A Mergeable Double-ended Priority Queue

S. Olariu, C. M. Overstreet and Z. Wen
Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162, USA

An implementation of a double-ended priority queue is discussed. This data structure referred to as min-max-pair heap can be built in linear time; the operations Delete-min, Delete-max and Insert take $O(\log n)$ time, while Find-min and Find-max run in $O(1)$ time. In contrast to the min-max heaps, it is shown that two min-max-pair heaps can be merged in sublinear time. More precisely, two min-max-pair heaps of sizes n and k can be merged in time $O(\log (n/k) + \log k)$.

Received November 1990, revised February 1991

1. INTRODUCTION

A priority queue is a data structure whose elements are assigned a label representing their priority. In this context, the natural order of the elements in such a structure is dictated by their respective priority. Priority queues are widely used in software engineering, simulation, external sorting and operating systems, to name a few (see Refs. 2 and 6 for relevant discussion).

More formally, a priority queue can be viewed as an abstract data type maintaining a set of keys from a totally ordered universe and supporting the following atomic operations: Find-max: find the maximum; Delete-max: delete the maximum; Insert(x): insert key x into the structure. (Of course, instead of finding or deleting the maximum we could just as well insist on maintaining the structure such that the minimum is operated upon.)

Typically, heaps are used to implement priority queues in computer systems. In essence, a heap is a binary tree featuring the heap-shape property: all the leaves occur on at most two adjacent levels in the structure, with the leaves on the last level being confined to the lefmost position; and a max-ordering: every element is no less than the largest of its children. It is well known that in the heap implementation of priority queues Find-max takes constant time, while both Delete-max and Insert take $O(\log n)$ time. Furthermore, an n-element heap can be constructed in $O(n)$ time, which is trivially seen to be optimal (see Ref. 2 for details).

In fact, the idea of a priority queue can be naturally extended to a double-ended priority queue where, in addition to Find-max, Find-min, the operations of Find-min and Delete-min are also of interest. Motivated by this concept, Atkinson et al. have recently proposed an interesting variation on the idea of a heap: they define the min-max heap as a binary tree with the heap-shape property, and also min-max ordering, that is, elements on even levels are less than or equal to their descendant, and elements on odd levels are greater than or equal to their descendants. Max-min heaps are defined completely analogously: such a structure begins with the maximum element at the root and then the heap condition alternates between minima and maxima.

A nice feature of min-max heaps is that they can be implemented in situ, with no need for additional pointers. As it turns out, when the double-ended priority queue is implemented as a min-max heap, Find-min and Find-max can be performed in constant time, while Delete-min, Delete-max, and Insert take $O(\log n)$ time.

Addition, Atkinson et al. have presented a linear time, and thus optimal, algorithm to construct a min-max heap.

An interesting problem arising in fault-tolerant-distributed simulation is the following: assume that several (computationally active) sites in a distributed system are simulating a process. It is sometimes desirable to implement these event lists as double-ended priority queues. Basic fault-tolerant requirements require that if one of these sites, say S_i, suddenly becomes computationally inactive, another one must continue the simulation performed by S_i. For this purpose we need to elect a site S_{i+j}, which will then import the event list of S_i and will merge it with its own event list. Surprisingly, it has recently been proved that merging two min-max heaps of sizes n and k, respectively, cannot be done in less than $\Omega(n+k)$ time. This negative result motivates us to investigate a different data structure to implement efficiently a double-ended priority queue. This data structure, which was first proposed in a different form by Williams is herewith referred to as the min-max-pair heap (see Fig. 1). In essence, a min-max-pair heap is a binary tree H featuring the heap-shape property, such that every node in H has two fields, called the min field and the max field, and such that H has a min-max ordering: for every i ($1 \leq i \leq n$), the value stored in the min field of $H[i]$ is the smallest of all values in the subtree of H rooted at $H[i]$; similarly, the value stored in the max field of $H[i]$ is the largest key stored in the subtree of H rooted at $H[i]$. We show that min-max pairs can be implemented in situ, with no need for additional pointers. As it turns out, when the double-ended priority queue is implemented as a MinMaxPairHeap, Find-Min and Find-Max can be performed in constant time, while Delete-Min, Delete-Max, and Insert take $O(\log n)$ time.

Figure 1. A min-max-pair heap.
However, what really distinguishes min–max–pair heaps from min–max heaps is the fact that min–max–pair heaps can be merged efficiently in sublinear time. More precisely, we show that two min–max–pair heaps with \(n \) and \(k \) nodes can be merged in time \(O(\log n/k \cdot \log k) \).

Recently, Carlsson\(^9\) proposed a new data structure called the *deap*, which provides an efficient implementation of a double-ended priority queue. Formally, a deap is a data structure featuring the heap–shape property, with the left sub-tree of the non-existing root organised as a *min-heap*, the right sub-tree of the non-existing root a *max-heap*, and with each leaf in the min-heap smaller than a corresponding leaf in the max-heap. Specifically, a leaf at location \(i \) in the min-heap is smaller than the element at location \(i + 2^\lceil \log n/2 \rceil - 1 \), otherwise, \(i \leq n + 1 \) or the element at location \(i + 2^\lceil \log n/2 \rceil - 1 \). It turns out that deaps can be implemented in situ and can be constructed in linear time.\(^6\) To the best of our knowledge, however, it is an open question whether the deaps can be merged in sublinear time.

2. OPERATIONS ON MIN–MAX–PAIR HEAPS

Consider an array \(H[1..n] \) as input. For \(1 \leq i \leq n \), each element \(H[i] \) of \(H \) has two fields \(H[i] \).min and \(H[i] \).max (Therefore, the array \(H \) can be viewed as containing \(2n-1 \) or \(2n \) keys altogether; in the case where \(H \) contains \(2n-1 \) keys, the max field of \(H[n] \) contains a special symbol, namely \#).

The construction algorithm for min–max–pair heap resembles the construction of the standard heap structure.\(^4\) Let \(H[i] \) be an arbitrary node of the array to be made into a min–max–pair heap. Assume, further, that for all \(j \) (\(i \leq j \)), the subtrees rooted at the children of \(H[j] \), namely \(H[2j] \) and \(H[2j+1] \), provided they exist, have been made into min–max–pair heaps. First, we ensure that the key in \(H[i] \).min is no larger than the key stored at \(H[i] \).max. Next, we restore the min–max–pair heap property along the min fields of the nodes in the subtree rooted at \(H[i] \), by trickling down larger keys. Similarly, we restore the min–max–pair heap property along the max fields by trickling down smaller keys. The purpose of this is to ensure that the \(H[i] \).min and \(H[i] \).max contain the smallest and largest keys in the subtree rooted at \(H[i] \), respectively. The details are given below.

Procedure Create (\(H[1..n] \));

```plaintext
begin
    for i = n downto 1 do
        Siftdown(H[i]);
    end

Procedure Siftdown(H[]);
{we assume that the subtrees rooted at H[2i] and H[2i+1] are min–max–pair heaps}
begin
    Trickledown-min-field(H[]);
    Trickledown-max-field(H[]);
end; {Siftdown}
```

Procedure Trickledown-min-field(H[]);

```plaintext
begin
    p = H[];
    if p.max < p.min then Swap(p.min, p.max);
end; { Trickledown-min-field }
```

Procedure Trickledown-max-field(p);

```plaintext
begin
    if p.is a leaf then return;
    p = child of p with smallest min field;
    if p.min < p.min then
        Swap(p.min, p.min);
        Trickledown-min-field(p);
    end; { Trickledown-min-field }
```

Procedure Trickledown-max-field is similar. The following result establishes the correctness and the time complexity of our procedure.

Theorem 1. Procedure Create correctly induces a min–max–pair heap structure over \(2n-1 \) or \(2n \) keys in \(O(n) \) time.

Proof. To settle the correctness we proceed as follows: assume that for all values of \(i \) (\(2 \leq i \leq n \)), when Trickledown-min-field(H[i]) (resp. Trickledown-max-field(H[i])) terminates, \(H[i] \).min (resp. \(H[i] \).max) contains the smallest (resp. largest) key in the subtree rooted at \(H[i] \), while the subtrees rooted at \(H[2i] \) and \(H[2i+1] \) (provided they exist) are min–max–pair heaps. It is easy to confirm that when Siftdown(H[1]) terminates, the whole structure is made into a min–max–pair heap.

To address the complexity, consider what happens in procedure Trickledown-min-field when node \(H[i] \) is being processed. To ensure that \(H[i] \).min \leq H[i] .max and to determine the child of \(H[i] \) with the smallest min field three comparisons are required. Consequently, the total number of comparisons to perform Siftdown is

\[
\sum_{i=1}^{\log n} \log i - \log n
\]

which is easily seen to be \(O(n) \).

Next, we show that performing the standard operations Insert(x) and Delete-min as well as Delete-max can be done in \(O(\log n) \) time. Basically, the idea of inserting a new element \(x \) into a min–max–pair heap is the same as the insertion of a new element in a standard heap. We first place the new key at the bottom of the structure and then perform the well-known bubble-up operation. Just as in the case of heaps, the time complexity of the Insert(x) operation for the min–max–pair heap is dominated by the cost of the bubble-up, which is easily seen to be \(O(\log n) \) as shown in the following procedures.

Procedure Bubbleup(H[]);

```plaintext
begin
    p = H[];
    b = false;
    if p.min > p.max then
        Swap(p.min, p.max);
    if p.is the root then return;
    p = the parent of p;
    if p.max < p.min then
        Swap(p.max, p.min);
        b = true;
    end;
    if p.max < p.min then
        Swap(p.min, p.min);
        b = true;
    end;
    if b then
        Bubbleup(p);
    end; { Bubbleup }
```

424 THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991
A MERGEABLE DOUBLE-ENDED PRIORITY QUEUE

procedure Insert(x,H[1..n]);
begin
 if H[n].max = '#' then
 H[n].max ← x;
 else begin
 n ← n + 1;
 H[n].min ← H[n].max ← x;
 H[n].max ← '#';
 end;
 Bubbleup(H[n]);
end.

Similarly, the idea of Delete-min and Delete-max resembles the well-known delete operation on heaps. The details are spelled out in the following procedures. It is an easy matter to confirm that both these operations can be executed in $O(n)$ time, while Find-min and Find-max take $O(1)$ time.

procedure Delete-min(H[1..n]);
begin
 if H[1].max = '#' then begin
 H[1].min ← H[1].max; n ← n - 1;
 end else begin
 H[1].min ← H[n].max;
 H[n].max ← '#';
 end;
 Trickledown-min-field(H[1]);
end;

3. MERGING MIN–MAX–PAIR HEAPS

Recently, Sack and Strothotte have proposed an efficient algorithm to merge two heaps in sublinear time. Specifically, merging two heaps of size n and k can be done in $O(nk + \log k)$ time. The general case of the heap-merging algorithm in Ref. 9 reduces, in stages, to that of merging perfect heaps. (A heap H is perfect if the leaves occur at the last level only.) The idea in Ref. 9 is very elegant: first, to merge two perfect heaps H_1 and H_2 of equal size, make the rightmost leaf of H_2 into the new root, whose children become the old roots of H_1 and H_2. After this, the new root is sifted down to restore the heap property.

Next, let H_1 and H_2 be two perfect heaps of sizes n and k, respectively, with $k < n$. Start at the root of H_1 and compare it to the root of H_2. If the root of H_2 is smaller than the root of H_1, exchange the two roots and perform a sift-up on H_2. This operation is repeated along the path (Walk-down) in H_1 from the root down to the leftmost leaf of H_1 for $\log n - \log k$ steps.

We propose to show that the heap-merging algorithm in Ref. 9 can be easily adapted to merge two min–max–pair heaps in sublinear time. We shall therefore focus on merging perfect min–max–pair heaps, that is, min–max–pair heaps whose leaves occur at the last level only. We refer the interested reader to Ref. 8, where the tedious details are documented.

Just as in Ref. 9, to reduce the amount of data movement during the execution of our merging algorithm, we shall assume a pointer-based implementation. In this context, a min–max–pair heap node v contains the following fields:

- v.min and v.max fields;
- v.child contains a pointer to the left child of v in the min–max–pair heap;
- v.rchild contains a pointer to the right child of v in the min–max–pair heap.

It is convenient to assume that depth(H) returns the depth of the min–max–pair heap H in constant time. The details of our merging algorithms are as follows.

procedure Merge-perfect(H1,H2);
{H1 and H2 are two min–max–pair heaps of same size}
begin
 p ← the last node in H_2;
 remove p from H_2;
 p.lchild ← H_1;
 p.rchild ← H_2;
 Siftdown(p);
 $H_1 ← p$;
end;

procedure Walk-down(Hn,Hk,from,to);
{Hn is a min–max–pair heap with n nodes; Hk is a min–max–pair heap with k nodes; 'from' is the starting location of current operation on the path from the root to Hn to the leftmost leaf; 'to' is the ending position of the operation}
begin
 if Hk.min < from.min then swap(Hk.min,from.min);
 if Hk.max > from.max then swap(Hk.max,from.max);
 Siftdown(Hk);
 if from = to then return
else begin
 next ← next node on the walk-down after from;
 Walk-down(Hn,Hk,next,to);
end;
{Walk-down}

procedure Merge-perfect(Hn,Hk);
begin
 p ← node on the path from the root to the leftmost leaf in Hn, such that the subtree rooted at p has k nodes;
 r ← root of Hn;
 Walk-down(Hn,Hk,r,p);
 $p1$ ← parent of p;
 merge-perfect-equal(p,Hk);
 if $p1 ≠ \text{nil}$ then
 $p1$.lchild ← p
 else $Hn ← p$
end;
{Merge-perfect}

(For a detailed example refer to Figure 3.) It is easy to see that the complexity of our algorithm is exactly the same as that of the heap-merging algorithm in Ref. 9. Specifically, we can merge two min–max–pair heaps with n and k nodes, respectively, in $O(\log(n/k) \cdot \log k)$ time.

![Figure 2. A min–max–pair heap.](https://academic.oup.com/comjnl/article-lookup/10.1093/comjnl/34.5.423)
4. CONCLUSIONS AND FURTHER WORK

We have shown that the techniques in Ref. 9 can be readily adapted to handle two merging min-max-pair heaps. It is easy to see that the idea that led to the min-max-pair heap can be further expanded. As an example, we define a min-min-pair heap as a heap-shaped binary tree with each node containing two fields called \textit{min}1 and \textit{min}2, respectively. The value of \textit{p.min}1 is the smallest of all the values stored in the subtree rooted at \textit{p}; \textit{p.min}2 contains the smallest of all the values stored in the \textit{min}2 fields of all the nodes in the subtree rooted at \textit{p}. Finally, for every node \textit{q} in the subtree rooted at \textit{p}, \textit{p.min}2 \geq 2 \textit{.min}1 (see Fig. 2).

One interesting feature of a min-min-pair heap is that the \textit{min}1 field of the root contains the minimum value in the whole structure, while \textit{min}2 of the root contains the median of the whole structure. As it turns out, a min-min-pair heap containing 2\textit{n}-1 or 2\textit{n} keys can be constructed in O(\textit{n}) time. Clearly, the operations \textit{Find-min} and \textit{Find-median} can be performed in O(1) time. Similarly, \textit{Insert(x)}, \textit{Delete-min} and \textit{Delete-median} can be done in O(log \textit{n}) time. Similarly, one can define a max-max-pair heap and a max-min-pair heap. Unfortunately none of these variations of the min-max-pair structure is mergeable in sublinear time.

Finally, an interesting open problem is whether or not deaps are mergeable in sublinear time. In particular, it would be interesting to see if the techniques in Ref. 9 can be extended to deaps.

Acknowledgement

The authors would like to thank an anonymous referee for a number of constructive comments. A preliminary version of this paper has appeared in the Proceedings of the 29th Annual ACM SE Regional Conference, Auburn, Alabama, 1991. The first author was supported, in part, by NSF under grant CCR-8909996.
A MERGEABLE DOUBLE-ENDED PRIORITY QUEUE

REFERENCES

Correspondence

Sir,
In many applications of computer engineering, we are often in need of converting decimal data into its equivalent data of other base(r) system such as binary, octal, hex etc.
One of the usual techniques of such conversion is known as ‘dible-double’ technique. The ‘dible-double’ technique has two major limitations as listed below.
1) The technique uses two different algorithms for conversion of real data. One algorithm is used for conversion of the integer part of the data and another algorithm is used for conversion of the fractional part of the data.
2) The order of the bits of integer part of the data is the reverse to that of the fractional part of the data on conversion. Such nature of order of bits of two parts of data becomes a common source of error particularly for paper and pencil work.

The other usual technique of data conversion is known as ‘table-look-up’. But the ‘table-look-up’ technique is efficient only for conversion of any decimal data to its equivalent binary data (D-B).

In cases where the tables in the table-look-up are very difficult to design in these cases. The size of the table increases in term of columns with increase of base in which data is to be converted. For example, the required number of columns of the table in case of D-B conversion of data up to the maximum decimal integer of eight is two; while the same for the case of D-O conversion goes up to eight. While using this technique in conversion of data, the required searching time of the table for conversion increases with the increase of the size of this table.

Hence the technique is a slow one, particularly for the cases of conversion of D-O and of D-H etc. Moreover, the table increases its size towards row as the data under conversion increases.

The above-stated limitations of existing techniques of conversion of data may be removed, if the new algorithm given below is used for the same purpose.

The new algorithm is based on the fact that any decimal integer, I in any other base system, r can be expressed as:

\[a_n r^n + a_{n-1} r^{n-1} + \ldots + a_0 r^0 \]

where \(a_i \) for \(i = n, n-1, \ldots, 0 \) are the bits representing I in base, r.

But

\[(a_n r^n + a_{n-1} r^{n-1} + \ldots + a_0 r^0) \leq a_n r^n \quad \ldots (1) \]

Thus the subtraction of \(r^a \) from I for \(a_n \) number of times must meet the inequality (1).

At the next such subtraction the inequality (1) must not be satisfied as:

\[(a_n r^n + a_{n-1} r^{n-1} + \ldots + a_0 r^0) < (a_n + 1) r^n \quad \ldots (2) \]

Thus counting the number of times for which \(r^a \) is subtracted from I in satisfying the inequality (1) will provide the value of \(a_n \).

Similarly any other bit, \(a_i \) can be evaluated.

For the fractional part (F) of any decimal data the related inequalities are:

\[(a_{-1} r^{-1} + a_{-2} r^{-2} + \ldots + a_{-m} r^{-m}) \leq a_{-1} r^{-1} \]

And

\[(a_{-1} r^{-1} + a_{-2} r^{-2} + \ldots + a_{-m} r^{-m}) < (a_{-1} + 1) r^{-1} \]

In case of the conversion of fractional part of data, in some cases the number of required bits on conversion may be very high. In such situations a limit in the number of bits may be included. This introduces the so called conversion error.

The above-stated idea forms a basis of new algorithm for conversion of data.

A numerical example to convert decimal data 0.5 in binary is given below to show the difference between the ‘dible-double’ algorithm and the new algorithm.

Under dible-double algorithm

Integer part:

\[1010010101 \quad (indicates \ end \ of \ operation) \]

1 (LSB-Least significant bit)

Fractional part up to 4th bit:

0.8 x 2 = 1.6 = 1 (MSB),
0.2 x 2 = 0.4 = 0,
0.4 x 2 = 0.8 = 0 (LSB).

Observation

1) Two separate algorithm for conversion of integer and that of fractional part are used.

2) Order in which MSB to LSB is evaluated in reverse to each other in two cases.

Under new algorithm

Integer part:

\[5 - 2^3 = 1 \to 0 \to 1 \quad (MSB), \]
\[1 - 2^1 = -1 < 0 \to 0, \]
\[1 - 2^0 = 0 \to 1 \quad (LSB). \]

(Indicates end of operation).

Fractional part

0.8 - 2^{-1} = 0.3 > 0 \to 1 \quad (MSB),
0.3 - 2^{-2} = 0.05 > 0 \to 1,
0.05 - 2^{-3} = -0.075 < 0 \to 0,
0.05 - 2^{-4} = -0.00125 < 0 \to 0 \quad (LSB).

Observations

1) Single algorithm is used for both the cases of conversion of integer and fractional part of data.

2) Order in which MSB to LSB is obtained is same in both the cases of the integer and the fractional part of data.

C. T. BHUNIA

Department of Computer Science, North Bengal University (and NERIST), Dist. Darjeeling, Pin 734 430, West Bengal, India

REFERENCES

THE COMPUTER JOURNAL, VOL. 34, NO. 5, 1991 427