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ABSTRACT
◥

p27 binds and inhibits cyclin-CDK to arrest the cell cycle. p27
also regulates other processes including cell migration and devel-
opment independent of its cyclin-dependent kinase (CDK) inhib-
itory action. p27 is an atypical tumor suppressor–deletion or
mutational inactivation of the gene encoding p27, CDKN1B, is rare
in human cancers. p27 is rarely fully lost in cancers because it can
play both tumor suppressive and oncogenic roles. Until recently, the
paradigm was that oncogenic deregulation results from either loss
of growth restraint due to excess p27 proteolysis or from an
oncogenic gain of function through PI3K-mediated C-terminal
p27 phosphorylation, which disrupts the cytoskeleton to increase
cellmotility andmetastasis. In cancers, C-terminal phosphorylation

alters p27 protein–protein interactions and shifts p27 from CDK
inhibitor to oncogene. Recent data indicate p27 regulates transcrip-
tion and acts as a transcriptional coregulator of cJun. C-terminal
p27 phosphorylation increases p27-cJun recruitment to and action
on target genes to drive oncogenic pathways and repress differen-
tiation programs. This review focuses on noncanonical, CDK-
independent functions of p27 in migration, invasion, development,
and gene expression, with emphasis on how transcriptional regu-
lation by p27 illuminates its actions in cancer. A better understand-
ing of how p27-associated transcriptional complexes are regulated
might identify new therapeutic targets at the interface between
differentiation and growth control.

p27 Is a Ubiquitously Expressed
Cell-Cycle Inhibitor

The CDKN1B gene encodes p27, a cyclin-dependent kinase inhib-
itor (CDKi) of the kinase inhibitory protein (Kip) family. CDKis
mediate cell-cycle inhibition. p27 is ubiquitously expressed and inte-
grates mitogenic and growth inhibitory signals to govern normal cell-
cycle progression (1). p27 can inhibit the catalytic activity of cyclin D-,
E-, A-, and B-CDK complexes (2) by interacting with both cyclin and
CDK subunits via its N-terminal domain, which is conserved among
Kip family members (p21, p27, and p57; refs. 1, 3).

Antiproliferative and differentiation signals increase p27 to
mediate cell-cycle arrest (2, 4–7). In normal cells, p27 levels are
tightly regulated across the cell cycle. An increase in p27 by 2-
to 3-fold is sufficient to fully inhibit G1–S-phase cyclin-CDKs (8). In
G0-phase and early G1-phase, p27 protein translation and stability are
maximal (9–13) and it inhibits cyclin E-CDK2 (2, 14). A progressive
decline in p27 is required to relieve the inhibition of cyclin E- and
cyclin A–bound CDK2 and enable transcription of genes required
for G1- to S-phase progression (1). Transient C-terminal p27 phos-
phorylation by PI3K/AKT in mid-G1-phase facilitates assembly
and nuclear import of D-type cyclin-CDKs (15), permitting their

activation (3, 15, 16). p27 proteolysis increases during G1-phase
progression via a number of mechanisms. Phosphorylation at
p27T187 by cyclin E or cyclin A–bound CDK2 triggers p27 turnover
by promoting its polyubiquitination and degradation by the SCFSkp2

ubiquitin ligase complex [S-phase kinase associated protein 1 (SKP1)/
Cullin/F-Box protein: SKP2; refs. 17–19]. But how does the target
kinase, cyclin E–boundCDK2, phosphorylate its own inhibitor? InG1-
phase, Src family kinases phosphorylate p27 in its CDK inhibitory
domain at Y74, Y88, and Y89 (20, 21). Phosphorylation of p27Y88
within the 310-helix that binds the ATP pocket in CDK2, leads to
ejection of p27 from the catalytic cleft of CDK2, permitting kinase
activation (20, 21). CDK2 can then phosphorylate p27 at T187 to
trigger p27 proteolysis at the G1–S-phase transition. p27 is also
degraded independently of T187 phosphorylation (see Fig. 1A). In
early G1-phase, p27 phosphorylation at S10 (22, 23) leads to its export
to the cytoplasm. Cytoplasmic p27 can be ubiquitylated by the
ubiquitin ligase Kip1 ubiquitylation-promoting complex to mediate
its degradation (24).

p27 Acquires Novel Functions through
C-terminal Phosphorylation by PI3K
Effector Kinases

C-terminal p27 phosphorylation regulates p27 function. PI3K
promotes growth, survival, and motility (25–27) of both normal and
cancer cells (28). PI3K activates downstream kinases, including
AKT, SGK, 70 kDa S6 kinase (p70S6K), and 90 kDa ribosomal S6
kinase (p90RSK; refs. 26, 27, 29). These in turn phosphorylate p27 at
T157 (30–32) to delay p27 nuclear import (30, 33) and at
T198 (34, 35) to stabilize p27pT157pT198 (hereafter p27pTpT;
refs. 36, 37).

p27 plays cell-cycle–independent actions to regulate cell motil-
ity (38, 39). Early work showed transduction of p27–TAT fusion
protein into HepG2 cells increased cytoplasmic p27 and promoted
cell migration (40). When p27null mouse embryo fibroblasts
(MEF) were found to have impaired cell motility, this led to the
discovery that p27 binds and inhibits RhoA-ROCK, leading to
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destabilization of the actin cytoskeleton and increased cell motil-
ity (38, 39). This p27 action is independent of cyclin/CDK binding,
because the motility of p27null MEFs is restored equally by either
WTp27 or by a p27CK� mutant that cannot bind cyclins and
CDKs (38, 39). p27 phosphorylation at T198 promotes its inter-
action with RhoA and RhoA-ROCK1 inhibition (41, 42) to drive
cell motility. While the precise role of p27-mediated cytoskeletal
changes in normal cells are not fully known, these might serve to

remodel cell shape in G1-phase to permit later changes during
mitosis and cytokinesis.

p27 is also expressed in cortical neurons and neuronal progenitors
and regulates interneuron migration. p27 plays roles in neuronal
development and axonal transport via several mechanisms. Defects
in the kinetics of nucleokinesis and tangential neuronalmigrationwere
observed in p27null mice (43), potentially through loss of p27/RhoA
binding. p27 also promotes neuronal microtubule polymerization
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A, Schematic of p27 domains and phosphorylation sites. Kinases that phosphorylate p27 are indicated. B, Transcription factors that interact with p27 and p27 target
genes validated by ChIP-PCR are shown (the superscripts on p27 target genes indicate the relevant references).
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during neurite outgrowth (44, 45). p27 also appears to bind and
stabilize alpha tubulin acetyl transferase 1 to promote microtubule
acetylation and stability to regulate axonal transport (46). In addition
to its effects on cell motility, p27 plays a number of roles that are
independent of CDK inhibition to regulate autophagy, apoptosis,
stem/progenitor fate, and cytokinesis (37, 47, 48).

LossofCDKInhibitionbyp27 inCancers
p27 loss through decreased synthesis and excess proteolysis

Oncogenic activation of the SRC, MAPK, and PI3K signaling
pathways deregulate p27 in cancers (1, 49). While high nuclear p27
levels restrain normal cell proliferation (50), p27 is nearly always
deregulated in cancers (20). Human cancers often show reduced
nuclear p27 (50–53) and this is associated with poor patient progno-
sis (1). This occurs predominantly through activation of SCFSKP2-
dependent p27 proteolysis (17, 24, 36). Activation of ABL, LYN, LCK,
and FYN in lymphoma and other hematopoietic malignancies also
promotes p27 proteolysis (54). In addition, SRC activation (20)
and ERBB2 amplification (55) are associated with reduced p27 in
human breast cancer. p27 loss in human cancers can also result from
oncogenic overexpression of miRNAs that impair p27 translation
(reviewed in ref. 12). p27 is a key target of the miR-221/222 inmultiple
malignancies including glioblastoma (56, 57), triple-negative
breast (58), hepatocellular (59), and papillary thyroid carcinoma (60).
Other miRNAs also target p27 including miR-196a in cervical can-
cer (61), miR-24 in prostate cancer (62), miR-152-3p in chronic
myelogenous leukemia (63), miR-148a in myeloma (64), and miR-
199-a in osteosarcoma (65). p27 translation can also be regulated by
long noncoding RNAs via ribonucleoprotein complexes (66), but the
relevance of this mechanism to p27 loss in cancers is not known.

Constitutive C-terminal phosphorylation via oncogenic PI3K
pathway activation

The PI3K pathway is oncogenically activated in a majority of
human cancers (28). PI3K/AKT-activated cancers have constitutively
C-terminally phosphorylated p27 that accumulates aberrantly in both
the cytoplasm and nucleus and binds novel proteins to drive tumor
progression (30–32). We and others showed AKT can phosphorylate
p27 (30–32), impair nuclear import, and a highly stable p27 accumu-
lates in the cytoplasm in PI3K-activated human breast cancers and is
associated with poor patient outcome (30, 67). Cytoplasmic p27 was
also observed in cancer models with oncogenic activation of Ras, PKC,
or Pim kinases (68–71). Notably, PI3K inhibition restored nuclear
localization of p27 in a K-Ras–activated lung cancer model (72).
Cytoplasmic p27 is associated with increased metastasis and poor
survival in a number of cancer types (1, 67). Indeed, overexpression
of p27CK� coupled to a triple-nuclear export signal increased
melanoma metastasis in vivo, suggesting p27 might have oncogenic
actions independent of CDK inhibition (73). Activation of AKT/
PI3K and accumulation of p27pTpT has been shown to increase
tumor metastasis in several cancer models including breast and
urothelial cancers (74–76). While the oncogenic action of C-ter-
minally phosphorylated p27 was initially thought to result from
cytoplasmic mislocalization (30), increased cyclin D-CDK4 assem-
bly (3, 15) or RhoA/ROCK1 inhibition and cytoskeletal changes
causing greater tumor invasion (38, 39), recent work has identified
additional p27pTpT-interacting partners and novel oncogenic
actions (see Figs. 1B and 2).

Increasing data indicate that p27pTpT acts as a transcriptional
regulator to drivemetastasis (75, 76).Whenp27pTpT accumulates due

to PI3K activation, it associates with transcription factors STAT3 (75)
and cJun (76) to drive transcription programs of epithelial–
mesenchymal transition (EMT) andmetastasis (reviewed below). cJun
is a known regulator of tissue morphogenesis and multi-organ tissue
differentiation (77). The finding that p27-cJun–driven genes govern
developmental processes may illuminate work from 20 years ago that
implicated p27 as a regulator of tissue differentiation in normal
development. Before actions of p27 as a transcriptional regulator are
discussed, we will briefly review lessons from mouse models on p27
action in differentiation and development.

p27 Plays Cyclin-CDK–Independent
Roles in Development

p27�/� mice have a phenotype of gigantism due to multi-organ
hyperplasia, and maldevelopment of retina, central nervous system,
pituitary, and ovary (78–80). This has been attributed to failure to
arrest the cell cycle during differentiation (78–80). Mice lacking p27
uniformly exhibit tumor formation in the pituitary (78–80); and
haploinsufficient animals are carcinogen sensitive (81). Spleen
and thymus enlargement in p27-null mice are associated with an
expansion of committed hematopoietic progenitors of granulocytic
and erythroid lineages, without increase in pluripotent hematopoietic
stem cells (80, 82), and spontaneous T-cell lymphoma emerge in 6%.
p27�/� mice also show maldevelopment of neural structures, retina,
and pituitary, and pituitary adenoma cause premature death of nearly
all mice at approximately 10 months (78–80). Notably, knockin of a
cell-cycle defective p27 mutant that cannot bind cyclin or CDKs
(p27CK�) failed to correct the large animal size, providing additional
support for the notion that the CDK inhibitory function of p27
somehow coordinates stem/progenitor expansion in various tissues
with cell-cycle arrest at differentiation (83). Furthermore, some devel-
opmental defects of the p27-null phenotype were corrected in the
p27CK� knockin, indicating that some developmental actions of p27
are CDK independent (83). The p27CK� knockin mice showed
stem cell expansion, hyperplasia, and neoplasia in the lung, not seen
in p27�/� and a greater frequency of hyperplasia of pituitary, adrenal,
spleen, and thymus and more T-cell lymphomas (20%; ref. 83). The
widespread differentiation defects and increased progenitor self-
renewal in multiple tissues, suggested p27CK� expression without
cell-cycle restraintmightmisregulate progenitor/stem cells. The devel-
opmental phenotypes of p27-null and p27CK� knockin mice were
initially interpreted in light of p27's known CDK inhibitor action.
However, CDK2 loss did not compensate the p27null phenotype in the
double knockout (84, 85) and subsequent studies soon showed further
evidence for CDK-independent p27 actions in differentiation.

The p27 homologue in Xenopus, Xic1, is required for normal
muscle (86, 87) and neuronal differentiation (88–90). This prodiffer-
entiation function is cell-cycle independent (86, 87), because Xic1 is
required prior to growth arrest during differentiation and because a
mutant xic1, which cannot bind cyclin-CDKs, can compensate for
Xic1 loss to promote differentiation. p27 interacts with several tran-
scription factors either genetically or physically to govern differenti-
ation. p27 interacts in a cyclin-CDK–independent manner with Nrf2,
and binds and stabilizes Neurogenin 2 to regulate neuronal develop-
ment in both frogs and mice (88–90). p27 cooperates with myogenic
transcription factor, MyoD (86), to drive myogenesis (86, 87). p27 is
also involved in the maintenance of muscle stem cells (MuSC). p27,
together with the upstream activator AMPK, prevents apoptosis of
aged MuSCs by enhancing autophagy (91). p27 also interacts func-
tionally and genetically with transcription regulator, p130, to promote
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endochondral ossification (92). In keratinocyte precursors, antisense
oligonucleotides to p27 disrupted the expression of differentiation
markers but did not prevent growth arrest, indicating that normal
keratinocyte differentiation is p27 dependent but does not require
its CDK inhibitory action (93). Taken together, these findings indicate
that p27 controls cell proliferation and organ size (78–80) through
both cell-cycle–dependent and -independent mechanisms to regulate
normal tissue progenitor expansion and differentiation. Because
the p27null phenotype was not compensated by CDK2 knock-
out (84, 85) and some developmental defects in neurogenesis and
myogenesis of p27null tissues can be compensated by expression of
p27CK� (86, 88, 90), it appears that p27 has developmental actions
independent of its cyclin-CDKbinding. In the section below,we review
emerging data that indicate a novel role for p27 in regulation of
transcription. The developmental defects and organ overgrowth of
p27null mice might reflect a normal role for p27 to govern gene
programs that restrain tissue stem or progenitor cell self-renewal
during differentiation and to integrate this with cell-cycle arrest.

Evidence for a Role for p27 as a
Transcriptional Corepressor

Increasing data suggest that some of the developmental effects of
p27 might result from novel actions on transcription (see Figs. 1B
and 2). A limited genomic survey using chromatin immunoprecipi-
tation (ChIP)-on-chip in quiescent MEFs showed p27 binds gene
promoters as a putative corepressor with p130, E2F4, HDAC1, and
SIN3A (94). Comparison of p27-annotated sites with genes differen-
tially expressed in G0-phase wild-type (WT) MEFs versus p27null
MEFs indicated that p27-target genes regulate splicing, mitochondrial
function, translation, and cell cycle. Notably, interaction of p27 with

p130 required the C-terminal portion of p27 and further assays
support a model in which p130 recruits p27 to DNA and p27 is
required to nucleate E2F4 and other corepressors (94).

It is not clear whether some transcriptional effects of p27 involve
interaction with cyclin-CDKs. p27 recruitment to two putative
repressed gene targets AURKA and MED18 identified by ChIP-on-
chip (94), was evaluated across the cell cycle (95). At both sites, p27–
promoter interaction decreased as p27 levels declined during progres-
sion from G0-phase to mid-G1-phase in synchronized NIH3T3
cells (95). ChIP-PCR also demonstrated individual recruitment of
each of cyclins D2, D3, and CDK4 to the sites of p27 association,
peaking in mid-G1-phase. Interactions of cyclin D2, D3, and CDK4
with these promoters decreased with p27 knockdown and were not
restored by transfection of p27CK�, suggesting a need for D-type
cyclin and CDK4 binding to p27 for their recruitment to chromatin.
While these data raise the intriguing possibility that some transcrip-
tional roles of p27might involve cyclin-CDKs, further work is required
to establish whether p27-dependent D-Cyclin-CDK4 recruitment
reflects a tripartite complex at these promoters and whether these
complexes indeed regulate target gene expression (95).

Further evidence for a role for p27 in gene repression came from
MEFs and embryonic stem (ES) cells. p27�/� MEFs cells were shown
to have higher basal expression of SOX2, suggesting p27 might act as
SOX2 repressor. Sox2 is a critical ES cell transcription factor that
maintains ES pluripotency and self-renewal (96) and drives stem cells
in many different cancers (97, 98). SOX2 has an intronic regulatory
element (SRR2). p27 interaction with this SOX2-SRR2 and each of
p130, E2F4, and SIN3A led to SOX2 repression (99).

A genomic survey in G0-phase–arrested MEFs showed p27 is
recruited to chromatin at consensus motifs of several other develop-
mentally important transcription factors including PAX5 and MyoD,
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Cartoon depicts signaling pathways linked to transcriptional regulation by p27 and interacting coregulators. ECM, extracellular matrix; HGF, hepatocyte growth
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and p27 was shown to coprecipitate with each of these factors (100).
p27 showed greater recruitment to distal putative intronic-binding
sites compared with promoter proximal sites in G0-phase MEFs. Gene
ontology analysis of protein coding p27 targets showed enrichment of
pathways governing cell adhesion, differentiation, transcriptional
regulation, and morphogenesis among others (100). Further work in
growth arrested HCT116 colon cancer cells, showed up to half of p27-
associated protein-coding gene targets were also sites of recruitment of
p300/CBP-associated factor (PCAF). Correlation of ChIP-sequencing
with gene expression following knockdown of each of CDKN1B and
PCAF suggested that p27 acts predominantly as a PCAF corepressor to
decrease target gene expression (101).

In p27null mice, p21 levels are increased and p21 appears to
compensate for some cell-cycle defects of p27 loss (78–80). A recent
report suggests that p27 downregulates expression of the p21 gene,
CDKN1A, by repressing PITX2, a transcriptional activator of
CDKN1A. Both CDKN1A and PITX2 expression were increased in
p27�/� MEFs compared with WT MEFs. ChIP-PCR showed p27
recruitment to the PITX2 enhancer in association with loss of PITX2
expression and loss of p21. E2F4 was also recruited to this PITX2 site
and E2F4 depletion also increased PITX2 expression supporting a
model of p27-E2F4–mediated PIXT2 repression (102).

In a mouse model of K-Ras–driven pancreatic cancer, loss of p27
accelerated tumor development and decreased survival. Pancreatic
acinar cells in p27�/�mice showed a disruption of apical basal polarity,
premalignant acinar to ductal metaplasia, and reexpression of ductal
progenitormarkers, including Sox9. In theK-Ras–activated pancreatic
cancer line, PANC1, WTp27 was shown to be recruited to the SOX9
promoter and to decrease its promoter activity in reported assays (103).
The recruitment of corepressors was not characterized. The oncogenic
cooperation between K-Ras and p27 loss was attributed in part to de-
repression of SOX9 (103).

These studies, taken together, provide a body of work supporting
a role for p27 in transcriptional repression of pathways governing
cell adhesion, differentiation, and development. However, most of
the studies above have provided little or no data to demonstrate the
functional significance of p27-driven gene repression in vivo. The
changes in pancreatic acinar polarity in p27�/� mice and more rapid
emergence of p27�/�X-mutantK-RAS–driven pancreatic cancer were
associatedwith, but not shown to be caused by, loss of SOX9 repression
by p27 (103). In the case of SOX2 repression, p27null MEFs more
readily undergo induced pluripotency due to higher endogenous levels
of SOX2 expression (99). However, the functional consequences of
p27-mediated transcriptional repression of SOX9, SOX2, or other gene
targets in vivo in development and cancer have yet to be demonstrated.

Oncogenic Partnerships between
p27pTpT and Other Transcription
Factors
p27 activates STAT3 to mediate TWIST1 induction, EMT, and
metastasis

In MCF12A human mammary epithelial cells, a CDK-binding
defective p27pT157pT198-phosphomimetic, p27CK-DD, induced
EMT, but the p27CK� allele lacking these phosphomimetic mutations
did not (75). A comparisonof sister breast cancer lineswith lowandhigh
metastatic ability, respectively, showed the highly metastatic lines had
activated PI3K and high p27pTpT (67). p27 depletion mimicked
mTOR inhibition and abrogated the excess bone metastasis in the
MDA-MB-231-1833 model compared with parental MDA-MB-231

(67). C-terminally phosphorylated p27 was shown to activate gene pro-
grams of EMT: in highly metastatic breast and bladder cancer lines, p27
depletion reduced expression of EMT transcription factors including
TWIST1 andTGFB2, decreased activated STAT3 (pSTAT3), and reduc-
ed invasion and lung metastasis (75). In contrast, p27CK-DD trans-
duction into lowmetastatic breast and bladder cancer cell lines activated
pSTAT3, to upregulate TWIST1 and increase lung metastasis in vivo.
Proteome analysis of 747 primary breast cancers showed p27pT157
levels correlated strongly with p27pT198, and with both pSTAT3 and
PI3K activation (75). Thus, PI3K activation leads to increased p27pTpT
to drive p27/STAT3association, STAT3 activation, andSTAT3-induced
TWIST1, EMT, and metastasis (75). Further analysis of p27–STAT3
partnerships in transcriptional regulation is in progress.

p27 binds and transcriptionally coregulates cJun to drive
programs of tumor progression

A recent study revealed a novel oncogenic cooperation between
PI3K and cJun pathways: p27 phosphorylation by PI3K-activated
kinases stimulates p27 association with cJun. p27 and cJun were
shown to be corecruited to chromatin, leading to activation of tran-
scription programs of cell motility and EMT to drive tumor metas-
tasis (76). p27 thus emerges as a novel cJun coregulator, whose
chromatin association is governed by C-terminal p27 phosphoryla-
tion. In cancer cells with high endogenous p27pTpT or expressing
p27CK-DD, cJun was activated and interacts with p27. p27–cJun
complexes colocalized to the nucleus as shown by coprecipitation
in fractionated cell lysates and proximity ligations assays. Sequential
ChIP-qPCR with anti-cJun and re-ChIP with anti-p27 antibodies
showed both are corecruited to TGFB2 to drive its expression. Com-
parison of global p27 and cJun chromatin association with gene
expression showed p27 and cJun are corecruited broadly to chromatin
and, in highly metastatic cancer models, upregulate target genes
critical for cell adhesion, cytoskeletal regulation, TGFb pathway
activation, and oncogenic signaling. The most frequent transcription
factor consensus motif bound by p27 was AP1/cJun, but other
developmentally important and growth regulatory transcription factor
binding motifs were also observed. Evaluation of binding within 5 Kb
of transcription start sites showed p27-cJun target genes were differ-
entially regulated, either up or down in the highlymetastatic versus low
metastatic lines. C-terminal p27 phosphorylation increased its inter-
action with cJun and cJun-p27 corecruitment to chromatin.

Profiles of target genes repressed by p27-cJun suggest p27pTpT
might repress differentiation pathways. Over half of cJun-binding sites
were cooccupied by p27, and cJun recruitment appeared to be p27
dependent, because cJun recruitment to a majority of cooccupied
chromatin sites decreased dramatically with p27 depletion. Metastasis
of orthotopic mammary tumors was markedly reduced by either p27,
JUN, or TGFB2 depletion in the highly metastatic lines, showing
the functional importance of p27-cJun–driven gene programs to
metastasis (76). Finally, human breast cancers with high p27pT157
protein showed differential expression of p27-cJun target genes com-
pared with cancers with low p27pT157. Both high p27pT157 and
upregulation of p27-cJun targets were prognostic of poor patient
outcome, underlining the biologic relevance of p27/cJun-driven gene
programs to disease progression (76).

Our perspective of p27 deregulation in cancers has been expanded
by the discovery of the novel roles of p27 in transcription. Disruption
of p27 action can occur through excess proteolysis or miRNA-
mediated loss of p27 translation, but also via other mechanisms. The
oncogenic effects of p27 to disrupt the cytoskeleton and to upregulate
the assembly and activation of D-type cyclins are not the only or
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potentially even major consequences of constitutive C-terminal p27
phosphorylation in the context of PI3K activation. Up to 60% of
human cancers show some level of PI3K pathway activation (104). In
addition to p27-mediated effects on the actin cytoskeleton in cancers,
C-terminal p27 phosphorylation in cancers would lead to profound
changes in gene expression programs, disrupting adhesion and acti-
vating EMT and other oncogenic gene programs to drive metastasis.
Further work is required to understand the complexity of the tran-
scriptional machineries that interact with p27 in normal development
and malignancy.

Conclusion
Our understanding of the transcriptional roles of p27 is still in

its infancy. In quiescent normal MEFs, p27 appears to partner with
p130, E2F4 to recruit HDAC1, and SIN3A to restrain gene expres-
sion (94, 99). In cancer models, p27 can activate both STAT3 and cJun
to promote gene programs of EMT and metastasis (75, 76). Indeed,
p27-cJun complexes appear to play roles to both activate and repress
target genes, but mechanisms governing gene selection and induction
versus repression are not yet known. p27 has been shown to
interact with MyoD, NRF2, PAX5, and cJun and other developmen-
tally important transcription factors (see Figs. 1B and 2; refs. 76,
90, 100, 102). That p27 regulates gene targets governing cell migration
and EMT also supports potential transcriptional roles during devel-
opment. It will be of interest to determine how the transcriptional roles
of p27 might govern differentiation in different tissues and contribute
to the phenotypes of p27null and p27CK� mice.

The induction of broad pro-oncogenic gene programs by consti-
tutive PI3K-driven p27–cJun interaction on chromatin targets offers a

new explanation for the profound effects of p27pTpT on tumor
metastasis. It will be of interest to determine whether changes in
phosphorylation across the normal cell cycle govern changes in p27's
role in transcriptional regulation and whether any of these trans-
regulatory completes involve associated cyclin-CDKs.

In normal cells, AKT is transiently, periodically activated in early
G1-phase and this is associated with transient accumulation and loss of
p27pTpT (15). This raises the possibility that cyclic C-terminal p27
phosphorylation might regulate periodic target gene selection and
contribute to G1-phase progression. Further work in normal cell types
will be required to evaluate how and which periodic phosphorylation
of p27 at S10 in early G1-phase, T157 and T198 shortly thereafter in
mid-G1-phase, and other sites might govern interaction with different
transcriptional machineries to affect target gene expression or repres-
sion. A better understanding of how p27–cJun transcriptional com-
plexes are regulated in normal tissue development and how these go
awry in cancer might identify new therapeutic targets to be exploited
for tissue regeneration and illuminate other aspects of human diseases,
including cancer that arise at the interface of differentiation and
growth control.
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