General relativistic electromagnetic fields of a slowly rotating magnetized neutron star – II. Solution of the induction equations

Olindo Zanotti and Luciano Rezzolla

1SISSA, International School for Advanced Studies, Via Beirut 2–4, 34014 Trieste, Italy
2INFN, Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy

Abstract

We have solved numerically the general relativistic induction equations in the interior background space–time of a slowly rotating magnetized neutron star. The analytic form of these equations was discussed recently (Paper I), where corrections due to both the space–time curvature and the dragging of reference frames were shown to be present. Through a number of calculations we have investigated the evolution of the magnetic field with different rates of stellar rotation, different inclination angles between the magnetic moment and the rotation axis, as well as different values of the electrical conductivity. All of these calculations have been performed for a constant-temperature relativistic polytropic star and make use of a consistent solution of the initial-value problem which avoids the use of artificial analytic functions. Our results show that there exist general relativistic effects introduced by the rotation of the space–time which tend to decrease the decay rate of the magnetic field. The rotation-induced corrections are however generally hidden by the high electrical conductivity of the neutron star matter, and when realistic values for the electrical conductivity are considered, these corrections become negligible even for the fastest known pulsar.

Key words: relativity – stars: magnetic fields – stars: neutron – stars: rotation.

1 Introduction

Irrespective of the origin of magnetic fields in neutron stars, whether produced by thermoelectric effects active in a thin layer below the star surface when the temperature is much above 10^6 K (see, for instance, Wiebicke & Geppert 1996), or by a dynamo action during the earliest stages of the convective motions (see Thompson & Duncan 1993), or by post-core-collapse accretion of fall-back material after a supernova explosion giving rise to a neutron star, a secular decay of the magnetic field is expected as a result of the finite electrical conductivity of the stellar matter. The theoretical research in this area is intense, pushed on by the observational evidence that magnetic fields in neutron stars are decreasing with increasing spin-down age. There is now a general consensus about the possibility of improving the present knowledge of the internal structure of neutron stars by using the constraints from observations of the magnetic field decay. This justifies the effort of taking into account all of the possible factors that are supposed to play a role during the decay of the magnetic field.

Particularly interesting within this context are the general relativistic corrections induced by the presence of a strongly curved background space–time. These corrections have been investigated by a number of authors (Ginzburg & Ozernoy 1964; Anderson & Cohen 1970; Petterson 1974; Gupta et al. 1998; Konno & Kojima 2000) and with a number of different approaches, some of which are more rigorous (Geppert, Page & Zannias 2000) than others (Sengupta 1995, 1997). In recent related works, Rezzolla et al. (2001a,b) have performed a detailed analysis of Maxwell’s equations in the external and internal background space–time of a rotating magnetized conductor. As a result of this analysis, it was possible to show that, in the case of finite electrical conductivity, general relativistic corrections due to both the space–time curvature and the dragging of reference frames are present in the induction equations. Moreover, when the stellar rotation is taken into account, each component of the magnetic field is governed by its own evolutionary law, thus removing the degeneracy encountered in the case of non-rotating space–times. The purpose of this paper, which is the natural extension of the work in Rezzolla et al. (2001a, hereafter Paper I), is to quantify the general relativistic effects related to rotation on the evolution of the magnetic field. We have therefore solved numerically the general relativistic induction equations derived in Paper I for a relativistic polytropic star with different values of the rotation.
period and of the electrical conductivity. Each of the several calculations performed here benefits from the consistent solution of the initial-value problem for a magnetic field which is initially permeating a perfectly conducting relativistic star. This approach avoids the use of artificial initial data and provides a more accurate solution of the induction equations.

Overall, our results show that the rotation of the star and of the background space–time introduce a decrease in the decay rate of the magnetic field. In general, however, the rotation-induced corrections are hidden by the high electrical conductivity of the neutron star matter and are effectively negligible even for the fastest known pulsar. Also in the absence of rotation, the space–time curvature introduces modifications to the evolution of the magnetic field when compared with the corresponding evolution in a flat space–time. These modifications depend sensitively on both the metric functions of the interior space–time and on the radial profile of the electrical conductivity. If the star is modelled as a polytrope and the electrical conductivity is assumed to be uniform in space and time, the space–time curvature generally increases the decay rate of the magnetic field as compared to the flat space–time case, with this increase being dependent on the compactness of the star.

The paper is organized as follows. In Section 2 we discuss our treatment of the internal structure of the star in the limit of slow rotation. Section 3 is devoted to the solution of the induction equations derived in Paper I, with some emphasis on the numerical aspects and in particular on the initial-value problem. We show our results in Section 4, whereas Section 5 contains the conclusions. Throughout, we use a space-like signature \((-, +, +, +\)) and a system of units in which \(G = c = M_\odot = 1\). (However, for those expressions of astrophysical interest, we have written the speed of light explicitly.) Partial spatial derivatives are denoted with a comma.

2 STELLAR STRUCTURE

The background metric of a stationary, slowly rotating star at first order in the angular velocity \(\Omega\) is given by

\[
dx^2 = -e^{2\phi(r)} \dr^2 + e^{2\Lambda(r)} \rr^2 - 2o(r) \rr^2 \sin^2 \theta \dr \dd \phi + \vr^2 \sin^2 \theta \dd^2, \tag{1}
\]

where \(o(r)\) is the angular velocity of a free-falling inertial frame. For realistic values of the stellar magnetic field (i.e. \(B = 10^{11} - 10^{13} \text{G}\)) we can neglect the contribution of the electromagnetic fields to the background space–time geometry and determine the internal structure of the star and its interior space–time after solving the following system of ordinary differential equations (Tolmann 1939; Oppenheimer & Volkoff 1939; henceforth TOV system)

\[
\begin{align*}
\frac{\dd \phi}{\dd r} & = -\frac{(\vr + e(\vr + 4\pi \vr \vr - \vr))}{r^{1(1 - 2m/r)}}, \\
\frac{\dd m}{\dd r} & = 4\pi \vr^2 e, \\
\frac{\dd \vr}{\dd r} & = \frac{m + 4\pi \vr^3 r}{r^{1(1 - 2m/r)}} = -\frac{1}{2}\vr \left(1 + \frac{\vr}{r}\right)^{-1},
\end{align*}
\tag{2}
\]

where \(p(r)\) is the pressure, \(e(r)\) is the energy density and \(m(r)\) is the mass enclosed within \(r\). Once an equation of state has been chosen, the TOV system can be solved numerically together with the differential equation for the Lense–Thirring angular velocity \(\omega(r)\) in the internal region of the star

\[
\frac{1}{r^3} \frac{\dd}{\dd r} \left[r^4 e^{-(\phi + \Lambda)} \frac{\dd \omega}{\dd r}\right] + 4 \frac{\dd (e^{-(\phi + \Lambda)})}{\dd r} \omega = 0, \tag{3}
\]

where \(\Omega = \Omega - \omega\). After selecting a value for the central rest-mass density, the set of differential equations (2)–(3) is solved from the centre of the star until the pressure vanishes, thus determining the radius \(R\). For the integration of equation (3), the solution near the centre of the star is simplified if we use the analytic power series expansion \(\omega = \omega_c = 1 + 8\pi(e_c + p_c) r^2 / 5\), valid for \(r \to 0\) and where the label ‘c’ refers to a quantity at the centre of the star (Miller 1977). Since in the vacuum region of space–time external to the star \(o(r) = 2J / r^3\), with \(J\) being the total angular momentum, we can determine the two unknown quantities \(J\) and \(\omega_c\) by imposing continuity of the angular velocity and of its first derivative at the surface.

The interior of the star influences the magnetic evolution through its macroscopic properties, by affecting the magnetic quantities that enter the induction equations, or microscopically, through the electrical conductivity \(\sigma\) which, in turn, depends on the star’s temperature and chemical composition (see Urpin & Konenkov 1997; Page, Geppert & Zanniis 2000). Our attention here is mainly focused on assessing the contribution coming from rotational effects in general relativity on the decay of the magnetic field.\(^1\) As a consequence, we will neglect the thermal and rotational evolution of the neutron star and simply consider an electrical conductivity that is constant in time and uniform in space. This is an approximation, but a necessary one to disentangle the many different effects that intervene in the general relativistic evolution of the magnetic field. Furthermore, as will be discussed in Section 4, the assumption of a uniform electrical conductivity does not affect the role of a rotating background space–time in the evolution of the magnetic field.

We model our relativistic stars as polytropes with equation of state

\[
p = K\vr^{1 + 1/N}, \tag{4}
\]

\(^1\) It should be mentioned that general relativistic corrections can appear also in the constitutive relations of the Maxwell equations, such as in the general relativistic form of Ohm’s law (Ahmedov 1999). These corrections are usually negligible in the electrodynamics of relativistic stars and will be neglected here.

© 2002 RAS, MNRAS 331, 376–388
where \(\rho, K \) and \(N \) are the rest-mass density, the polytropic constant and the polytropic index, respectively. As the ‘fiducial’ model of a neutron star we consider a polytrope with index \(N = 1 \), polytropic constant \(K = 100 \) and central rest-mass density \(\rho_c = 1.28 \times 10^{-3} \). In this case, the radius \(R \) and the total mass \(M \) obtained through the solution of the TOV system are respectively \(R = 14.15 \) km and \(M = 1.40 M_\odot \), yielding a compactness ratio \(\eta = 0.29 \). The rotation period usually chosen for this model is \(P = 10^{-3} \) s.

\section{Evolution of the Internal Magnetic Field}

As mentioned in the Introduction, the presence of the stellar rotation lifts the degeneracy found in the case of a non-rotating star (Geppert et al. 2000) and three distinct induction equations regulate the general relativistic evolution of the magnetic field. In this section we discuss the solution of the induction equations for each of the magnetic field components. The main difficulties encountered in the numerical solution are related to the definition of a consistent initial-value problem and to the complex nature of the partial differential equations when a misalignment between the rotation axis and the magnetic dipole moment is present. In the following we discuss the strategies adopted to handle these difficulties.

\subsection{The relativistic induction equations}

The induction equations for the magnetic field of a slowly rotating relativistic star with finite electrical conductivity have been derived in Paper I and we briefly recall them here for completeness. All the measurements are performed in the orthonormal tetrad frame of a ‘zero angular momentum observer’ (ZAMO) and we assume that the spatial components of the magnetic field four vector in this frame are solutions of the Maxwell equations in the separable form

\begin{align}
B^1(r, \theta, \phi, \chi, t) &= F(r, t)\Psi_1(\theta, \phi, \chi, t), \\
B^2(r, \theta, \phi, \chi, t) &= G(r, t)\Psi_2(\theta, \phi, \chi, t), \\
B^3(r, \theta, \phi, \chi, t) &= H(r, t)\Psi_3(\theta, \phi, \chi, t),
\end{align}

where \(F, G, H \) and \(\Psi_1, \Psi_2, \Psi_3 \) account for the radial and angular dependences, respectively. Here, \(\chi \) is the inclination angle of the stellar magnetic dipole moment relative to the rotation axis and the time dependence in \(F, G, H \) is here due to the fact that we are not considering an infinite electrical conductivity but are allowing the magnetic dipole moment to vary in time.

At first order in \(\Omega \), the angular eigenfunctions \(\Psi_i \) are not affected by general relativistic corrections and assume the flat space–time expressions

\begin{align}
\Psi_1 &= \cos \chi \cos \theta + \sin \chi \sin \theta \cos \lambda(t), \\
\Psi_2 &= \cos \chi \sin \theta - \sin \chi \cos \theta \cos \lambda(t), \\
\Psi_3 &= -\sin \chi \sin \lambda(t),
\end{align}

where \(\lambda(t) = \phi - \Omega t \) is the instantaneous azimuthal position (see fig. 1 of Paper I). Assuming that the contributions of electric currents are negligible, the general relativistic evolution equations for the radial eigenfunctions \(F(r, t), G(r, t) \) and \(H(r, t) \) are

\begin{align}
\frac{\partial F}{\partial t} \sin \theta &= \frac{c^2}{4\pi\sigma r^2} \left\{ \sin \chi \cos \lambda - 2 \left[(e^\Phi rG - H) \right] \sin \chi \cos \lambda - 2 \left[(e^\Phi rG) \right] \sin \chi \sin \lambda \left[(\omega r(H - G)) \right] \right) (1 - 2 \sin^2 \theta) \\
&+ 2 \omega e^{-\Phi} (e^\Phi rG) \sin \lambda \sin \lambda \sin \lambda \left((\omega r(H - G)) \right) \right) (1 - 2 \sin^2 \theta), \\
\frac{\partial G}{\partial t} &= \frac{c^2}{4\pi\sigma r^2} \left\{ \cos \chi \sin \lambda \left[(\omega r(H - G)) \right] \cos \lambda + \omega \right\} (e^\Phi rH) \sin \chi \sin \lambda \left((\omega r(H - G)) \right) \right) (1 - 2 \sin^2 \theta), \\
\frac{\partial H}{\partial t} \sin \lambda &= \frac{c^2}{4\pi\sigma r^2} \left\{ (e^{-\Phi} (e^\Phi H)) \right) \sin \lambda \sin \lambda \sin \lambda \left((\omega r(H - G)) \right) \right) (1 - 2 \sin^2 \theta). \\
\end{align}

Together with the evolution equations (11)–(13), the scalar functions \(F, G \) and \(H \) also satisfy the constraint condition of zero divergence for the magnetic field

\[(r^2 F)_{,r} + 2 (e^\Phi rG) \sin \theta (\cos \chi \cos \theta + \sin \chi \sin \theta \cos \lambda) + \Phi (H - G) \sin \chi \cos \lambda = 0.\]
A rapid look at equations (11)–(13) shows that in a rotating space–time the evolution of the poloidal and toroidal components are correlated and that an initially purely poloidal magnetic field can gain a toroidal component during its evolution and vice versa. In the case of a non-rotating star, on the other hand, the three induction equations (11)–(13) are not independent and the magnetic field evolution is described by a single scalar function, F (see Geppert et al. 2000).

3.2 Strategy of the numerical solution

The numerical solution of equations (11)–(13) is simplified if done in terms of the new quantities

\[F = r^2 F, \]
\[\tilde{G} = e^{\Phi} r G, \]
\[\tilde{H} = e^{\Phi} r H, \]

which, when the inclination angle χ is non-zero and the electrical conductivity is uniform, allow us to rewrite equations (11)–(13) schematically as

\[\frac{\partial \tilde{F}}{\partial t} = f_1 \tilde{F}_{,r} + f_2 \tilde{F}_{,r} + f_3 \tilde{F} + f_4 \tilde{H}_{,r} + f_5 \tilde{G} + f_6 \tilde{G}_{,r}, \]
\[\frac{\partial \tilde{G}}{\partial t} = g_1 \tilde{G}_{,r} + g_2 \tilde{G}_{,r} + g_3 \tilde{G} + g_4 \tilde{F}_{,r} + g_5 \tilde{F} + g_6 \tilde{H}_{,r} + g_7 \tilde{H}, \]
\[\frac{\partial \tilde{H}}{\partial t} = h_1 \tilde{H}_{,r} + h_2 \tilde{H}_{,r} + h_3 \tilde{H} + h_4 \tilde{F}_{,r} + h_5 \tilde{F} + h_6 \tilde{G}. \]

Explicit expressions for the set of coefficients f_i, g_i, h_i can be found in Appendix A. For $\chi \neq 0$, the coefficients f_i, g_i, h_i have terms that are time-dependent trigonometric functions of Ωt and, as a result, each of the equations (18)–(20) is not a simple parabolic equation describing a pure diffusive phenomenon. In addition to a secular Ohmic decay, in fact, there will be a periodic modulation produced by the rotation of the star. This is evident if we look, for instance, at the coefficient f_1 in Appendix A and which is given by the sum of two terms. The first one is the constant ‘diffusion’ coefficient responsible for the decay on a secular time-scale. The second term, on the other hand, represents the correction due to the stellar rotation. The periodic modulation is produced by the trigonometric function $\tan \lambda$ and varies therefore on the dynamical time-scale set by the rotation period of the star, P. The presence of these periodic terms spoils the parabolic character and makes the set of equations (18)–(20) a mixed hyperbolic–parabolic one.

Although the integration of equations (18)–(20) is complicated in the general case, we are here favoured by the fact that all of the terms proportional to Ω or to ω (i.e. all of the terms directly related to the stellar rotation) scale like σ^{-2} and that the electrical conductivity in realistic neutron stars is very high, ranging in the interval $10^{21}–10^{28}$ s$^{-1}$. As a result, the star’s rotation period is about 20 orders of magnitude smaller than the secular time-scale and can be ignored in the numerical solution of the equations. In practice then, we set all of the periodic time-varying terms to be constant coefficients and solve the set of equations (18)–(20) as a purely parabolic system. In this way we can capture the secular decay without having to pay attention to the high-frequency modulation. In Section 4, where we discuss the results of the numerical integration of the induction equations (18)–(20), we will also comment on the validity of this procedure.

Another important aspect of the numerical solution is the use of the zero-divergence constraint equation (14). We do not need, in fact, to integrate in time all of the equations (18)–(20), but can restrict the evolution to two of them and obtain, at each time-step, the remaining unknown radial eigenfunction from the solution of the constraint equation (14). Adopting this strategy in the numerical solution reduces the computational costs and, most importantly, enforces a constrained solution at each time-step.

Having three induction equations, we can follow the decay of each component of the magnetic field separately. The physically relevant quantity is, however, the modulus of the magnetic field, which, in the locally flat space–time of the ZAMO observer, is simply given by $|\mathcal{B}| = |(B^r)^2 + (B^\phi)^2 + (B^\theta)^2|^{1/2}$. The evolution of this quantity, evaluated at the surface of the star, is the one that will be discussed in the remainder of this paper.

3.3 The initial-value problem

The consistent solution of the initial-value problem for the general relativistic decay of the magnetic field in a rotating neutron star suffers from two difficult aspects. The first one is that at present the initial topology and location of the magnetic field in neutron stars can only be argued on the basis of some assumptions, so that the magnetic field can either permeate the entire star, or be confined in a layer close to the stellar surface. The first configuration is more plausible if the magnetic field is the final product of a dynamo action amplification (see Thompson & Duncan 1993), while the second field configuration is more realistic in a scenario in which the magnetic field is originated by thermoelectric effects (Urpin, Levshakov & Yakovlev 1986; Wiebicke & Geppert 1996). We here focus our attention mostly on the case of a
magnetic field permeating the entire star, but in Section 4 we also show how the decay of the magnetic field depends on the depth of penetration inside the star, when simplified assumptions on the microphysics at the crust–core boundary are made.

The second difficult aspect of the initial-value problem concerns the definition of an initial configuration which is also solution of the general relativistic Maxwell equations. A possible approach to this problem is the one proposed by Geppert et al. (2000; but see also Sang & Chanmugan 1987), who have considered the initial magnetic field to be described by Stoke functions that represent, in flat space–time, a class of exact solutions of the induction equation. In this case, the radial eigenfunction \(\tilde{F}(r) \) at the initial time can be obtained from

\[
\tilde{F}(r) = B_0 \left[\frac{\sin(\pi r/R) - \cos(\pi r/R)}{\pi} \right] e^{-\eta r^2/4R^2}, \quad 0 \leq r \leq R,
\]

for \(t = 0 \), where \(B_0 \) is the initial surface magnetic field at the magnetic pole. Because equation (21) is not a solution of the general relativistic Maxwell equations, one expects an initial error to be introduced in the solution of the induction equations, but also that this error should disappear rapidly as the solution tends to the one satisfying the Maxwell equations.

To circumvent the problem of an inaccurate solution during the initial stages of the evolution, and in order to calculate an initial magnetic field that is a solution of the relativistic Maxwell equations, we here treat the initial magnetic field as the one permeating a perfectly conducting medium. In this case, Rezzolla et al. (2001a,b) have shown that consistent radial eigenfunctions can be obtained after solving the following set of equations [see equations (71)–(73) of Paper I]

\[
F_r + 2e^{\Lambda - \Phi} \hat{G} = 0, \tag{22}
\]

\[
\hat{H}_r + \frac{e^{\Phi + \Lambda}}{r^2} \tilde{F} = 0, \tag{23}
\]

\[
\hat{H} - \hat{G} = 0. \tag{24}
\]

In particular, combining equations (22) and (23), we obtain a second-order differential equation for the unknown radial eigenfunction \(\tilde{F} \)

\[
\frac{d^2 \tilde{F}}{dr^2} + \frac{d}{dr}(\Phi - \Lambda) \frac{d\tilde{F}}{dr} - 2e^{2\Lambda} \frac{\tilde{F}}{r^2} = 0. \tag{25}
\]

Equation (25) can be solved as a two-point boundary-value problem after specifying values for the magnetic field at the edges of the numerical grid. More specifically, the initial magnetic field at the inner edge of the grid is chosen to be zero both when the magnetic field permeates the whole star and when it is confined to a crustal layer. On the other hand, the initial magnetic field at the outer edge of the grid is chosen to match a typical surface magnetic field for a neutron star and is therefore set to be \(B_0 = 10^{12} \) G. Once the initial profile for \(\tilde{F} \) has been calculated through equation (25), the corresponding initial values for \(\hat{G} \) and \(\hat{H} \) follow immediately from equations (22) and (24). As a
3.4 Boundary conditions

In order to solve the induction equations (18)–(20) correctly, it is essential that appropriate boundary conditions are specified both at the inner edge of the computational domain as well as at the stellar surface.

As for the initial-value problem, the inner boundary condition imposed during the evolution is that of a zero magnetic field and is applied both when the magnetic field permeates the whole star and when it is confined to the crust. In the first case, this choice guarantees a regular behaviour of the radial eigenfunctions at the origin, while it reflects the absence of magnetic field below the crust in the second case. The evolution of the magnetic field has been shown to be quite sensitive to the boundary conditions imposed at the stellar surface, but proper boundary conditions can be obtained if we assume that there are no electrical currents on the surface and impose a matching between the external and the internal solutions of the magnetic field. The radial eigenfunctions \(F(r) \), \(G(r) \) and \(H(r) \) outside the slowly rotating relativistic star have been derived in Paper I (see equations 90–92 therein) and are given by

\[
\tilde{G}(r) = \frac{3N^2}{4M} \left(r \ln N^2 + 1 + \frac{1}{N^2} \right) \mu, \tag{27}
\]

\[
\tilde{H}(r) = \tilde{G}(r), \tag{28}
\]

where \(N(r) = (1 - 2Mr)^{1/2} = e^\psi \) and \(\mu \) is the magnetic dipole moment. Since the constraint expressed by equation (22) holds also on the stellar surface, we then have

\[
\tilde{F}_r|_R + 2 \varpi - \Phi \tilde{G}(R) = 0. \tag{29}
\]

Moreover, when electrical surface currents are not present, we can use equations (26) and (27) to express \(\tilde{G}(R) \) as

\[
\tilde{G}(R) = -\left(\frac{\tilde{N}^2 M}{R^2} \right) \frac{R \ln \tilde{N}^2 M + 1}{\ln N^2 + 2M(1 + M/R)} \tilde{F}(R), \tag{30}
\]

where \(\tilde{N} = N(r = R) \). Straightforward calculations allow us to conclude that

\[
R\tilde{F}_r|_R = \Pi(\eta)\tilde{F}(t, R), \tag{31}
\]

where \(\Pi(\eta) \) is a constant given by

\[
\Pi(\eta) = \frac{4 \ln(1 - \eta) + 2 \eta}{2 \ln(1 - \eta) + 2 \eta + \eta^2}, \tag{32}
\]

with \(\eta = 2Mr/R \) being the compactness of the star. The corresponding boundary conditions for \(\tilde{G} \) and \(\tilde{H} \) are then easily obtained by means of equations (28) and (30).

Note that equation (31) coincides with the boundary condition used by Geppert et al. (2000) in the case of a static, spherically symmetric background geometry. This is due to the fact that, as discussed in Paper I, the corrections to the components of the magnetic field enter at orders higher than the first one in \(\Omega \). Details on the numerical implementation of the surface boundary conditions are presented in Appendix B.

4 NUMERICAL RESULTS

In order to integrate the set of induction equations (18)–(20), we have built a numerical code that implements the Crank–Nicholson implicit evolution scheme and provides second-order accuracy in both space and time (see Morton & Mayers 1994). The accuracy of the code has been checked by computing the time evolution of equation (21), which provides, in a flat space–time, an exact solution of the induction
equation. The results obtained indicate that the relative error between the numerical and the analytic solutions over a time-scale of three Newtonian Ohmic times, \(t_{\text{ohm}} = 4\pi R^2 \sigma c^2 / \dot{\Omega} \), is always below 0.5 per cent for the level of grid resolution usually implemented in our calculations.

Having established the consistency and accuracy of the code, we have proceeded to solve the general relativistic induction equations for our relativistic rotating star. As mentioned in Section 3.2, if the inclination angle between the rotation axis and the dipolar magnetic moment is non-zero, the secular decay has a periodic modulation due to the stellar rotation. We have also discussed why, because the decay time-scale and the rotation period time-scale differ by about 20 orders of magnitude, we can neglect the time dependence (which is \(\propto \sin \lambda \)) contained in each of the coefficients \(f_i, g_i \) and \(h_i \), and set the periodic terms equal to an arbitrary constant value. To validate this procedure and verify that the periodic modulation does not affect the secular evolution, we have solved the induction equations using different constant coefficients and found that the secular results are indeed insensitive to the value chosen for the constant coefficients. We have also followed the solution of the complete set of equations (18)–(20) (i.e. not considering the time-periodic terms as constant) on a time-scale that is longer than the dynamical time-scale but still much smaller than the secular one. Also in this case we have verified that the modulated evolution, which is superimposed on the secular one, shows a small decrease corresponding to the secular decay.

Our discussion of the results starts by comparing the evolution of equations (18)–(20) for the two different prescriptions of the initial-value problem discussed in Section 3.3 (cf. Fig. 1) for our fiducial neutron star. Before presenting the results of the comparison, it is useful to discuss briefly the subtleties related to the measure of the magnetic field time decay; as will become apparent later, this is an important issue, which might lead to seemingly conflicting results. The gauge freedom inherent in the theory of general relativity allows for the choice of arbitrary observers with respect to which the measure of physically relevant quantities is made. The choice of a certain class of observers might rely on the mathematical advantages that this class may have, but not all observers are physically suitable observers. Locally inertial observers are certainly preferable, and in a rotating space–time, such as the one considered here, ZAMO observers represent a natural choice. Of course, there is an infinite number of such observers, each one performing his own measure of the magnetic field decay, so that one should then select a specific set of inertial observers on the basis of physical considerations. The results presented in this paper will be referred to a ZAMO observer on the surface of the star and at a latitude \(\theta = \pi / 2 \). The values of the magnetic field measured by this observer and its time evolution can then be converted to the equivalent ones measured by other ZAMOs at different radial and polar positions through simple transformations involving the difference in the redshifts and latitudes. Once the choice of a suitable class of inertial observers is made, it is also important that the results of the general relativistic magnetic field decay are expressed using appropriate units. In their work, Geppert et al. (2000) have quantified the decay of magnetic field in a relativistic constant-density, non-rotating star in terms of the Newtonian Ohmic time. As we shall show below, while this choice is acceptable for a constant-density star, it could be misleading in general.

The two solutions of equations (18)–(20) are presented in Fig. 2 and show the decay of the magnetic field, rescaled on a time-scale \(t_9 = 10^9 \text{yr} \). It is interesting to note that, while the asymptotic decay rates of the magnetic field are almost the same for the two approaches, a final difference emerges. This is because, when using Stoke’s function as initial data, the evolution does not satisfy Maxwell’s equations during the initial stages (see the small inset in Fig. 2), but settles on to a constrained solution only after that time. Moreover, the outer
boundary conditions expressed by equations (30) and (31) cannot be satisfied exactly by Stoke’s function, and this introduces an additional error. As a result, after a time $t < t_9$ yr, the two solutions differ by about 45 per cent, but this difference does not grow further in time.

Next, we discuss the effects introduced by the rotation of the star and of the space–time. In this case it is worth distinguishing the interest in finding a general relativistic correction, from the impact that these corrections actually have on the magnetic field decay in a realistic rotating neutron star. As discussed in Section 3.2, the high value of the electrical conductivity in realistic neutron stars tends to make the general relativistic corrections due to rotation rather minute. In particular, we have found that, when considering an electrical conductivity $\sigma = 10^{25} \text{s}^{-1}$ in a rapidly rotating neutron star with 1 ms rotation period, the relative difference in the magnetic field after $15t_9$ yr is only one part in 10^{12}. Nevertheless, general relativistic, rotation-induced corrections have an interest of their own and these corrections can be more easily appreciated if smaller (and therefore less realistic) values of the electrical conductivity are considered. In particular, we have found that, when considering an electrical conductivity $\sigma = 10^5 \text{s}^{-1}$ in a rapidly rotating neutron star with 1 ms rotation period, the relative difference in the magnetic field after 15 t_9 yr is only one part in 10^{12}. Nevertheless, general relativistic, rotation-induced corrections have an interest of their own and these corrections can be more easily appreciated if smaller (and therefore less realistic) values of the electrical conductivity are considered. In Fig. 3 we show the relative difference in the evolution of a magnetic field in a non-rotating star, B_{nonrot}, and in a rapidly rotating one with a millisecond period, B_{rot}. In this case and just for illustrative purposes, an electrical conductivity $\sigma = 10^5 \text{s}^{-1}$ has been considered. As can be appreciated from the figure, the corrections due to the rotation decrease the rate of decay of the magnetic field, and after a few rotation periods, the rapidly rotating star will maintain a magnetic field that is about a factor of 2 larger than the one calculated for the non-rotating star. Overall, the results obtained indicate that general relativity does introduce, through the rotation of the space–time, new corrections to the evolution of the magnetic field, slightly decreasing its decay rate. This effect, however, is usually hidden by the high electrical conductivity of the stellar medium and can be neglected in general. The results discussed above depend also on the inclination between the rotation axis and the magnetic dipole moment, with the decrease rate being larger for larger inclination angles. In particular, for $\chi = \pi/2$, the residual magnetic field after $10t_9$ yr is smaller of a factor of 2 compared to the corresponding magnetic field for an inclination $\chi = 0$.

Next, we compare the results of our calculations for a polytropic relativistic star with those for a constant-density star. This will provide a first qualitative estimate of the importance of the metric functions in the actual evolution of the magnetic field. The results are presented in Fig. 4, with the left panel referring to a constant-density model and the right one to our fiducial polytropic model.

In the case of a constant-density star, we confirm the results obtained by Geppert et al. (2000) and find that the evolution of the magnetic field approaches an exponentially decaying behaviour, with an asymptotic decay rate which is generally decreasing with increasing stellar compactness. The inset in the left panel of Fig. 4 shows in more detail the initial stages of the magnetic field decay and allows one to appreciate that the magnetic field evolution initially follows an exponential decay with decay rates that are quite large but then reach an asymptotic value after about 10^8 yr (Geppert et al. 2000).

In the case of a polytropic star, on the other hand, the results in the right panel of Fig. 4 show a behaviour that is opposite to the one encountered for a constant-density model and the asymptotic decay rate of the magnetic field is increasing with increasing stellar compactness. When a uniform electrical conductivity is used, the explanation behind the two distinct behaviours has to be found in the deviations that emerge in the internal space–time for the two stellar models and in particular in the first radial derivatives of the metric functions Φ and Λ (cf. equations 2–3). These deviations produce noticeable quantitative differences in the coefficients of equations (18)–(20) (see Appendix A for the explicit form of the coefficients), which are then responsible for the increase in the decay rate. It should also be remarked that the behaviour shown in the left panel could be easily reproduced, also in the case of a polytropic model, by means of a suitably defined electrical conductivity. In other words, the results presented in Fig. 4 underline that a definitive conclusion on the general relativistic...
The evolution of the magnetic field cannot be drawn until a more realistic treatment of the electrical conductivity and of the equation of state is made.

The inset in the left panel of Fig. 4 can be used to explain the comment made above on the use of relevant normalization units. In the inset, we have plotted the same evolution shown in the main panel but with the time being normalized in terms of the Newtonian Ohmic time. Note that, when we do so, the overall behaviour is inverted and the decay rate of the magnetic field is now decreasing for increasing stellar compactness. This is clearly incorrect and the misleading behaviour is due to the fact that the concept of an Ohmic time-scale as normalizing unit can lead to erroneous interpretations.

Figures 4 and 5. Decay of the surface magnetic field as measured by a ZAMO observer on the surface of the star at a latitude $\theta = \pi/2$, expressed on a time-scale $t_0 = 10^9$ yr. The left panel refers to a constant-density stellar model and shows an asymptotic decay rate of the magnetic field that is decreasing for increasing values of the stellar compactness. The inset in the left panel focuses on the initial stages of the evolution when the decay is larger. The right panel, on the other hand, refers to an $N = 1$ polytropic stellar model and shows an asymptotic decay rate that is increasing for increasing values of the stellar compactness. Here the central density is the free parameter determining the stellar compactness. The small inset in the right panel of the figure shows how the use of an Ohmic time-scale as normalizing unit can lead to erroneous interpretations.
one and is therefore justified only in a Newtonian context. A more suitable normalizing unit for a non-rotating relativistic star would be the general relativistic analogue of the Newtonian Ohmic time, \(\tau_{\text{Ohm}} = 4\pi R^2 c^3 \mu^* \sigma / c^2 \), as can be derived from equations (18)–(20) in the limit \(\Omega = 0 \). Using this normalization, we would recover the correct behaviour, with a magnetic field asymptotic decay rate generally increasing with stellar compactness. Unfortunately the validity of \(\tau_{\text{Ohm}} \) is limited to non-rotating stellar models only. Because of the difficulties of defining an Ohmic time-scale for the induction equations of a relativistic rotating star, we measure the magnetic field evolution simply in terms of the time measured by our ZAMO observer.

Finally, we discuss the differences introduced in the decay of the magnetic field when the latter is confined to a spherical shell between an inner radius \(R_{\text{in}} \) and the surface of the star. In this case, the initial values for the radial eigenfunctions are calculated self-consistently along the procedure discussed in Section 3.3. In Fig. 5 we show the evolution of the magnetic field in our fiducial neutron star for different values of the parameter \(q = R_{\text{rot}} / R \). Note that decreasing the volume in which the magnetic field is confined has the effect of increasing the decay rate of the magnetic field, so that, if the initial magnetic field permeates about 90 per cent of the stellar volume (\(q = 0.5 \)), the residual surface magnetic field after 10\(t_0 \) yr is about a factor of 30 smaller than in the case when the magnetic field permeates the whole star (\(q = 0 \)). Although our analysis does not take into account the microphysics of the stellar interior and in particular the role played by chemical composition and temperature, it confirms the Newtonian results of Urpin & Konenkov (1997) and those of Page et al. (2000), who have shown that the magnetic field decay is slower for deeper magnetic field penetration (see also Konenkov & Geppert 2001). Because this behaviour mimics the increase in the decay rate produced by an increasing compactness of the stellar model, it is essential to be able to determine, prior to observations, the geometry and location of the magnetic field within the neutron star and to distinguish the different contributions to the overall magnetic field decay.

5 CONCLUSIONS

In a recent paper, Rezzolla et al. (2001a) have considered the general relativistic description of the electromagnetic fields of a slowly rotating, magnetized and misaligned neutron star. If the stellar medium has a finite electrical conductivity, it was shown that the stellar rotation removes the degeneracy in the evolution equations for the magnetic field and that three distinct induction equations need to be solved to account for the decay of the stellar magnetic field. In this paper we have solved numerically the general relativistic induction equations derived in Paper I, investigating the effects of different rotation rates, different inclination angles between the magnetic moment and the rotation axis, as well as different values of the electrical conductivity. The aim of these numerical calculations is that of quantifying the corrections induced by general relativistic effects (due to both space–time curvature and stellar rotation) on the evolution of the magnetic field of a slowly rotating neutron star.

In order to single out purely general relativistic effects from those due to the microphysics of the Ohmic dissipation, we have considered a simplified physical description of the neutron star. In particular, the star has been modelled as a polytrope rotating with a fiducial period of 1 ms, the electrical conductivity has been considered to be uniform inside the star, and we have not included a treatment to consider the evolution of the stellar rotation and temperature (see Page et al. 2000). On the other hand, special attention has been paid to a consistent solution of the initial-value problem and we have considered as initial magnetic field the stationary solution of the general relativistic Maxwell equations. In this way we have avoided the use of initial magnetic field configurations that are only approximate solutions of the Maxwell equations (i.e. solutions of the Maxwell equations only in the limit of flat space–time). Besides eliminating an initial error during the initial stages of the magnetic field decay, our prescription for the initial-value problem also provides a more accurate solution of the Maxwell equations.

The results of our computations have shown that there exist general relativistic, rotation-induced corrections to the evolution of the magnetic field. These effects generally produce a decrease in the rate of magnetic field decay. However, their contribution is masked by the high value of the electrical conductivity in realistic neutron stars and can be neglected in general. Our calculations also indicate that general relativistic effects not induced by the stellar rotation can modify the time evolution of the magnetic field in a magnetized star. Such effects are closely related to the properties of the space–time internal to the star, and for a polytropic stellar model with uniform electrical conductivity these effects generally increase the decay rate of the field. The validity of this conclusion is however limited. Density gradients are in fact expected in a realistic star, and these will affect the behaviour of the electrical conductivity, which, in turn, will influence the decay of the magnetic field.

Our conclusions are that the general relativistic evolution of the magnetic field in rotating neutron stars can be studied with confidence already in a non-rotating background space–time. However, the role of a curved background space–time on the decay of the magnetic field can be fully assessed only when the details of both a realistic equation of state and a realistic electrical conductivity are carefully taken into account. This will be the subject of future work.

ACKNOWLEDGMENTS

We would like to thank Bobomurat Ahmedov and John Miller for numerous discussions. We have also appreciated the useful comments of the referee, Ulrich Geppert. Support for this research comes from the Italian MURST and the EU Programme ‘Improving the Human Research Potential and the Socio-Economic Knowledge Base’ (Research Training Network Contract HPRN-CT-2000-00137).
APPENDIX A: THE NUMERICAL SOLUTION OF THE INDUCTION EQUATIONS

In this Appendix we provide the explicit expressions for the coefficients f_i, g_i, and h_i appearing in the new form of the induction equations (18)–(20):

$$f_1 = \frac{c^2 e^{\phi-2\Lambda}}{4\pi\sigma} - \frac{c^2 e^{-2\Lambda}}{(4\pi\sigma)^2} \omega \tan \lambda (1 - 2 \sin^2 \theta),$$

$$f_2 = \frac{c^2 e^{\phi-2\Lambda}}{4\pi\sigma} (\Phi_x - \Lambda_x) + \frac{c^2 e^{-2\Lambda}}{(4\pi\sigma)^2} \tan \lambda (1 - 2 \sin^2 \theta) (\Omega \Phi_x + \omega \Lambda_x - \omega_x),$$

$$f_3 = -\frac{2c^2 e^\phi}{4\pi\sigma^2} - \frac{2\omega c^2}{(4\pi\sigma)^2} \sin \frac{\theta}{2} \frac{\Psi_3}{\Psi_1},$$

$$f_4 = -\frac{2c^2 e^{-\phi-2\Lambda}}{(4\pi\sigma)^2} \sin \theta \frac{\Psi_3}{\Psi_1},$$

$$f_5 = \frac{2c^3 e^{-\phi-2\Lambda}}{(4\pi\sigma)^3} \tan \lambda (1 - 2 \sin^2 \theta) [\Phi_x (\Omega + \omega) - \omega_x],$$

$$f_6 = -\frac{2c^2 e^{-\phi-2\Lambda}}{(4\pi\sigma)^2} \omega \tan \lambda (1 - 2 \sin^2 \theta),$$

$$g_1 = \frac{c^2 e^{\phi-2\Lambda}}{4\pi\sigma} - \frac{c^2 e^{-2\Lambda}}{(4\pi\sigma)^2} \omega \cos \frac{\theta}{2} \frac{\Psi_3}{\Psi_2},$$

$$g_2 = -\frac{c^2 e^{\phi-2\Lambda}}{4\pi\sigma} \Lambda_x + \frac{c^2 e^{-2\Lambda}}{(4\pi\sigma)^2} \cos \theta \frac{\Psi_3}{\Psi_2} [\Phi_x (2\omega - \Omega) + \omega \Lambda_x - 2\omega_x].$$

© 2002 RAS, MNRAS 331, 376–388
This Appendix shows how the surface boundary conditions expressed by equations (27) and (31) can be implemented in a numerical code. By adopting the standard finite-difference notation in which \(u^g_j = u(x_j, t^n) \) and assuming a uniform radial grid with \(J \) grid points, the finite-difference form of equation (31) is given by

\[
\tilde{F}_{j+1}^n - \tilde{F}_{j-1}^n = 2\Pi(\eta) \Delta t \tilde{F}_{j}^{n}/R.
\]

where \(\Delta x = x_j - x_{j-1} \) and \(\Delta t = t^{n+1} - t^n \). The unknown value of \(F_{j+1}^{n+1} \) comes after introduction of equation (B1) into the Crank–Nicholson scheme, centred at \(J \). Lengthy but straightforward calculation then gives (note the repeated denominator)

\[
F_{j+1}^{n+1} = \frac{\alpha f_{j+1}^{n+1} + f_{j+1}^{n+1} \Phi_{j+1}^{n+1}}{1 - f_{j+1}^{n+1} \Delta t/2 + f_{j+1}^{n+1} \Delta t + f_{j+1}^{n+1} \alpha + \Pi(\eta) \alpha \Delta t(f_{j+1}^{n+1}/2 + f_{j+1}^{n+1}/R)}
\]

where \(\alpha = \Delta t/\Delta x^2 \). There are still two unknowns entering equation (B2), i.e. \(G_{j+1}^n \) and \(H_{j+1}^n \). However, they represent the external solution

\[387\]
and by using equations (28) and (30) they can be written as

\[
\tilde{G}_{j+1}^n = \tilde{H}_{j+1}^n = -\frac{\tilde{N}^2 M}{(R + \Delta x)^2} \frac{(R + \Delta x) \ln \tilde{N}^2/M + 1/\tilde{N}^2 + 1}{\ln \tilde{N}^2 + 2M(1 + M/(R + \Delta x))/(R + \Delta x)} \tilde{F}_{j+1}^n,
\]

where \(\tilde{N} \) is the value of \(N \) at \(R + \Delta x \), i.e.

\[
\tilde{N} = N|_{R+\Delta x} = \left(1 - \frac{2M}{R + \Delta x}\right)^{1/2}.
\]

The updated values of \(\tilde{G} \) and \(\tilde{H} \) now follow immediately from (30) with time evolved value of \(F_{j+1}^n \) given by equation (B2).