Bovine collagen injections were popularized years ago, beginning with Zyderm collagen (Allergan, Inc, Irvine, California) in 1981. Since that time, numerous other products have come to market, the most popular of which are the hyaluronic acid (HA) products (Table 1). Hyaluronic acid products are linear, unbranched, high molecular weight glycosaminoglycan complex sugars, consisting of alternating d-glucuronic acid and N-acetyl-d-glucosamine. First described by Meyer and Palmer\(^1\) in 1934 during analysis of bovine vitreous, HA is found in the skin and tissues and performs several functions, both physical (eg, lubrication) as well as chemical (as an essential substrate for many different biological processes, including fertility, embryogenesis, morphogenesis, cellular migration, inflammation, and wound healing).\(^2\) In its natural state, HA is an ideal filler material but has an exceptionally short half-life.\(^3\)-\(^10\) Manufacturers have altered the chemistry of HA by crosslinking chains (using various plasticizers such as butanediol diglycidyl ether [BDDE]\(^11\)) to retard natural turnover and increase half-life. By minimally altering the material, manufacturers have been able to create HA products that are well tolerated by the immune system and exhibit favorable properties of longevity and nonreactivity.

Early HA manufacturing attempts used animal-sourced raw materials and were plagued by protein contamination issues.\(^12\) As a result, commercial sources of hyaluronates were developed from Lancefield group A and C \textit{Streptococcus equi zooepidemicus}, which naturally produce a pure hyaluronic mucoid capsule. Large quantities of relatively pure hyaluronates could thus be manufactured from bacterial broths that only required purification of relatively primitive bacterial protein contaminants, rather than the complex proteins that contaminated mammalian or avian sources.

Attempts to prolong HA longevity in tissues by creating products with more crosslinks between chains resulted in a net decrease in tissue tolerance because of an increase in immune-mediated adverse events (AE). Thus, a balance was necessary whereby natural HA chemical structure was altered enough from its natural state to reduce its susceptibility to breakdown but was not so deviant as to be recognized by the immune system as foreign material.

Although HA remains the dominant filler product for volumizing tissues, other materials are available as well.\(^10\) Permanent dermal fillers include silicone oils, polymethyl methacrylate (PMMA) microspheres, polyacrylamide, and several other materials either alone or formulated in various combinations with resorbable components.\(^13\)-\(^18\) The specific complications that may arise from each filler...
Aesthetic Surgery Journal 33(4)

Table 1. Dermal Fillers Approved by the FDA Since 1981

<table>
<thead>
<tr>
<th>Major component</th>
<th>Year first approved</th>
<th>Brand name (manufacturer)</th>
<th>Irreversible</th>
<th>Synthetic</th>
<th>Reversible</th>
<th>Natural Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymethylmethacrylate</td>
<td>2006</td>
<td>Artefill (Suneva Medical, San Diego, California)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxylapatite</td>
<td>2006</td>
<td>Radiesse (Merz Aesthetics, San Mateo, California)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly-L-lactic acid</td>
<td>2004</td>
<td>Sculptra (Valeant, Bridgewater, New Jersey)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyaluronic acid</td>
<td>2003</td>
<td>Restylane, Perlane (Q-Med [Uppsala, Sweden]/Valeant [Bridgewater, New Jersey])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium hydroxylapatite</td>
<td></td>
<td>Hylaform, Hyalform Plus (Genzyme Biosurgery, Ridgefield, New Jersey)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly-L-lactic acid</td>
<td></td>
<td>Cosmoderm, Cosmoplast (Allergan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyaluronic acid</td>
<td></td>
<td>Juvéderm30, Juvéderm30 HV, Juvéderm24 HV (Allergan, Irvine, California)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen</td>
<td>1981</td>
<td>Elevess (Anika Therapeutics, Bedford, Massachusetts)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table is not a complete listing of all products available. FDA, US Food and Drug Administration.

1Poly(methyl methacrylate) (PMMA): a synthetic nonbiodegradable polymer also used in bone cement and synthetic intraocular lenses. It is formulated in 40-micron microspheres suspended in bovine collagen.

1Calcium hydroxylapatite: mineral typically found in teeth and bone. Reconstituted as a gel suspension and injected. Lasts approximately 18 months.

1Poly-L-lactic acid: a slowly biodegradable polymer that has been used in suture materials for many years. Results may last up to 2 years, depending on site of injection.

1Hyaluronic acid: polysaccharide that binds water and is sourced from avian (eg, rooster combs) or streptococcal bacteria. The polysaccharide is crosslinked to resist degradation, extending its durability from 6 to 18 months, depending on formulation and region injected.

1Collagen: protein derived from cow (bovine) or human cells, lasting 3 to 4 months, the shortest duration of any of the dermal fillers. Collagen products have been discontinued and are no longer available.

Table 2. Filler Complication Classifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical errors</td>
<td></td>
</tr>
<tr>
<td>a. Volume (too much or too little)</td>
<td></td>
</tr>
<tr>
<td>b. Depth (too superficial or too deep)</td>
<td></td>
</tr>
<tr>
<td>c. Location (wrong location)</td>
<td></td>
</tr>
<tr>
<td>d. Product choice (inappropriate product)</td>
<td></td>
</tr>
<tr>
<td>Inflammatory</td>
<td></td>
</tr>
<tr>
<td>a. Infectious agent (bacterial, fungal, viral, or biofilm mediated)</td>
<td></td>
</tr>
<tr>
<td>b. Immune mediated (not related to infectious agent)</td>
<td></td>
</tr>
</tbody>
</table>

As with any complication in medicine, avoidance is far preferable to management. Fillers are classified by the US Food and Drug Administration (FDA) as devices, not medications. Therefore, the same precautions taken with other implantable devices apply with dermal fillers. However, the occurrence of posttreatment complications in some patients is inevitable. Reversible HA fillers have the very beneficial quality of responding to hyaluronidase, which allows the physician to simply remove all injected material and start over at a later time. The following complications can be addressed relatively easily if they result from reversible fillers:

1. Volume: too much or too little filler
2. Depth of treatment: filler injected too superficially or too deep
3. Location: unfavorable anatomic location or asymmetry, or injection into the incorrect anatomical location

Problems with irreversible fillers are much more difficult to manage, especially if vital structures have been treated. Excision of filler product may be possible in some areas without causing too much damage to vital structures and minor errors of symmetry or insufficient volume may be addressed by adding more product, but
irreversible fillers cannot easily be removed. Therefore, the author strongly recommends that they not be considered as a first-line choice and should be used only by clinicians with substantial training and experience with these filler agents. Even in the best hands, complications may occur, and this calls for extreme caution, especially when injecting the product around vital facial structures.

Dermal fillers of chemically different families generally should not be injected into the same anatomic location because it may obfuscate any attempt to correlate an adverse reaction with its causative filler. Although literature support for this hypothesis is scant, the author’s clinical experience suggests that HA fillers injected over irreversible fillers (eg, PMMA) may exacerbate/stimulate nodule formation. This may be related to the biofilm hypothesis, which will be discussed later, or to some as yet unknown process. A patient registry failed to illustrate an increased risk of nodules from filler mixing, but the sample size was small and the data set regarding the fillers administered was incomplete.

Factors that may play an important role in the development of foreign body reactions include particle size and degree of smoothness, chemical composition, surface charge, particle concentration, immunogenicity, and hydrophilicity. When we add to these the multiplicity of chemical and physical interactions possible between materials of differing chemical composition that may occur when these materials are simultaneously injected into the same area, we make the task of trying to isolate causal factors ever more difficult. The author believes that some patients with whom he has consulted regarding this phenomenon experienced complications related to the introduction of small numbers of bacteria (particularly atypical organisms, such as mycobacteria) into an area with an existing dermal implant (foreign body), which is consistent with the biofilm hypothesis. Before describing the most commonly seen categories of dermal filler complications and suggesting strategies for management that have been useful in clinical practice, it may be helpful to review the properties of hyaluronidase.

Hyaluronidase

Hyaluronidase (HYAL) is a mucolytic enzyme that hydrolyzes both natural and crosslinked HA dermal fillers. Just as HA appears in so many areas of the human body, HYAL is also thought to play important roles in many natural biochemical processes and has proven useful in clinical medicine. It has been applied, for example, in the dispersion of local anesthetics, administration of resuscitation fluids by hypodermoclysis, and fertility studies. Hyaluronidase was initially isolated from microorganisms and subsequently from bovine testis and most recently by recombinant technology. The biology of HA metabolism is far from understood in animal models, let alone in humans. Furthermore, HYAL is not a single moiety; rather, it represents a family of compounds with similar but not identical effects in mammals. There are 3 distinct groups of HYAL: (1) mammalian, (2) bacterial, and (3) from leeches, crustaceans, and some parasites. Different formulations of HYAL are available for clinical use in different countries, which makes it difficult to describe the correct use of these various products, since activity level varies by type, pH, and a host of other biochemical factors. In some countries, there are no commercial, “pharmaceutical grade” sources of HYAL available. Clinicians in these countries obtain HYAL from compounding pharmacies, from which product variation in purity, stability, and effectiveness creates even more problems for the clinician. Comments in the literature about the dosage, dilution, and subsequent effectiveness of HYAL must be tempered by the understanding that the source of the product is likely unknown, unless it is specified in the article.

Hyaluronidase of the mammalian type generally splits naturally occurring HA into smaller oligomers (mainly hexa- saccharides). However, the biochemical interaction between HYAL and commercially sold, crosslinked HA may be altogether different. The amounts, dilution, and method of administration can thus only be discussed with respect to the specific agent being injected. The literature offers several examples of widely divergent doses, but the author recommends that the actual quantity administered be titrated to effect—that is, to use as much as necessary to achieve the desired clinical results. If there is no history of patient allergy to HYAL or to any of the ingredients, the author uses a starting dose of 150 IU but has also injected up to 1500 IU in cases of vascular compromise. It is important to keep in mind the distinction between animal-sourced and recombinant human HYAL since the associated animal protein in the former may be a source of grief and consternation (causing unintentional immune mediated reactions in some patients).

Hyaluronidase may be diluted with local anesthetics or normal saline, but it is crucial to be watchful of the pH of various diluents since it may adversely affect the efficiency of HYAL. It may be injected directly and slowly into the affected site to initiate hydrolysis of the previously injected HA. Injecting a small amount of suitable local anesthesia will facilitate massage, which is very important in obtaining the therapeutic effect. The nature and quality of the dermal HA filler product are an important consideration for the effectiveness of HYAL. For example, if a particulate form of dermal filler is used (eg, Restylene; Q-Med, Uppsala, Sweden; distributed in North America by Medicis Aesthetics, Scottsdale, Arizona), HYAL can quickly surround the granules of heavily crosslinked HA and hydrolyze the material over a broad surface area, several orders of magnitude larger than that of monophasic products (eg, Juvederm; Allergan, Inc). The latter takes significantly longer to clinically disperse than the former, presumably because of this fundamental biochemical difference. The Restylene family of products is generally produced by creating a crosslinked matrix, which is subsequently separated into particles that are then suspended and lubricated by minimally or completely non-crosslinked HA. The non-crosslinked HA fraction responds immediately (in seconds to minutes) to HYAL, allowing it to surround the small particles. With the Juvederm family of products, HYAL can only affect the outermost surface of the aliquot, taking far longer to break down the HA. In the author’s experience,
massage is essential to mechanically mix the HYAL with the HA and promote hydrolysis in the clinical setting. The author tested these principles in vitro in unpublished work and found that the same phenomenon was easily demonstrable; granular product liquefied very quickly, whereas monophasic product took far longer. Readers are encouraged to verify the veracity of this phenomenon with their own HA filler products, since it is both instructive and has direct clinical application.

Formerly, most HYAL preparations were animal-sourced products, and the literature offers several examples of allergic phenomena occurring in patients treated with retrobulbar blocks associated with ophthalmic surgery. Anaphylaxis has been described following HYAL administration, although this appears to be rare and was likely due to bovine serum proteins in the preparations; reaction may occur even in patients with no known previous exposure. The venom of stinging insects may contain HYAL, and this mechanism may be the source of sensitization in affected individuals.

Hyaluronidase has proven very helpful in the management of many of the complications that may arise from the injection of HA-based dermal fillers. Clinicians are encouraged to have it readily available to treat asymmetry or unfavorable cosmetic outcomes after HA injection, especially in urgent or emergency situations such as impending necrosis due to vascular compromise.

Retroseptal or Premalar Filler Injection

As filling of the infraorbital region (nasojugal area) has become more popular, there has been an increase in accidental retroseptal injection (Figure 1). A similar phenomenon may occur with injections anterior to the orbitomalar septum, as described by Pessa et al., resulting in troubling, persistent premalar edema. The orbital septum may accidentally be penetrated when injecting into the infraorbital area, where filler product may be injected behind the orbital septum or anterior to the orbitomalar septum. This may occur when the injector treats too high, treats too close to the infraorbital rim, injects too deep, accidentally penetrates the septum, or simply injects too much product when the integrity of the septum has been previously breached (as with a popular fat repositioning type of blepharoplasty). This results in the appearance of sometimes dramatic eyelid bags where none existed prior to filler treatment. A similar phenomenon occurs with superficial injections of material anterior to the malar septum, which results in severe premalar edema.

![Figure 1](https://academic.oup.com/asj/article-abstract/33/4/561/2801405)}
After making the diagnosis, treatment of these improper injections consists of careful injection of HYAL into the area and subsequent massage to diffuse the HYAL and bring it into contact with the injected filler. A thorough understanding of the anatomy of each region treated with HA is important and is especially crucial with these injections, as the septum may dip below the bony infraorbital margin.86-89 Hyaluronic acid binds to water,90,91 which may result in significant edema in the retroseptal soft tissues with only a tiny amount of misplaced filler. Good technique involves treating deep to the orbicularis muscle and orbitomalar septum and carefully approaching this area from below to avoid retroseptal injection89 or injection anterior to the orbitomalar septum,85 which may cause premalar edema.

The author has conferred with several patients who experienced these complications after HA treatment and underwent months of ineffective treatment with cardiac drugs, powerful diuretics, compression, steroids, and other interventions. A small dosage of HYAL can sometimes result in dramatic and immediate improvement. Those who have been injected with calcium hydroxylapate (Radiesse; Merz Aesthetics, San Mateo, California) may be treated with injections of sterile water or saline (with or without lidocaine for local anesthesia) along with massage to help to mechanically dilute the material. Permanent fillers are far more difficult to treat in the presence of these complications, and excision may be the only possible remedy in some cases. However, HYAL treatment may produce positive results and involves a gentle injection of 25 to 100 IU into the affected areas followed by gentle massage. Because of the great variability in the various formulations of HYAL available in different regions, many of which are compounded by local pharmacies, it is best to treat to effect, rather than by absolute dosage. In other words, physicians should inject as much HYAL as required to achieve the desired effect. Although both naturally occurring, resident HA as well as artificial HA are affected by HYAL, the former is more sensitive than the latter because artificial HA is always crosslinked to various degrees. It is also important to remember that particulate forms of HA derivatives (such as the Restylane family of products) respond at a faster rate than the monophasic types (such as Juvéderm).

Tyndall Effect
The Tyndall effect (Figure 2) results from injection of HA fillers too close to the surface of the skin, which yields a “blush” discoloration that may be readily treated with HYAL.92-94 The HA filler causes discoloration due to the refraction of light, so that melanin deep in the dermis displays a blue tint, resulting in “Mongolian spots.” The Tyndall effect looks somewhat like a mild but deep bruise (with which it may often be confused); it does not change over time until the material is removed.

Treatment of the Tyndall effect consists of HYAL injection into the surrounding tissues and subsequent gentle massage.92-94 The amount of HYAL that should be injected is not standardized, but the author’s personal experience suggests that 15 to 50 IU produces a good result. Clinical judgment should be exercised while dosage is titrated to effect, again based on varying HYAL formulations. Massage of the material is essential to increase the effect of the enzyme. Only modest pressure is required, and simply rolling a cotton-tipped swab over the tissues is sufficient to disperse HYAL over the area.

Lumps and Nodules
Lumps and nodules can be caused by almost any filler when too much is injected into a small area, for a variety of reasons (Figure 3).30-32,35,37,39-127 For example, if the syringe is “sticky” and the injector places too much pressure on the plunger, a sudden release may accidentally dispense more filler than intended. The resulting lump or nodule is usually easily treated with a simple incision and drainage using a sharp disposable needle (Figure 3).

If nodules due to excess product are multiple or deep, a formal incision and drainage may not be feasible. In such cases, HA products can be treated with HYAL. Capsular contracture around tissue fillers is quite rare, but the author has seen and treated these on occasion. If a large amount of filler has been injected into an area with the “lake technique,” the resulting rare complication may present as a nodule or lump that becomes increasingly prominent as contraction of the capsule creates a spherical shape (analogous to a hardening breast implant capsule). The sphere is formed to hold the largest volume relative to the least surface area, which creates the deformity. This capsule may cause the patient pain and discomfort. A small amount of local anesthesia may be needed to pass a larger-bore needle or 16-gauge Luer-Lok syringe to break through the capsule and aspirate the material within. Hyaluronidase may be administered to clean up whatever remains behind. It may also be administered to attempt to treat nodules that are not responding to aspiration, even in patients who were injected with a material of unknown origin. (It should be noted that patients are only rarely aware of the products they received, and some may not even remember the name of the physician who originally injected them.) Hyaluronidase should be used with caution if infection is suspected, since this may result in spreading of the infection to surrounding areas. Nodules caused by other types of dermal fillers have varied etiology, including incorrect dilution or reconstitution, or incorrect placement or technique.† Simple excision may suffice in straightforward cases, but multiple nodules within vital anatomic structures pose great challenges to surgeons, and often call for unique methods of treatment (Figure 4).128

INFLAMMATORY COMPLICATIONS
Infection
Infection following filler treatment is uncommon but may be caused by bacterial, viral, and *Candida* species.

†References 98, 101, 104, 119, 121, 122, 125.
and it may sometimes occur as polymicrobial infection. The most common viral infection to occur in the skin after injection is herpes simplex. Patients with a strong history of cold sores or fever blisters may be pretreated with acyclovir, famciclovir, or valacyclovir to reduce the severity and duration of cutaneous herpes infections. If there is

Figure 2. (A) Typical appearance of the Tyndall effect following hyaluronic acid injection. The “bluish” discoloration may be confused with persistent bruising in the periorbital tissues; it is also frequently seen in the nasolabial fold region. (B) Typical appearance immediately following treatment with hyaluronidase. (C) Typical appearance approximately 1 week posttreatment.

Figure 3. This 38-year-old woman presented with a submucosal nodule 1 month after hyaluronic acid filler treatment. Puncture (incision and drainage) was performed with a 21-gauge needle.

Figure 4. This 42-year-old woman received an inappropriate volume of PMMA-based permanent filler and presented to the author with multiple nodules along the vermilion. Biopsy confirmed 40 micron microspheres and no abnormal inflammatory response. Treatment options were limited and patient decided against surgical excision because of risk of scarring.
any question of ocular infection, consultation with an ophthalmologist is recommended, since surgical debride-
ment of the cornea may be required. The initial presenta-
tion of clear vesicles in the skin may not be evident in
some cases, and some patients will develop secondary
bacterial infections, further confusing clinical analy-
sis.130,131 In cases where the etiology is uncertain and local
laboratory support is lacking,132 a multipronged approach
is reasonable, utilizing both antibiotics and antiviral
agents. Impetigenized herpes simplex is not uncommon
(Figure 5). Candida species may sometimes complicate
the picture further and should be kept in consideration for
immunocompromised patients and those not responding
to treatment with antiviral agents and antibiotics alone.133

Rarely, patients may present with multiple red, tender
lumps along with signs and symptoms of infection. True
granulomatous inflammation may also be present in multi-
ple, simultaneous sites of involvement since it is a systemic
response (see below). If a single facial abscess occurs, it
would be reasonable to assume that contamination through
the skin occurred during treatment. However, if a patient
presents with multiple abscesses, it is reasonable to assume
that contamination occurred in the syringe prior to injection.
Unfortunately, mixing or reformulating products in less-than-
ideal conditions is a common occurrence in clinics. Dramatic
complications due to microbial contamination of the material
may result from these unfortunate instances (Figure 6).
Abscesses should not be treated with antibiotics alone,
although they may be treated with incision and drainage
alone in the absence of surrounding cellulitis.

Hyaluronidase should not be used in the primary phase
of treatment, due to the risk of spreading the infected
material diffusely into the tissues if active cellulitis is pre-

Biofilms

Biofilms have been implicated in the development of some
filler complications.34,36,38,39,99,134 Because bacteria can
safely hide from immune defenses when ensconced in
their biofilm fortress, antibiotics cannot reach them. As a
result, when conditions are favorable, the bacteria can
come from their planktonic state and reestablish active
infection.38,135,136 Some bacteria secrete a self-made extra-
cellular polymeric substance—a highly protective “slime
layer”—that acts as a form of armor, blocking out the
local environment to the point that antimicrobial drugs are
no longer effective.138,139 Any type of implant, including all
fillers, significantly reduces the threshold at which con-
taminating bacteria can cause infection.140,141 Once a bio-
film has developed, the bacteria have a “safe room,”
and neither the immune system nor drugs or medication can penetrate the protective layer.140 Thus, bacteria can lie dormant for very long periods, only to reawaken and cause more problems once the environment is favorable again. When they do arise from their planktonic state, they can cause granulomatous inflammation, abscesses, nodules, and even full-blown recurrent infection.38 Until the foreign body is completely removed, it is difficult if not impossible to remove the biofilm; the bacteria are irreversibly bound to the foreign material. Furthermore, inflammation may be reactivated by punctures of repeated injections.143 With solid implants, such as hip or knee joint prostheses, it is impossible to completely clean the devices ex vivo, and they must be replaced.144,145 New strategies for addressing this issue in solid implants include drug-eluting implant coatings,146 and future permanent fillers may utilize this strategy. With permanent fillers (eg, PMMA), excision may be the only recourse available. If permanent implants are used in vital structures such as the lips or eyelids, clinical options are limited and difficult choices must be made (Figure 4). The clinician should consider these issues carefully when selecting between permanent or long-lasting fillers in such critical structures. The simplicity of being able to remove HA fillers with HYAL is a very strong benefit.

To date, it has not been conclusively proven that biofilms are involved in granuloma formation, but several recent studies present arguments in favor of this hypothesis.5 One of these has reported detection of bacteria in culture-negative filler lesions.37 Considering that these fillers are analogous to permanent implants, one wonders at the often lackadaisical manner in which they are commonly demonstrated at clinical teaching symposia, sometimes in unsanitary locations such as hotel rooms and auditoriums. Skin preparation prior to injection should follow standard procedure, which has reduced iatrogenic infection for more than 150 years.150 Although no evidence-based studies exist on the correct choice for skin preparation prior to dermal filler injection, it seems prudent to follow guidelines for reduction of health care–associated infection.151-153 These reports recommend the application of 2% chlorhexidine gluconate in 70% alcohol as skin preparation prior to insertion of venous catheters.154 Disposable sterile dressing trays with containers for prep solution, gauze, and disposable sterile drapes are convenient and inexpensive, and they provide a safe, clean work area in an office setting. To date, there is no proof that a simple alcohol swab prep and the use of nonsterile gloves is insufficient in preventing granulomas or filler infections, but the author believes that transferring surgical expertise in sterile technique to the clinic treatment room may further reduce the prevalence of these complications.

An important distinction between nodules and granulomas is that the former is descriptive; it is the correct term whenever a pathological diagnosis is not available. The latter term should only be used when pathological specimens have been obtained and the required pathological criteria for granulomas have been satisfied—typically described in pathology textbooks as clumps of plump macrophages with hematoxylin-stained nuclei, multinucleated giant cells, and sometimes peripheral lymphocytes. Too often, clinicians refer to all nodules as “granulomas” when no histological pathology has been performed. This is an error that results in sloppy planning and treatment. A nodule should not be diagnosed as a granuloma until it has been confirmed as such.

Immune-Mediated (Noninfectious)

When considering the causes of inflammation apart from infection, product sensitivity and immune-mediated inflammation are of particular importance.20,38,101,106,155-158

When Restylane was first formulated, its manufacturer was producing a raw substrate procured from a biologics company that turned out to have an unacceptably high impurity rate. As a result, a moderate number of patients had various inflammatory complications following filler treatment. The company subsequently sourced higher-purity raw materials and significantly reformulated its product. This all occurred prior to FDA approval studies conducted in the United States. The literature is replete with similar stories involving other fillers, many of which moved from country to country, changing names each time to counter reports of AE occurring with earlier formulations. For example, Artefill (Suneva Medical, Inc, San Diego, California) went through several name and formulation changes prior to being approved in the United States. Similar stories can be found with many other products that originated in Eastern European and Asian countries. Somehow, these companies were able to create “clean slates” each time, renaming and tweaking their products as they sought new markets for approval.

As mentioned earlier, sometimes patients are unaware of the nature of the product with which they have been injected. Many patients also forget that they received a specific filler. Therefore, it is important, when possible, to obtain a tissue diagnosis of the problem area. Often, these diagnoses surprise both surgeons and patients, some of whom were not told that they had been injected with silicone, PMMA, or other fillers. Unfortunately, some physicians go as far as to falsify their medical records, and patients in search of a “good deal” are sometimes treated by unlicensed practitioners and are injected with illegal substances such as bathtub caulk, as reported in a recently publicized case that resulted in death.159-160

A large number of publications report granulomatous inflammation involving almost every kind of filler available.5 There appears to be little consistency in the actual definition of *granuloma* in these case reports; some

5References 12, 13, 15, 25, 30-36, 38, 39, 41, 95, 96, 100, 102, 104-108, 110, 113, 117, 119, 120, 123, 124, 127, 128, 158, 162-236.
authors seem to call every solitary nodule a granuloma, whereas others use polymorphonuclear foreign body type giant cells. The pathology of single nodules is different from that of true granulomatous inflammation, which is a systemic response (type IV hypersensitivity reaction). In a true granulomatous process, all sites that were originally injected with filler material appear adversely affected at the same time. If 4 sites on the patient were injected, then all 4 sites typically are involved at presentation. Solitary nodules have multiple possible causes, and if only 1 of several injected sites is affected, one of the alternative explanations should be considered. In other words, this appears to be a systemic process. Thus, it is likely an error in most cases to call a solitary nodule a “granulomatous lesion” because it is not typically pathologically verified as granulomatous inflammation.

The treatment of granulomatous inflammation should begin with an investigation of what agents have been injected. From there, the physician must decide the best pathway to success. Unfortunately, removal of the product that has been diffusely injected into vital structures such as the lips is neither practical nor desirable. The options, then, consist of methods to control the inflammation and halt the process. Once the diagnosis of granulomatous inflammation has been made as a result of treatment history, physical and, if possible, tissue biopsy, options for treatment are serial injection with cortisone or trials with various drugs. The author has found some success in treatment of these lesions with graduated injections of triamcinolone acetonide, starting with intralesional injections of 0.1 mL of a 10-mg/mL solution and then increasing the concentration to 20 mg/mL and 40 mg/mL with repeated injections until effective. Treatment should occur approximately every 4 weeks, and the amount injected should be carefully controlled to prevent posttreatment soft tissue atrophy. Another possible remedy may be 5-florouracil,32,148 but the author has used this only once and is therefore not qualified to discuss its proper administration. The multitude of warnings on the label, as well as the requirement for safe use and disposal of 5-florouracil products, may also discourage others from utilizing it as a first-line choice.

CONCLUSIONS

In this article, common technical errors in the use of dermal fillers and typical inflammatory complications (both immune and those caused by infectious agents) were reviewed. The prevalence of these complications tends to decrease as clinical experience accumulates. Hyaluronic acid dermal fillers have the advantage of being easily treatable with HYAL, which clinicians are encouraged to have readily available. Reversible filler agents have favorable properties in comparison to permanent, irreversible fillers for the treatment of vital facial structures. Avoidance of minor complications after filler procedures can be accomplished with technical “best practices” and detailed anatomical education. Biofilms may play a role in the development of nodules, but surgical preparation and good sterile technique may reduce the incidence of these complications. Detailed knowledge of tissue planes in the periorbital region will reduce the incidence of accidental retroseptal injection, or injection anterior to the orbitomalar septum (which causes premalar edema). Importantly, being prepared for emergencies should reduce the severity of adverse outcomes due to improper injection of HA and other filler products.

Disclosures

The author is a medical director, paid consultant, and a member of the speakers bureau for Merz Pharma Canada Inc (Burlington, Ontario), Allergan Canada Inc (Markham, Ontario), Medicis Aesthetics Canada Ltd (Toronto, Ontario), Ethicon Endo-Surgery Inc (Cincinnati, Ohio), and Baxter International Inc (Deerfield, Illinois).

Funding

The author received no financial support for the research, authorship, and publication of this article.

REFERENCES

