
Journal of
Mechanisms,

Transmissions,
and

Automation in
Design

An Application of the Linkage Char­
acteristic Po lynomia l to the T o p o ­
logical Synthesis of Epicyclic Gear Trains
(86-DET-66)

Jerry T. Pugh1. The author enumerates the permissible
graphs of one-degree-of-freedom, epicyclic gear trains with up
to six links. He shows that there are 80 nonisomorphic graphs
from which all six-link gear trains can be constructed. He
builds more complex graphs by adding to graphs previously
enumerated.

In order to enumerate a graph with n + 1 vertices, he adds a
vertex, a turning-pair edge, and a gear edge to a graph with n
vertices. The new turning-pair edge is connected between the
added vertex and any one of the existing vertices; the geared
edge is connected between the added vertex and any one of the
remaining vertices. Some of the generated graphs are rejected
due to violation of the fundamental rules associated with
epicyclic gear trains [7, 11], Isomorphic graphs are identified
using a random number technique applied to the characteristic
polynomial. These isomorphic graphs are eliminated in order
to avoid duplication.

I suggest that by noting the symmetry of a graph, one can
reduce the number of isomorphic graphs enumerated with the
author's procedure.

First, it is convenient to represent the relations of a graph
with various lists. For example, the graph of Fig. 1(b) can be
represented with a list of edges (adjacent vertices) and a list of
"geared" edges,

EDGES ((1 2) (2 3) (1 3)) GEARED-EDGES ((2 3))

Also, the symmetry of this graph can be represented by a list
made up of disjoint sublists of symmetric vertices.

SYMMETRY ((1) (2 3))

Two vertices can be checked for symmetry by checking to see
if they are members of the same sublist.

Second, the author's procedure is followed to enumerate a
graph with n + \ vertices except that the symmetry of the n
vertex graph is taken into consideration in order to avoid
generating isomorphic graphs.

For example, consider the following steps to enumerate
graphs with four vertices.

(a) Pick a starting vertex from the three vertex graph.
(b) If no vertices are left then quit.
(c) If the choosen vertex is symmetric with a vertex already

picked as a starting vertex then go to (a).
(d) Form a gear pair with the starting vertex and vertex 4.
(e) Pick an ending vortex.
(/) If no vertices are left then go to (a)

Manager, Mechanical Engineering, Instrument Research and Development,
Ames Division Miles Laboratories, 430 S. Beiger Street, Mishawaka, IN 46544

(g) If the choosen ending vertex is the same as the starting
vertex then go to (d).

(h) If the choosen vertex is symmetric with a vertex
already picked then go to (d).

(i) Form a revolute pair bet wen ending vertex and vertex 4.
(/') Go to (a).

Using the above procedure, the following three graphs are
generated.

(1) EDGES ((1 2) (2 3) (1 3) (1 4) (4 2)) GEARED-EDGES
((2 3) (1 4))
(2) EDGES ((1 2) (2 3) (1 3) (2 4) (4 1)) GEARED-EDGES
((2 3) (2 4))
(3) EDGES ((1 2) (2 3) (1 3) (2 4) (4 3)) GEARED-EDGES
((2 3) (2 4))

Note that these graphs correspond to the three nonisomorphic
graphs given by the author in Fig. 2(a), (b), and (/). Genera­
tion of the isomorphic graphs given in Fig. 2 (c), (d), and (e)
were avoided.

Although the possibility for generating isomorphic graphs
still exists2, a number of isomorphic graphs can be eliminated
with the procedure.

In the above example, a list representation was a convenient
way to represent a graph and its symmetry. Other relations of
a graph are just as easily represented with lists. An efficient
way to perform operations on lists is to use a list processing
computer language like LISP.

The author demonstrates an interesting enumeration pro­
cedure. I hope that this suggestion to use a graph's symmetry,
list representation, and a list processing computer language
like LISP will prove to be a usefull addition.

Author's Closure
The author wishes to thank Mr. Pugh for his constructive

comments. It is true that we can avoid the enumeration of
some isomorphic graphs using the property of symmetry in a
graph. However, we must also come up with an algorithm to
identify the symmetric vertices in a graph so that the enumera­
tion process can be completely automated by a digital com­
puter. The overall saving in computing time is probably
minimal when a quick and efficient method such as the ran­
dom number technique suggested in this paper can be applied
for the identification of isomorphic graphs. Nevertheless, it
may be helpful to take the advantage of graph symmetry, list
representation, and list processing computer language for the
development of a computer-aided mechanism design software.

For example, graph 5103 of Figure 6 can be made from either of the graphs
shown in Figure 4.

Journal of Mechanisms, Transmissions, and Automation in Design SEPTEMBER 1987, Vol. 109/337
Copyright © 1987 by ASME

D
ow

nloaded from
 http://verification.asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/109/3/337/5732219/337_1.pdf by guest on 29 N
ovem

ber 2023

https://crossmark.crossref.org/dialog/?doi=10.1115/1.3258800&domain=pdf&date_stamp=1987-09-01

