Research Note

Damping of P and S at short distances

Harold Jeffreys

(Received 1973 February 23)

The study of damping in the Earth's shell by Jeffreys & Crampin (1970) concerns average properties of the shell based on the damping of the 14-monthly nutation and the appearance of S at larger distances. Application to S at short distances indicated (Jeffreys 1965) a damping of 5-15 per cent at a distance of 7°, which is nowhere near enough to account for the observed decrease in amplitude. There is much information from free vibrations and surface waves; this indicates much more severe damping than average at depths up to 400 km or so, but the estimates are also averages over a considerable range of depth. To get estimates of the distribution with depth we need, as a starting-point, values for small depths. Small depths and short periods are accessible in the body waves P and S. Information is given in a paper by L. Ruprechtova (1959). Reduced amplitudes A^* are given on a logarithmic scale (to base 10), magnitudes and periods of maximum movement being allowed for. They show a considerable scatter; the periods for P are mostly about 4 s, those of S about 8 s. A^* decreases with Δ from about 2° to 11° for P, 4° to 13° for S, and then rises continuously for both to a maximum at 20°.

For P the change in A^* over the range 2° to 11° is about -1.9. No allowance has been made for ordinary spreading. The theory of this is complicated; provisionally I take it as contributing a factor $1/\Delta$ to the amplitude, giving a decrease of about 0.7 in $\log_{10}(1/\Delta)$, the remainder is -1.2, giving -0.13 per degree. For SH the change in 4° $< \Delta < 13°$ is -1.5, giving, with similar treatment, -0.11 per degree. (Data for SV are not given; it is known to be more difficult to identify.) Since, however, the theory of damping is given in terms of exponential functions these changes in logarithms must be multiplied by 2.3, giving -0.30 and -0.25 per degree.

For S the damping factor, according to the modified Lomnitz law, is (Jeffreys & Crampin 1970; Jeffreys 1970, p. 47)

$$\exp \left\{ -\frac{q x}{2} \hat{a}^2(\alpha - 1)! \gamma^{x - \alpha} \sin \frac{1}{2} \pi \alpha \right\}.$$

The exponent for an increase of distance by β/γ radians increases by $-1/2Q$ in the usual notation, so that the increase in a given interval of x is $-\gamma[x]/2Q\beta$. Then

$$q \hat{a}^2(\alpha - 1)! \gamma^{x - \alpha} \sin \frac{1}{2} \pi \alpha = 1/Q.$$

With the data for S

$$\gamma = 2\pi/8^s = 0.8/1^s, \quad \beta = 4.4 \text{ km/sec}, \quad [x] = 1^\circ = 111 \text{ km}$$

we have

$$Q^{-1} = 0.025.$$
For P, with about the usual ratio of velocities, the exponent takes an extra factor $4/9$, and $\gamma = 1\cdot6$/sec. Then

$$Q^{-1} = 0\cdot032.$$

Q depends little upon period, since α is about 0.2, and the results are consistent since some of the data are rough. This damping is much more severe than any reported for greater depths.

The law gives also a shift of phase of $\cot \pi \alpha \times$ times the exponent. With $\alpha = 0\cdot2$ this factor is about 3. For S the result amounts to about 0.9 radians per degree, say 1.5 periods at 10°. Since the data are stated to be usually for the second swing this is of the right order of magnitude.

The depth (below the Moho) reached by a ray emerging at 10° is about 80 km; it varies approximately as $\Delta^{3/2}$. Beyond 11° for P and 13° for S the amplitudes rise again. This could mean that the rays penetrate a layer where the damping is much less severe, and the distance travelled in the layer of strong damping diminishes. However the amplitudes at the maximum about 20° are about the same as about 6° in spite of the $1/\Delta$ factor. Some focusing effect is probably still called for.

Added 1973 March 21

Since the above was written I have had a paper by S. J. Gibowicz (1972). He gives analogous data for the North and South Islands of New Zealand. The drop in his log (A/T) from $\Delta = 2^\circ$ to 13° is 2.00 for the North Island; from $2\cdot1^\circ$ to $13\cdot7^\circ$ it is 1.7 for the South Island, with considerable irregularity in both cases. He infers values of Q from 70 to 160 for the North Island and 130 to 180 for the South Island. He emphasizes the existence of considerable local differences.

References