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Heuristic search techniques are highly flexible, though they represent computationally intensive

optimization methods that may require thousands of evaluations of expensive objective functions.

This paper integrates MODSIM, a generalized river basin network flow model, a particle swarm

optimization (PSO) algorithm and artificial neural networks into a modeling framework for

optimum water allocations at basin scale. MODSIM is called in the PSO model to simulate a river

basin system operation and to evaluate the fitness of each set of selected design and operational

variables with respect to the model’s objective function, which is the minimization of the

system’s design and operational cost. Since the direct incorporation of MODSIM into a PSO

algorithm is computationally prohibitive, an ANN model as a meta-model is trained to

approximate the MODSIM modeling tool. The resulting model is used in the problem of optimal

design and operation of the upstream Sirvan river basin in Iran as a case study. The

computational efficiency of the model makes it possible to analyze the model performance

through changing its parameters so that better solutions are obtained compared to those of the

original PSO–MODSIM model.
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INTRODUCTION

To bring the concept of integrated water resources manage-

ment into an analytical framework, modeling techniques for

integrating hydrologic, agronomic, economic and insti-

tutional components have been studied and introduced to

provide opportunities for the advance of water resources

management (McKinney et al. 1999). Simulation models

have been used for river basin systems modeling since they

allow a detailed representation of the system’s character-

istics; however, they do not identify the optimal design and

operating policies.

The application of traditional constrained optimization

algorithms to river basin systems’ analysis may be limited.

This is due to the complexity of the systems including

several components like reservoirs, aquifers, pumping

systems, hydroelectric power plants, demand sites, etc.

Besides, there may be various phenomena and relationships

represented by highly nonlinear, nonconvex or discontinu-

ous equations involving hydrologic, economic, social and

institutional aspects regarding water quantity and quality,

surface and groundwater, and land resources. Multi-period

linear optimization, especially network flow programs

(McBride 1985; Kuczera & Diment 1988; Kuczera 1993;

Sun et al. 1995; Hsu & Cheng 2002; Jenkins et al. 2004) and

in some cases nonlinear programming or evolutionary

algorithms (McKinney et al. 1999; Cai et al. 2002, 2003)

have been used for optimizing river basin systems operation

and design.

Simulation-optimization methods linking a detailed

simulation model with a heuristic or population-based

evolutionary algorithm (EA) are becoming increasingly
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attractive for solving optimization models. The advantage of

EAs lies in their ability to locate good solutions to

combinatorial optimization problems with greater efficiency

than implicit enumeration techniques (Wagner 1995b). They

are also advantageous because they accommodate the

discontinuities and nonlinearities of real functions more

easily than gradient-based techniques do in which con-

straints and functions must be represented as algebraic

equalities or inequalities (McKinney & Lin 1994). Another

advantage of gradient-free and evolutionary optimization

techniques is the possibility of using any kind of built-up

simulation package without having access to its embedded

source codes or detailed equations.

Although the approaches are advantageous, their

computational cost may be very high when a time-

consuming simulation model is performed for objective

function evaluations. This difficulty may be dealt with

by either simplifying the original problem by analyzing

smaller-scale situations and using simpler models

(Wagner 1995a) or seeking to reduce the number of times

the simulation model must be called by increasing the

efficiency of the search algorithm (Karatzas & Pinder 1993;

Karatzas 1997). Traditionally, methods to overcome the

computational cost of simulation models within an

optimization framework are grouped into two categories:

(1) methods that reduce the execution time required for

the simulation model through parallel algorithms and

computer architectures (Dougherty 1991; Tompson et al.

1994); and (2) methods that use an approximation of the

simulation model, called a meta-model, to quickly supply

predictions during the course of the search (Johnson &

Rogers 2000). This latter approach is the focus of the

current study.

The idea of using an approximate model to replace an

extensive simulation model is quite old in water resource

systems modeling. For example, in the unit response matrix

method used in conjunctive-use applications a set of linear

equations replaces a groundwater model when the model

behavior can be reasonably assumed to be linear. Alley

(1986), Lefkoff & Gorelick (1990) employed multiple linear

regression equations as substitutes for groundwater simu-

lation models.

Artificial neural networks (ANNs), as function

approximators and meta-models, have shown different

applicability in various engineering problems. ANNs

impose fewer constraints on the functional form of the

relationships between input and output variables, making

them a logical choice for application when the complexity

of the mapping is difficult to anticipate. Multilayer

perceptrons trained by a backpropagation learning algo-

rithm have been successfully used in modeling complex

relations such as rainfall–runoff processes (Smith & Eli

1995), prediction of daily stream flows (Sureerattanan &

Phein 1997), forecasting water quality parameters (Maier &

Dandy 1996), inferring reservoir operating rules (Raman &

Chanramoulia 1996; Ponnambalam et al. 2003; Mousavi

et al. 2007), groundwater systems operation and conjunc-

tive-use modeling (Ranjithan et al. 1993; Rogers & Dowla

1994; Johnson & Rogers 2000). Broad et al. (2005) used

ANNs as metamodels to optimize a water distribution

design problem including water quality. Yan & Minsker

(2006) proposed a dynamic modeling approach, called

adaptive neural networks genetic algorithm, in which

ANNs are adaptively trained directly within a genetic

algorithm to replace a time-consuming groundwater

simulation model.

The model developed in this study integrates MODSIM

as the simulation module with a PSO algorithm as

an optimization tool for optimum water allocations in

the upstream Sirvan river basin in the west of Iran. The

resulting model is the PSO–MODSIM model. As the model

is highly time-consuming, MODSIM is replaced by a trained

ANN model and the resulting PSO–MODSIM–ANN

model is then applied to the considered water allocation

optimization problem. The outcomes of both models are

further analyzed and compared in terms of their quality of

solutions and computational loads.

RIVER BASIN SIMULATION MODULE

MODSIM (Labadie 1995) represents a valuable tool to

simulate operations of any complex river basin system as a

network consisting of nodes and links. MODSIM sequen-

tially solves the following one-period linear optimization

problem in each time period over the planning horizon
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using an efficient minimum cost network flow program:

Minimize
l[A

X
clql ð1Þ

Subject to:

j[Oi

X
qj 2

k[Ii

X
qk ¼ 0; for all i [ N ð2Þ

ll # ql # ul; for all l [ A ð3Þ

In the above, A is the set of all arcs or links in the

network, N is the set of all nodes, Oi is the set of all links

originating at node i (i.e. outflow links), Ii is the set of all

links terminating at node i (i.e. inflow links), ql is the

integer-valued flow rate in link l, cl are costs, weighting

factors or priorities per unit of flow rate in link l, ll is the

lower bound on flow in link l and ul is the upper bound on

flow in link l. Relation (2) represents the mass balance

equation that must be satisfied at every node of the model’s

network. As an example, a fully circulating network is

shown in Figure 1. Nodes 1, 2 and 3 are actual, physical

system nodes, where node 1 is a reservoir, node 3 is a

demand diversion and node 2 is an intermediate node.

Details on modeling river basin components in MODSIM

and calculation schemes of return flows, stream depletion

from pumping and canal seepage can be found in Fredericks

et al. (1998).

One of the features of MODSIM’s latest version

(version 8.0) is the ability of preparing customized codes

in the VB.NET or C.NET languages that are compiled with

MODSIM through the.NET Framework. Users are provided

with access to all key variables and object classes without

the need for reprogramming and recompiling the MODSIM

source code. Customization granted in MODSIM 8.0 is a

prominent feature which a few computerized river basin

DSS models developed so far support. Taking advantages of

MODSIM’s custom coding features, it has been embedded

in a PSO algorithm in this study to solve a river basin system

optimization problem.

THE PARTICLE SWARM OPTIMIZATION ALGORITHM

The PSO algorithm, originally proposed by Kennedy &

Eberhart (1995), Eberhart & Kennedy (1995) is a member of

the wide category of swarm intelligence methods for solving

global optimization problems. In a PSO algorithm, each

particle is a candidate solution equivalent to a point in a

D-dimensional space; hence the ith particle’s position can

be represented as xi ¼ (xi1, xi2, … , xiD). Each particle flies

through the search space, depending on two important

positions, pi ¼ (pi1, pi2, … , piD), the best position the

current particle has found so far (pbest), and pg ¼ (pg1,

pg2, … , pgD), the global best position identified in the entire

population (gbest). The rate of the ith particle’s position

change is given by its velocity vi ¼ (vi1, vi2, … ,viD). Equation

(4) updates the velocity for each particle in the next

iteration, whereas Equation (5) updates each particle’s

position in the search space:

vnþ1
id ¼ xðvvnid þ c1r

n
1ðp

n
id 2 xnidÞ þ c2r

n
2ðp

n
gd 2 xnidÞÞ ð4Þ

xnþ1
id ¼ xnid þ vnþ1

id ð5Þ

where d ¼ 1,2, … ,D; i ¼ 1,2, … ,N and N is the size of the

swarm;x is a constriction factor used in constrained optimi-

zation problems in order to control the magnitude of the

velocity. It is usually set to 1.0 in unconstrained optimization

problems. v is called inertia weight; c1, c2 are two positive

constants, called cognitive and social parameters, respect-

ively; r1, r2 are random numbers uniformly distributed in

[0,1]; and n ¼ 1,2, … , denotes the iteration number.

An initial value of 1.2 gradually declining towards 0 can

be considered as a good choice for v (Shi & EberhartFigure 1 | Network structure for MODSIM with accounting nodes and links.
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1998a,b). Therefore, the PSO updates the inertia weight in

each iteration using the following equation:

wðiterÞ ¼ wmax 2
wmax 2wmin

itermax
£ iter ð6Þ

where witer is the iteration’s inertia weight, itermax is the

maximum iteration number and wmax and wmin are,

respectively, the maximum and minimum inertia weights.

It has been reported that it might be better to choose c1 and

c2 such that c1 þ c2 # 4 and c1 bigger than c2. The PSO

algorithm starts with a set of randomly generated solutions.

Then the swarm is updated using Equations (4) and (5) in

each iteration. This process is repeated until no further

improvement is obtained for the objective function value.

It has been shown that the trajectories of particles

oscillate in different sinusoidal waves and converge quickly,

sometimes prematurely. During each iteration, particles are

attracted towards the pbest and gbest positions and will

eventually lose their exploration capability during future

iterations. In order to prevent the premature convergence of

the algorithm, in addition to the standard PSO a strategy

may be employed to drive the particles and allow them to

further explore the decision space. If a particle’s velocity

decreases to a threshold vc, a new velocity is assigned using

Equation (7). Thus, a turbulent PSO (TPSO) (Liu &

Abraham 2001) is used in this study in which the following

new velocity update equation is employed:

vnþ1
id ¼

vnþ1
id ifjvnþ1

id j $ vc

uð21;1Þvmax=r ifjvnþ1
id j # vc

8<
: ð7Þ

where u(21,1) ¼ a random number uniformly distributed

in the interval [21,1], r ¼ a scaling factor which controls

the domain of the particle’s oscillation according to vmax

and vc ¼ the minimum velocity threshold, a tunable

threshold parameter to limit the minimum of the particles’

velocity. A large vc shortens the oscillation period and

provides a large probability for the particles to leap over

local minima using the same number of iterations. How-

ever, a large vc compels particles in the quick “flying” state,

forcing them neither to search the solution nor to refine the

search. The search ability can be adjusted by varying vc

dynamically. For the desired exploration–exploitation

trade-off, it is better to divide the search procedure into

three stages. In the first stage the values for vc and r are set

as large and small values, respectively. In the second stage,

vc and r are set as medium values and in the last stage, vc is

set as a small value and r as a large one. This study employs

the PSO algorithm as the main optimization technique to

deal with a river basin system management problem.

FEED-FORWARD NEURAL NETWORKS

A feed-forward neural network with backpropagation

learning algorithm is trained in this study to replace

MODSIM–DSS used as the simulator in the PSO algor-

ithm. The trained network approximates the functional

relationship between decision variables of the underlying

river basin system optimization problem and the resulting

total cost of the system’s design and operation. Therefore,

this section presents a brief review of the multilayer feed-

forward neural networks.

Artificial neural networks are functions that can be

trained to map nonlinear complex relations. Sets of input

data and their corresponding output vectors are needed to

train the network. Once properly trained, the network

provides a data-driven model which is capable of giving

reasonable answers when presented with input vectors that

have not been encountered during the training process. The

key to successfully training an ANN is choosing the right

network architecture and training algorithm. Feed-forward

networks are a subclass of layered networks in which there

is no intra-layer connections and whose main feature is that

connections are allowed from a node in layer i only to

nodes in layer i þ 1 (Figure 2).

Feed-forward neural networks are among the most

common networks in use. The feed-forward process

involves presenting an input pattern to neurons that pass

the values into the first hidden layer. Determining the

architecture of a neural network involves ascertaining the

number of layers in the network as well as the number of

nodes (neurons) in each layer. It also entails designating the

type of transfer (activation) function to be used in each

layer. A backpropagation training algorithm can be used to

modify the weights so as to minimize the error between the

desired and actual outputs of the network. Once trained, the
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network weights are frozen and can be used to compute

output values for new input samples.

THE UPSTREAM SIRVAN RIVER BASIN SYSTEM

The upstream Sirvan river basin, located in the west of Iran,

is considered as a case study. Because available surface

water resources in the basin exceed the total water

demands, the basin’s management plans should consider

the construction of infrastructure for water transfers to the

neighboring basins. This mainly includes transferring water

from the Sirvan to the Karkheh basin, as one of the largest

basins in the country with high hydropower and agricultural

demands, and transferring water to Ghorveh. Table 1

presents the total annual inflows and demands inside and

outside of the Sirvan basin. Figure 3 shows the existing

reservoirs and the ones to be constructed (triangles) in the

upstream Sirvan basin and the demand nodes (squares) out

of the basin. Adding the inside-the-basin demand nodes,

Figure 4 shows the detailed topology of the system,

represented in MODSIM’s Graphical User Interface.

Among the storage nodes, the capacities of the Banidar

and Zhaveh reservoirs, due to the existence of a high

topographic potential, need to be defined optimally. Other

storage nodes are either under operation or, because of a

small potential for their capacities, could have a local

demand–supply role, resulting in considering a fixed

capacity for them. Table 2 presents the dead storages and

the maximum capacities of the reservoirs of the system.

Therefore, the design variables of the optimization problem

include the Banidar and Zhaveh reservoirs’ capacities

which affect the capacities of the water transfer

systems (i.e. the Banidar and Karkheh tunnels and the

Ghorveh pumping system). Topographic conditions in the

Banidar and Zhaveh sites limit the maximum allowable

capacity to 348.5 and 1,108 million cubic meters (MCM)

for the Banidar and Zhaveh reservoirs, respectively. Finding

a zero capacity for each reservoir would imply an

unbeneficial aspect for construction of the dam.

MODSIM uses a priority-based algorithm to allocate

optimally water to demand and storage nodes. These

priorities indicate the relative significance between meeting

water demands and satisfying reservoirs’ target storages in

the system. According to the management policies sup-

posed, the priority order of the demands is considered

below:

Priority 1:Environmental demands.

Priority 2:Inside the basin and upstream Karkheh basin’s

municipal demands.

Table 1 | Annual amounts of the inflows and demands of the upstream Sirvan river

basin

Amount (MCM) Item

1719.5 Total inflow to the basin

379.7 Inside the basin demands

431 Upstream Karkheh basin’s demand

157.7 Ghorveh system’s demand

738.3 Karkheh basin’s demand

1706.7 Total demands

Figure 2 | A feed-forward neural network with one hidden layer.

Figure 3 | General plan of the upstream Sirvan basin and water transfer systems.
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Priority 3:Inside the basin and upstream Karkheh basin’s

agricultural demands.

Priority 5:Karkheh basin’s municipal demands.

Priority 6:Karkheh basin’s agricultural demands.

Priority 8:Ghorveh–Dehgolan’s demand.

Although MODSIM sequentially solves single-period net-

work flow programs (NFPs), multi-period modeling aspects

could be somehow indirectly considered through relative

priorities of reservoirs’ storage targets. Assigning a higher

priority to a reservoir target storage relative to the priority of

itsdownstreamdemands woulddirect theNFP not toempty the

reservoir to meet the downstream demand at the current time

step, resulting in storing water in the reservoir as close as

possible to the target storage.Thisprovidesapartial foresight for

single-period NFPs to account for long-term considerations.

Therefore, the priorities of the reservoirs’ target storages are

selected as MODSIM’s customized operational variables

whose optimum values are to be determined by the PSO

algorithm. These priorities are varied between 1 and 8 while

the fixed demand priorities are input to MODSIM. Priorities of

the Karkheh basin’s demands have been set to 5 and 6 to

make the opportunity for reservoirs to stay at a lower priority

number, say 4, resulting in storing water in case of it being more

beneficial incomparisonwith transferringwater to theKarkheh

basin. Likewise, a priority of 8 is considered for the Ghorveh

and outflow nodes, providing a wider range for selecting the

priorities of the system reservoirs. A negative coefficient shows

the benefit of water transferring and a positive coefficient

represents the cost of water transferring to the end node of the

link. Therefore, the model considers the Ghorveh transfer

system as a pumping system through assigning a positive

coefficient for the associated link.

Gravitational water transfer from the Zhaveh reservoir

to the Karkheh basin requires Zhaveh to have a minimum

Table 2 | Capacities of the reservoirs of the upstream Sirvan river basin

Dead storage (MCM) Max. capacity (MCM) Reservoir

16 18 Zarivar Lake

5.5 86.5 Garan Dam

25 224 Gheshlagh Dam

0.5 8 Ramasht Dam

0.4 7.3 Amirabad Dam

12 40.4 Soleimanshah Dam

67.8 560 Gavshan Dam

0.5 16 Zivieh Dam

– Variable Zhaveh Dam

– Variable Banidar Dam

Figure 4 | Representation of the upstream Sirvan river basin and neighboring basins in MODSIM.
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operating level of 1,340 m asl (meters above sea level),

corresponding to a minimum reservoir capacity of

516.2 MCM. Consequently, if the Zhaveh reservoir capacity

has a value less than 516.2, a pumping system is required

and a cost coefficient for the link connecting Zhaveh to the

Karkheh demand node should be considered; otherwise,

the cost coefficient of the Karkheh link would be set to zero.

Moreover, socio-economic studies show that increasing the

size of the Zhaveh reservoir may cause remarkable damage

by inundating agricultural lands and heritages and the need

to move local residents. Therefore, for capacities less than

90 MCM, between 90 and 600 MCM, and greater than

600 MCM coefficients of 0, 100 and 200 per unit storage

volume of the Zhaveh capacity are, respectively, assigned

for the damage cost of the reservoir. These kinds of

constraints imposed on the model could be easily con-

sidered in simulation-based optimization algorithms like

PSO. However, they have to be considered via binary

variables in classical optimization methods, resulting in a

mixed-integer nonlinear (nonconvex) program which is

difficult to solve. Other input data including natural and

inter-basin flows, monthly municipal and agricultural water

demands, etc., have been introduced to MODSIM over a

20-year period of records.

THE PSO–MODSIM MODEL

In spite of all of MODSIM’s remarkable capabilities, it is not a

fully dynamic optimization model since it uses a single-period

optimization at each time step to simulate a river basin system

operation. Consequently, MODSIM, per se, would not be

able to obtain the optimum design and operation of the

system components. To achieve this goal, there is a need to

link the MODSIM simulation module with an optimization

procedure to find the optimal values for the design and

operational variables of the river basin system under study. By

coding the PSO algorithm in MODSIM’s custom coding

environment, the values of decision variables, as input

parameters of MODSIM are generated by the PSO algorithm.

During the execution of the PSO–MODSIM model, for each

candidate solution generated by the PSO algorithm, the

objective function is evaluated through execution of MOD-

SIM, thus obtaining the costs and benefits related to the

values of the design and operational variables.

In the PSO–MODSIM model, the decision variables

are the size of water storage and transfer facilities or

pumping systems and the priorities for target storages,

through which single-period inner NFPs are linked with a

long-term outer optimization model. PSO feeds those

decision variables into the inner NFP algorithms. Sub-

sequently, the amounts of water allocated to demand nodes

in each time step determined by the NFPs are returned from

MODSIM to PSO in order to evaluate the PSO objective

function. The procedure is repeated and the PSO decision

variables, i.e. particles’ values, are evolved towards their

optimal values using the PSO updating rules until some

stopping criteria are met.

The model’s objective function assumed is a simplified

function defined according to the scope of this study and not

necessarily the one reflecting all of hydrologic, agronomic,

socio-economic, environmental and institutional aspects

which may exist in the real system. Considering this point,

the PSO objective function consists of cost and benefit

terms. Costs of facilities to be constructed, viz. new dams and

tunnels, include investment fixed costs and variable costs

which depend on the size of the facilities. Benefits gained are

related to meeting municipal or agricultural water demands.

The PSO objective function may be expressed as

Cost ¼ M1 £ CapitalCostZhaveh2Dam þM2

£ CapitalCostBanidar2Dam þM3

£ CapitalCostGhorve2Pumpage þM4

£ CapitalCostKarkheh2Transfer þM5

£ CapitalCostBanidar2Tunnel þ Ccap: £ ðCapZhaveh

þ CapBanidarÞ þ CDamage £ CapZhaveh þ C1Pumpage £

QGhorveh £HGhorveh þM6 £ C2Pumpage £QKarkheh £

HKharkheh þM7 £ C1Diameter £QKarkheh þ C2Diameter £

QBanidar 2
XT
t¼1

XNDEM

j¼1

CBenefit·Qdemt;j

As described before, the pumping height from the

Zhaveh to Karkheh basins is equal to the difference
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between the minimum operating level of the Zhaveh

reservoir and the level of 1,340 m asl (corresponding to

the Zhaveh reservoir capacity of 516.2 MCM). If the

Zhaveh reservoir’s minimum operating level exceeds 1,340

(Zhaveh reservoir capacity exceeds 516.2 MCM), water can

be transferred to the Karkheh basin gravitationally. In this

condition, C2Pumpage, the cost coefficient of the unit water

pumped to Karkheh, equals zero and only the costs due to

constructing a transfer tunnel are considered. It is assumed

that all the cost and benefit parameter values are the ones

calculated after considering the time value of money and

variable costs include operation and maintanance costs.

The PSO–MODSIM model’s formulation can therefore be

expressed as follows:

Minimize Cost ¼ f1ðCapZhaveh;CapBanidar;CapG2DTransfer;

CapKarkheh2Transfer;CapBanidar2TransferÞ2 f2ðQDemandsÞ

¼ M1 £ CapitalCostZhaveh2Dam þM2

£ CapitalCostBanidar2Dam þM3

£ CapitalCostGhorve2Pumpage þM4

£ CapitalCostKarkheh2Transfer þM5

£ CapitalCostBanidar2Tunnel þ Ccap: £ ðCapZhaveh

þ CapBanidarÞ þ CDamage £ CapZhaveh þ C1Pumpage £

QGhorveh £HGhorveh þM6 £ C2Pumpage £QKarkheh £

HKharkheh þM7 £ C1Diameter £QKarkheh þ C2Diameter £

QBanidar 2
XT
t¼1

XNDEM

j¼1

CBenefit·Qdemt;j

Subject to:

Capmin-Zhaveh # CapZhaveh # Capmax-Zhaveh

Capmin-Banidar # CapBanidar # Capmax-Banidar

Prioritymin # PriorityRes.(i) # Prioritymax, i¼1, … , no. of

storage nodes in the network

Qdemt,j ¼ f3(PrioriyRes.(1), … , PrioriyRes.(i)), i ¼ 1, … , no.

of storage nodes in the network

f3 ¼ minimize
l[A

P
clql

" #
t

; A ¼ {all links in the network},

ql ¼ flow rate in link l, cl ¼ costs, weighting factors or

priorities per unit of flow rate in link l, t ¼ 1, … , T ( ¼ no. of

time steps)

Subject to:

j[Oi

P
qj 2

k[Ii

P
qk

" #
t

¼ 0; for all i [ N ¼ {all nodes}, Oi ¼ {all

links originating at node i}, Ii ¼ {all links terminating at

node i}, t ¼ 1, … ,T ll # ½ql�t # ul; for all l [ A, ll ¼ the

lower bound on flow in link l, ul ¼ the upper bound on

flow in link l, t ¼ 1, … ,T cl ¼ -(50,000 2 10 £

PriorityRes.(i)); for all l [ Si ¼ {accounting links originating

from storage node i}, i ¼ 1, … ,no. of storage nodes in the

network cl ¼ 2 (50,000 2 10 £ PriorityDem.(i)); for all l [

Di ¼ {accounting links originating from demand node i},

PriorityDem.(i) ¼ priority for demand node i, i ¼ 1, … , no. of

demand nodes in the network.

The last two equations are used in MODSIM’s NFPs to

evaluate the costs for accounting active storage and

demand links. There are some points to be mentioned

about the optimization algorithm used in the PSO–

MODSIM model. The problem’s decision variables are

the capacities of the new reservoirs (CapZhaveh and

CapBanidar), as the design variables and the priorities of

reservoirs’ target storages in the system (PriorityRes.(i)) as

the operational variables. The other variables in the

objective function, such as the capacities of the transfer

systems, are functions of these decision variables. As seen

in the procedure described above, the variables of the

reservoir capacities are directly used in the PSO objective

function; however, the priorities are used in MOSDIM

to obtain the water allocations. In each time period of the

simulation horizon, an NFP is solved in MODSIM using

the Lagrangian relaxation algorithm. The flow diagram of

the PSO–MODSIM model is presented in Figure 5. It is

worth mentioning that solving such a complex optimiz-

ation problem using one of the constrained optimization

methods is extremely difficult, if not impossible.

THE PSO–MODSIM–ANN MODEL

In the PSO–MODSIOM model, MODSIM is executed

neval times which is the number of function evaluations

equal to the number of particles in each population (swarm

size) multiplied by the number of generations required for

PSO to converge. On the other hand, accomplishing

MODSIM may be time-consuming as an NFP is solved for
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each time period of the planning horizon T. The model’s

computational difficulty is realized to be more challenging

by considering the fact that usually a sensitivity analysis

should be carried out for tuning the PSO algorithm

parameters, akin to any population-based random search

algorithm.

Therefore, a feed-forward neural network is trained off-

line and replaces MODSIM in the PSO–MODSIM model.

To train this network, a set of input–output data pairs was

purposefully prepared. Hence, 1,200 sets of decision

variables were randomly generated and for each of them

MODSIM, which has been already calibrated for the

upstram Sirvan basin, was executed and the objective

function was evaluated. Such a data-generation task was

performed automatically using MODSIM’s custom coding

features. The available datasets were then divided into three

separate sets as training, validating and testing sets. The

ANN model developed has 12 neurons in the input layer

equal to the number of input vector elements (the problem’s

decision variables), one neuron in the output layer equal to

the number of output vector elements (objective function)

and 10 neurons in the hidden layer selected after some trial

and error examinations. The variations of the mean square

errors (MSE) of the training, validation and testing datasets

over training iterations (epochs) are shown in Figure 6.

The average MSE for the training data was 0.002 while it

was 0.0078 for the testing data. Figure 7 shows the plot of

objective function values predicted by ANN versus its actual

values for the testing dataset.

RESULTS

Based on some trial and error work and experiences

reported in the literature, the PSO parameters are selected

as follows: the swarm size is considered as 20 in the PSO–

MODSIM model and 100 in the PSO–MODSIM–ANN

model, the maximum and minimum inertia weights are,

respectively, considered as wmax ¼ 1.2, wmin ¼ 0.1 and

acceleration constants as c1 ¼ c2 ¼ 0.5 in the PSO–MOD-

SIM model and c1 ¼ 2.3 and c2 ¼ 1.2 in the PSO–

MODSIM–ANN model. The algorithm stops if there is no

Figure 5 | The flow diagram of the PSO–MODSIM model.
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Figure 6 | Variations of the MSE for the training, validation and testing data.
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of testing data.
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improvement in the objective function value over 100

successive iterations. Tables 3 and 4 present the results of

the models obtained for design and operational decision

variables, respectively.

The minimum total cost obtained by the PSO–MOD-

SIM and PSO–MODSIM–ANN models are 267,095,025

and 270,029,240 units, respectively. In order to see how

accurate the approximate model performs, the system

performance is simulated by MODSIM under the solution

obtained by the PSO–MODSIM–ANN model. The corre-

sponding actual total cost equals 267,211,126 units.

Surprisingly, it is seen that the PSO–MODSIM–ANN

model is able to arrive at a better solution in comparison

with the PSO–MODSIM model in terms of their objective

function values. One of the reasons for this may be due to

the possibility of testing the approximate model with a

larger swarm size (100 particles) because of its compu-

tational efficiency whereas the maximum swarm size

considered in the PSO–MODSIM was set to 20 particles.

Another important point is the task of fine-tuning and

performing sensitivity analysis on the PSO parameters

which can be done efficiently in the PSO–MODSIM–

ANN due to the short time of execution of the model. For

example, values of c1 ¼ c2 ¼ 0.5 used in the PSO–MOD-

SIM model are recommended in the PSO literature while

c1 ¼ 2.3 and c2 ¼ 1.2 in the PSO–MODSIM–ANN pro-

vided a better solution. This feature might be an important

factor in the PSO–MODSIM–ANN model which helps us

find a better and more robust solution than that of the

PSO–MODSIM model.

It is seen in Table 3 that, due to the significant cost

consequences to inundated lands and properties by enlar-

ging the Zhaveh reservoir, a capacity of 83 and 89.6 (lower

than 90) MCM were, respectively, obtained by the models.

In order to increase the water supply to the Karkheh basin,

both models suggested the construction of the Banidar dam

and the tunnel transferring water to the Karkheh basin.

Because of the high cost of pumping water to Ghorveh, the

amount of water transferred to Ghorveh equals zero in both

models. It is also seen in Tables 3 and 4 that the models’

results are close to each other in general except for the

optimum priority of Amirabad’s target storage, which is a

small reservoir in the system. Figures 8 and 9 show the

variations of the models’ objective function over the PSO

generations associated with different particles. It is clear in

Figure 9 that large oscillations in the PSO–MODSIM

solutions are a result of introducing turbulence to the PSO

(TPSO).

Table 5 presents the amounts of optimum annual supply

and demand values for different sub-basins in the system

obtained by the models. A flow of 705–708 MCM is

Table 3 | Optimum capacities of the structural components obtained by the PSO–

MODSIM and PSO–MODSIM–ANN models

Capacity

PSO–MODSIM–ANN PSO–MODSIM Structure

89.6 MCM 82.8 MCM Zhaveh Dam

348.85 MCM 336.5 MCM Banidar Dam

9 m3/s 8 m3/s Banidar Tunnel

20 m3/s 18 m3/s Karkheh Tunnel

– – Ghorveh Pumping System

Table 4 | Optimum priorities of reservoir storages obtained by the PSO–MODSIM and

PSO–MODSIM–ANN models

Priority

PSO–MODSIM–ANN PSO–MODSIM Reservoir

1 1 Zarivar

7 6 Garan

8 8 Gheshlagh

8 8 Ramasht

1 5 Amirabad

8 8 Soleimanshah

8 8 Gavshan

8 5 Zivieh

8 8 Zhaveh

8 8 Banidar

Figure 8 | Variations of the PSO particles’ objective function over the iterations in the

PSO–MODSIM model.
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drained to the sink node annually. This is because of the

high cost of pumping water to Ghorveh as the models find it

more beneficial to let the flow pass instead of pumping it to

Ghorveh.

An important question which may raise is how significant

the role of optimizing the reservoirs’ priorities, as operational

variables, could be. To answer this, a further investigation was

carried out in which the optimization problem was solved

with the decision variables of the Zhaveh and Banidar

capacities while considering the priorities set to the lower

possible value, i.e. 8. This is equivalent to supplying the

demands downstream of the reservoirs in each time period as

much as possible without performing a kind of hedging

strategy dealing with the deficits in future time periods. The

PSO–MODSIM model was run to find the optimum values of

two decision variables in this situation. The resulted optimum

capacities are equal to 90 and 299.3 MCM for the Zhaveh and

Banidar dams, respectively. In addition, the minimum total

cost of the system becomes 259 646 755 units indicating an

11% excess cost compared to the previous case where

operational and design variables are optimized. This result

implies that optimizing the reservoirs’ priorities yields a

significant saving in the system’s design and operational cost.

SUMMARY AND CONCLUSIONS

In this paper, the general river basin network flow model,

MODSIM, as the simulation engine, was embedded in a

PSO algorithm as a population-based evolutionary optim-

ization algorithm. The resulting PSO–MODSIM model was

used for optimum design and operation of the upstream

Sirvan basin in Iran. Noting that this model is computa-

tionally intensive, MODSIM was approximated by a trained

multilayer feed-forward neural network as a meta-modeling

tool. The models were successfully applied to the upstream

Sirvan basin system in Iran considering the issues of water

transfer to the neighboring basins. It has been shown that

the resulted PSO–MODSIM–ANN model is much faster

than the original PSO–MODSIM model. The short time of

the objective function evaluations in the PSO–MODSIM–

ANN model makes it possible to run it with a larger swarm

size which increases the exploration capability of the search

algorithm. Also, the sensitivity analysis, and thus fine

tuning, of the model parameters can be done more easily.

As a result, the PSO–MODSIM–ANN model has been able

to find a better solution compared to the one obtained by

the PSO–MODSIM model.

To be fair about the two modeling tools developed, it

should be noted that, although the PSO–MODSIM–ANN

is much faster than the PSO–MODSIM model, it takes time

to generate the input–output dataset needed for training the

network. This needs us to execute MODSIM several times

each providing a pair of input–output data and a sufficient

number of exemplars is required to be used in the network

training. However, the methodology is still useful and

significant as the off-line training process is performed

only one time. The purpose and scope of this study is to

present the possibility of solving a complex and real-world

river basin optimization problem using meta-modeling.

However, as pointed out by one of the reviewers and

Table 5 | Annual supply and demand values obtained by PSO–MODSIM and PSO–

MODSIM–ANN models

Supply (MCM) Demand

(MCM)
PSO–MODSIM–ANN PSO–MODSIM Item

313 315 379.7 Inside the basin

245.7 245.6 431 Upstream Karkheh
basin

– – 157.7 Ghorveh

595.4 590.6 738.3 Karkheh basin

1154.1 1151.2 1076.7 Sum

705.7 708.2 – Outflow

Figure 9 | Variations of the PSO particles’ objective function over the iterations in the

PSO–MODSIM–ANN model.
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presented in the literature, the problem can be solved more

efficiently by nesting the training of ANNs within the

evolutionary loop and perform incremental training

implemented within the backpropagation algorithm. It is

also possible to use smaller training sets and retrain the

network as the solutions converge toward the optimal set.

Making use of adaptive and dynamic meta-modeling

techniques is the subject of our ongoing research work in

a complementary study. It is believed that the models

represent useful tools for strategic decision-making regard-

ing water transfer and future water resource developments

at basin scales.
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