementary Information S7).
T The variable inside the parentheses indicates the direction of correlation with the TuMs.
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reports ER is also significantly correlated with grade in our data
set (P = 0.001). Using multivariate analysis, we tested if the
correlation between TuM1 expression and low tumor grade was
simply a consequence of their association with ER status or if
the association between TuM1 expression and low tumor grade
was independent of ER. In this analysis, we found that TuM1
expression is correlated with grade independently of ER (P <
0.001), but the association of TuM2 with low grade was not
(P = 0.9; Table 2). We also repeated the univariate association
studies, this time using a sample set of only ER+ tumors (unlike
the previous analysis where all tumors were used). In this “ER+
only” data set, we found that TuM1 still remained significantly
correlated with low tumor grade (P < 0.001). In contrast, TuM2
and TuM3, which both contain several ER-related genes, failed
to exhibit a significant correlation with tumor grade when the
ER-negative tumors were removed from the analysis (P = 0.16
and P = 0.34, respectively; Supplementary Information S7).
These results indicate that the TuM1 expression signature is
significantly correlated with low histologic grade in breast
tumors and that this association is independent of ER status.
Having established the clinical validity of TuM1 in our in-
house data set, we then tested the general applicability of the
TuM1 molecular signature by applying it to an external series of
patient populations. We tested a total of four independent
publicly available breast cancer data sets with grade status, all
using different array platforms and patient selection criteria.
The first (the “Rosetta data set”) consists of 117 breast tumors
(71 ER+ tumors) profiled using oligonucleotide microarrays
(27), the second (the “Stanford data set”) consists of 122 breast
tissue samples (81 ER+ tumors) profiled using cDNA micro-
arrays (5), the third (the “Ma data set”) consists of 60 ER+
tumors profiled using a separate cDNA microarray platform
(28), and the fourth (the “Uppsala data set”) consists of 67 ER+
tumors profiles on Affymetrix U133A arrays (29). For all these
independent studies, we deliberately chose to specifically
analyze only the ER+ tumors in these patient populations so

as to avoid the possibility of ER status behaving as a
confounding factor. We mapped the TuM1 genes identified in
our study to their corresponding probes on the Rosetta,
Stanford, and Ma microarrays on the basis of UniGene
identifiers, and confirmed that these common subsets retain
the ability to identify TuM1-overexpressing tumors in our data
set (Supplementary Information S8). In all four independent
data sets, the multivariate analysis showed that TuM1 is
independently associated with grade (Table 3; Supplementary
Information S7). This was further confirmed by univariate
analysis, which showed that the TuM1 expression signature
divided the ER+ tumors into two distinct subgroups, with
tumors expressing high levels of the TuM1 signature being
significantly associated with low histologic grade (Supplemen-
tary Information S7). These results, consistent with our own in-
house series, strongly suggest that the TuM1 expression
signature is likely to be a robust, specific, and generally
applicable molecular signature for low histologic grade in
breast cancer, as it is observed in a variety of independent data
sets associated derived from a wide variety of disease stages and
patient populations and profiled using different array technol-
ogies.

The TuM1 module is down-regulated by tamoxifen treatment
in vitro. The observation that TuM1 is expressed in a subset of
ER+ tumors raises the possibility that expression of this module
may depend, at least in some part, on ER activity and signaling.
To investigate the relationship between TuM1 expression and
ER signaling, we decided to test the responsiveness of TuM1 to
ER activity using an in vitro system. First, by profiling a set of
breast and gastric cancer cell lines, we found that the TuM1
module was overexpressed in the ER+ breast cancer cell line
MCF7 (Supplementary Information S9). Second, we treated
MCF7 cells with tamoxifen, an inhibitor of ER, and using GSEA
(16) further discovered that TuM1 was significantly down-
regulated in tamoxifen-treated MCF7 cell lines compared with
controls (false discovery rate = 0.05). As a control, none of the

multivariate analysis (SPSS)

Table 2. Correlation between grade and TuMs and other clinical variables in breast cancer by using linear regression

Variable P Regression coefficient 95% Confidence interval for regression coefficient
Lower bound Upper bound
TUM1 <0.001 0.783 0.404 1.162
TUM2 0.898 —0.025 —0.418 0.367
TUM3 0.5686 -0.111 —0.516 0.294
TuM4 0.353 —0.125 —0.391 0.141
TuM5 0.426 0.120 -0.179 0.420
TuM6 0.405 0.127 -0.174 0.427
TuM7 0.192 -0.184 —0.462 0.094
TumM8 0.337 —-0.137 —0.420 0.146
Age 0.197 0.006 —0.003 0.016
Size 0.317 0.003 —0.003 0.009
Node 0.106 0.183 —0.040 0.406
ER 0.091 —0.255 —0.5651 0.041
PR 0.020 0.315 0.052 0.579

low grade.

NOTE: Besides TuM1, only progesterone receptor is marginally correlated with grade. The positive regression coefficient means that the variable is associated with
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Table 3. Correlation between TuM1 and grade within ER+ tumors in four public data sets

Data set P Regression coefficient 95% Confidence interval for regression coefficient
Lower bound Upper bound

Rosetta 0.014 0.414 0.085 0.744

Stanford €0.001 0.499 0.230 0.768

Ma 0.015 0.395 0.082 0.707

Uppsala 0.017 0.330 0.062 0.5699

NOTE: The full list of multivariate analysis result is provided in Supplementary Information S7.

other TuMs were affected by tamoxifen treatment, with the
exception of TuM2, which was marginally correlated with
tamoxifen treatment (false discovery rate = 0.19). The details of
this analysis are given in Supplementary Information S10. This
result suggests that at least in vitro, TuM1 expression may be
dependent on active ER signaling and may thus represent a
molecular signature of ER activity.

A possible association between TuM1 expression and treatment
response or clinical outcome. Tamoxifen is a standard anti-
hormonal therapy used to treat ER+ breast cancer patients. Our
finding that expression of the TuM1 module is dependent on
active ER signaling made us investigate if the presence of this
module in primary tumors might function as a molecular
biomarker for active ER activity, and identify tumors that are
likely to respond to tamoxifen or other antihormonal treat-
ments. Supporting this possibility, certain genes in TuM1 have
also been independently shown to be associated with thera-
peutic response in breast cancer (see Discussion). As clinical

response information was not available in our in-house data,
we tested three independent data sets where such data was
available. First, we tested the Stanford series, which consists of
patients who received adjuvant endocrine therapy if their
tumors were ER+ (5). Using Kaplan-Meier survival analysis,
patients with TuM1-expressing ER+ tumors exhibited better
survival outcomes compared with patients with ER+ tumors
where TuM1 was not expressed (P = 0.0001 for overall survival;
P = 0.0036 for relapse-free survival; Fig. 4A and Supplementary
Information S11). In a multivariate analysis of TuM1, grade,
age, lymph node, and tumor size, TuM1 behaved as an
independent predictor of survival outcome, whereas grade did
not, demonstrating that TuM1 is more directly prognostic of
patient survival than grade status alone (Supplementary
Information S12). Second, we tested the Ma data set, which
comprises a set of preselected tamoxifen-responsive and
resistant ER+ tumors (28). Once again, TuM1-ovexpressing
patients exhibited significantly better outcome than low TuM1

A Stanford B Ma Data Set
10 — j 1.0 ]
8 8
Z 6 Z 6
z ]
g 3
o 4 £ 4
Fig. 4. Analysis of TuM1-disease outcome
2 associations in three independent patient
| P=0.001 2 P=0.048 groups that received antihormonal
ol | treatment by using Kaplan-Meier analysis:
"1 = ra & = T80 vo. < - - - = 1 A, Stanford data set: Overall survival for 81

Owverall Survival (Month)

C Uppsala

Probability

‘1

a

P=0.025

oo

Owverall Survival (year)

Metastasis-free Sunaval (Month)

ER+ patients who received adjuvant
endocrine treatment (5). B, Ma data set:
Metastasis-free survival for 60 ER+ patients
receiving tamoxifen monotherapy (28).

C, Uppsala data set: Overall survival for

67 ER+ patients receiving tamoxifen
monotherapy (29).
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patients (P = 0.048; Fig. 4B). By multivariate Cox regression
analysis, TuM1 was the sole independent prognosis factor (P =
0.03; Supplementary Information S12); as grade, tumor size,
node, and age are controlled in the Ma patient cohort (28). This
observation was also tested using GSEA, which confirmed that
TuM1 expression was significantly associated with tamoxifen
response (P = 0.024; Supplementary Information S13). Third,
the prognostic ability of TuM1 was tested on the Uppsala set, an
independent patient cohort of 67 ER+ patients who received
tamoxifen as monotherapy (29). Once again, patients with
TuM1-expressing tumors experienced significantly improved
overall survival outcomes compared with low TuM1-expressing
patients (P = 0.025; Fig. 4C). By multivariate Cox regression
analysis, TuM1 remained significantly associated with survival
(P = 0.024), whereas grade, tumor size, and lymph node status
did not (Supplementary Information S12). Taken collectively,
these preliminary results raise the possibility that TuM1
expression in primary tumors might also be associated with
the response of a tumor to clinical treatment, in particular
antihormonal therapy.

Discussion

Gene expression profiling has been applied extensively in
cancer research. However, recent reports have revealed signif-
icant limitations in many of the clustering algorithms and
supervised classification techniques commonly used in such
studies (8, 9, 11, 30). Given the complex genetic and molecular
heterogeneity of cancer, it is perhaps not surprising that the
identification of robust molecular signatures capable of directly
reflecting disease behavior and clinical outcome remains a
challenging task, and it has been proposed this will first require
the comprehensive identification of gene signatures represent-
ing specific biological mechanisms and pathways (8). To
achieve this aim, a number of powerful “modular” tools, such
as SA and others (30, 31), have been developed, which are
capable of identifying sets of genes associated with specific
functions that are conditionally coregulated in tumors. In this
report, we applied SA to characterize a set of breast tumor
expression profiles, and identified a novel cell death and
apoptosis-related gene expression signature (TuM1) that was
not readily discernible using conventional clustering
approaches. Notably, these analyses were all done on breast
cancer data sets that had previously been extensively analyzed
by multiple groups (3-7)—the successful identification of
TuM1 as a novel module thus highlights the richness of
information that likely remains embedded in such genome-
wide data and awaiting discovery. We further found that the
TuM1 module was highly robust across multiple independent
data sets and was significantly enriched in genes associated with
cell death and apoptosis, supportive of its biological coherence.
Taken collectively, these results show that module-based
approaches can successfully identify novel, robust, and
biologically meaningful gene signatures in breast cancer.

Many of the genes in TuM1 have intriguing functions
relevant to tumor biology, cell death, and treatment response.
A few such examples are discussed here. For example, PDCD4
has been shown to inhibit the growth of tumor cells (32),
whereas GJA1 has been reported to suppress cell proliferation
and tumorigenicity of human glioblastoma cells (33) and to
enhance apoptosis in response to chemotherapeutic agents
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(34). In addition, MRPS30 has been reported as a proapoptotic
gene that encodes protein programmed cell death 9 (35),
whereas leucine-rich repeats and immunoglobulin-like domains 1
(LRIG1) is a negative regulator of the ErbB family of receptor
tyrosine kinases and has been suggested to suppress ErbB
receptor function (36). Besides apoptosis-related genes, TuM1
also contains f-TrCP1 (also known as Fbwla or FWD1), a
component of the SKP1-cullin-F-box ubiquitin protein ligase
complex, which can activate the nuclear factor-«B pathway and
repress cell proliferation (37). Intriguingly, some genes in
TuM1 have also been linked to clinical treatment response as
well: Inactivation of PDCD4 in human cancers has also been
reported to cause decreased sensitivity to both geldanamycin
and tamoxifen in breast cancer in vitro (38), whereas NAT1,
another TuM1 gene, has been reported as an independent
prognostic factor of breast cancer relapse and potential
predictor of tamoxifen response (39).

Clinically, a major feature of the TuM1 module is its
association with low histologic grade in an ER-independent
manner. It is well known that histologic grade strongly corre-
lates with ER status in breast cancer (18-26), with ER-negative
tumors being predominantly high grade (grade 3). Indeed,
consistent with these previous reports, there is a clear bias
between ER and grade in all the data sets analyzed in this report
(Supplementary Information S14). Because of the strong asso-
ciation between ER status and grade, previous reports attempt-
ing to identify “grade signatures” using supervised learning
methods, in which genes exhibiting the strongest expression
differences between high-grade and low-grade breast tumors are
selected, have tended to define low-grade signatures containing
multiple ER-related genes, such as GATA3 (6), which could
represent possible confounders. In contrast, the TuM1/low-
grade association is independent of ER status, as confirmed by
multivariate analysis. As for genes up-regulated in high-grade
breast tumors (high-grade signatures), the majority seem to be
related to cellular proliferation (6). Of interest, we have pre-
viously identified a gene signature for the Nottingham Prognostic
Index in ER+ tumors, where tumor grade is a major component
of the Nottingham Prognostic Index. This previous result also
suggests that cell proliferation gene signatures are correlated with
grade in an ER-independent manner as well (40).

Functionally, we have also shown in this report that the
TuM1 module is expressed in the ER+ MCF7 cell line and is the
only breast cancer TuM that is significantly responsive to
tamoxifen treatment. This result suggests that expression of the
TuM1 module may depend on continuous ER signaling and
that TuM1 might represent a potential molecular signature of
ER activity. The use of TuM1 as an in vivo biomarker of ER
signaling is further supported by our observation that TuM1 is
associated with clinical outcome in multiple independent
patient cohorts receiving adjuvant hormonal treatment (the
Stanford, Ma, and Uppsala cohorts; Fig. 4; Supplementary
Information S12). This intriguing but preliminary finding
definitely deserves further study and validation on a larger
cohort of patients, supported by careful experiment design and
data analysis. Interestingly, in the two independent patient
cohorts where patients did not receive adjuvant treatment,
patients with TuM1-expressing tumors also exhibited a trend
toward improved clinical outcome; however, these differences
were not statistically significant (P = 0.48 for Rosetta data
set and P = 0.07 for Veridex data set; Supplementary
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Information S15). This is consistent with the hypothesis that
the TuM1 module may have a better ability to predict a patient’s

response to treatment than the intrinsic

aggressive of the

disease (i.e., the TuM1 signature is a predictive, rather than

prognostic, signature).

In conclusion, our result shows the feasibility and utility of
applying modular analytic approaches, such as SA, on cancer
expression data. Besides breast cancer, our results suggest that,
with the increasing availability of larger and comprehensive
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