The cool wake around 4C 34.16 as seen by XMM–Newton

I. Sakelliou,1,2* D. M. Acreman,1 M. J. Hardcastle,3 M. R. Merrifield,4 T. J. Ponman1 and I. R. Stevens1

1School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT
2Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
3School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB
4School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD

Accepted 2005 April 7. Received 2005 March 22; in original form 2005 January 20

ABSTRACT

We present XMM–Newton observations of the wake–radio galaxy system 4C 34.16, which shows a cool and dense wake trailing behind the host galaxy of 4C 34.16. A comparison with numerical simulations is enlightening, as they demonstrate that the wake is produced mainly by ram pressure stripping during the galactic motion through the surrounding cluster. The mass of the wake is a substantial fraction of the mass of the X-ray halo of an elliptical galaxy. This observational fact supports a wake formation scenario similar to that recently demonstrated numerically by Acreman et al.: the host galaxy of 4C 34.16 has fallen into its cluster, and is currently crossing its central regions. A substantial fraction of its X-ray halo has been stripped by ram pressure, and remains behind to form the galaxy wake.

Key words: ISM: kinematics and dynamics – galaxies: clusters: general – galaxies: interactions – X-rays: galaxies: clusters – X-rays: ISM.

1 INTRODUCTION

As a cluster galaxy moves through the intracluster medium (ICM), an X-ray-bright region trails behind it, revealing its direction of motion. We now know that there are two physical processes that take place as a galaxy moves through the ICM, and lead to the creation of an overdense wake behind it: (i) the accretion of ICM (Bondi–Hoyle accretion; Sakelliou 2000), and (ii) ram pressure stripping of the galactic material (Stevens, Acreman & Ponman 1999). Naturally, both processes should take place at the same time (e.g. Acreman et al. 2003).

Depending on the properties of the galaxy and the cluster [e.g. the galaxy velocity (v_gal) and the temperature of the ICM (T_ICM)], wakes behind galaxies may be visible at X-ray wavelengths. An understanding and knowledge of their production mechanisms, of the most favourable conditions for detectable wake production, and of their properties would be very rewarding for two main reasons. First, wakes provide the only general means of finding the direction of the motion of the galaxy in the plane of the sky, thus contributing to the study of the dynamics of clusters (Merrifield 1998). This method of studying clusters has been demonstrated already using both ROSAT (Drake et al. 2000) and Chandra data (Acreman et al., in preparation). Secondly, wakes are manifestations of the galaxy–ICM interactions, which modify the properties of both the cluster (e.g. by contributing to the metal enrichment of the ICM) and the galaxy (e.g. by inducing star formation). Thus, they may provide clues to the transformation and subsequent evolution of galaxies in clusters.

Our aim was to find the X-ray properties of wakes that had been known from the epoch of ROSAT. Fig. 1 shows the XMM–Newton image of a first example: the wake associated with the radio galaxy 4C 34.16. Unfortunately, not many candidates were known from ROSAT observations, and we did not have accurate measurements of their properties. ROSAT images and spectra of a few systems (M86, Rangarajan et al. 1995; 4C 34.16, Sakelliou, Merrifield & McHardy 1996; NGC 4472, Irwin & Sarazin 1996; NGC 1404, Jones et al. 1997) gave the first clues that wakes exist, and that they might be cooler than the surrounding medium. The new instrumentation on Chandra and XMM–Newton has provided us with some more evidence that wakes might be a common phenomenon: in deep X-ray images of cluster cores, wake-like features have been seen (e.g. Abell 1795 Fabian et al. 2001; Abell 133 Fujita et al. 2002; Abell 2199 Johnstone et al. 2002). Temperature maps of limited resolution also suggest that these filaments are cooler than their surrounding media. As other authors have also argued (e.g. Fabian et al. 2001), wakes must be due to the motion of the central cluster galaxy relative to the ICM. The recent work on the XMM–Newton data of M86 has been very instructive, as it has showed that the ‘plume’ associated with that galaxy is metal-rich (Finoguenov et al. 2004). However, in all these cases there has been no independent evidence (at other wavelengths, for example) that could confirm that the galaxy is moving in the direction indicated by the wake.

Confirmation of the direction of motion of 4C 34.16 comes from the shape of its radio jets. 4C 34.16 is a radio source associated with the central galaxy in the cluster Z0357.9+9432. Its plumes are
symmetrically bent into a wide ‘C’ shape (see Fig. 1). The most widely favoured model invokes ram pressure as the main force responsible for the plume bending. Fortunately, the direction indicated by the bent plumes coincides with the direction of the wake, supporting the models of wake production discussed above.

In this paper we present XMM–Newton observations (Section 2) of the field around 4C 34.16. Using these data we derive the properties of the cluster in Section 3, and of the wake in Section 4. Finally, in Section 5 we discuss the most favourable models for the wake production, and find the parameters that are consistent with the observations.

Throughout this paper we use a redshift for 4C 34.16 of 0.078 [NASA/IPAC Extragalactic Database (NED)]. We adopt a Hubble constant of $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$, and $\Omega_M = 0.27$, which places the source at 349.3 Mpc, and gives a scale of 1.457 kpc arcsec$^{-1}$.

2 OBSERVATIONS AND DATA REDUCTION

The field around 4C 34.16 was observed with XMM–Newton for \sim27 ks. During the observation, the two MOS and PN instruments were operating in the PrimeFullWindow and PrimeFullWindowExtended mode, respectively; the medium filter was used for all three instruments. The Optical Monitor (OM) was not switched on, because of the presence of bright stars within the field of view.

The raw event lists from the EPIC instruments were processed and calibrated with SAS v5.3. During the processing the parameter withbadpixfind was switched on so that bad pixels that had not been recorded in the calibration files were found and subsequently removed. After the initial processing we confirmed that new bad pixels were found. The calibrated events were filtered for flags, using the XMM–Newton flags #XMMEA_EM and #XMMEA_EP for the two MOS and the PN detectors, respectively. Restrictions on the pattern were also applied: we kept only events with PATTERN<12 for the MOS cameras, and <4 for the PN.

The observation was contaminated by background flares, which were apparent in all energy bands. To clean the events lists for image analysis (Section 3.1), the prescription in Read & Ponman (2003) was followed. This cleaning procedure left a useful exposure of \sim21 ks for each of the two MOS cameras, and \sim13 ks for the PN camera. For the spectral analysis we imposed more strict limits, which reduced the exposures further by \sim5 ks (see Section 3.2).

Using the filtered and cleaned event files of each imaging XMM–Newton instrument, images and exposure maps were created in the (0.3–5.0) keV energy range. The images from all three instruments were finally merged after being exposure-corrected, using the SAS task EMOSAIC. Subsequently, the mosaic was smoothed with an adaptive kernel using the CIAO tool CSMOOTH. Fig. 1 presents the merged image, with the contours of a 1.4-GHz radio map overlaid.

The radio data consist of 1.4-GHz observations in the B and C configurations of the NRAO Very Large Array (VLA). The B-configuration data were taken by us on 2002 August 23; the C-configuration data were obtained from the VLA data archive (programme AM79). Both data sets were calibrated, merged and imaged within AIPS in the standard manner. As previously explained, the central cluster galaxy hosts the double, bent radio source 4C 34.16. In Fig. 2 we show the contour plot of the merged (0.3–5.0) keV image, overlaid on to the DSS optical image of the field around the central galaxy in the cluster, which is the host of 4C 34.16.

It is apparent from Figs 1 and 2 that the cluster is fairly spherically symmetric on large scales. The core of the radio galaxy coincides with the peak of the X-ray emission, which is not located at the centre of the inner X-ray emission, but is offset to the north-east. The X-ray emission around the radio galaxy is elongated along a line that bisects the angle between the two radio lobes. As mentioned before, the shape of the radio galaxy indicates a galactic motion to the north-east. Thus, the asymmetrical X-ray emission could be due to a wake trailing behind the galaxy.

In the following sections we use the XMM–Newton data to derive the properties of the cluster (Section 3) and the wake (Section 4).

3 AVERAGE CLUSTER PROPERTIES

3.1 Image analysis

For the purposes of the following spatial analysis, we generated background-subtracted and exposure-corrected images independently for each imaging instrument on XMM–Newton. First, images for all three instruments were created in the (0.2–4.5) keV energy
range. Following Read & Ponman (2003), particle and instrument background maps were created. They were then subtracted from the data images, after scaling them to the out-of-field events. The resulting images were corrected for vignetting by multiplying them by the appropriate vignetting maps.

Our final aim was to compare the properties of the wake with those of its environment, so that we can assess the wake production processes. Thus, we used the above-generated data images to derive the spatial properties of the cluster. As Figs 1 and 2 demonstrate, the X-ray emission from the wake and the galaxy dominate in the inner cluster region, around the active core. At large distances the cluster appears fairly symmetric. In order to derive the average cluster properties and compare them with past results, we fitted the (0.2–4.5) keV particle-subtracted vignetting-corrected images in SHERPA with a two-dimensional β model. Bright point sources were removed, by excluding circular regions around them. We also decided to exclude the inner ~ 1.3 arcmin around the radio core, and we did not model the emission of the X-ray halo and active nucleus during this fitting procedure. The two-dimensional model was convolved with the appropriate point spread function (PSF) for each instrument, which is a two-dimensional image of the PSF of each instrument, as implemented in the SAS task CALVIEW.

Data from the three EPIC instruments were not co-added, but fitted simultaneously. During the fitting procedure, the core radius (r_c) and β parameter of the β model were linked and left free to vary; the ellipticity was set to zero; and the centre of the distribution was fixed to the location of the active core. The model normalizations were allowed to vary independently for each instrument. This fitting procedure resulted in a best-fitting value for the core radius of $r_c = 2.371 (2.336–2.412) $ arcmin $= 207.26 (204.23–210.89) $ kpc, and a $\beta = 0.858 (0.829–0.890)$ (1σ limits are quoted), consistent with the ROSAT results (Sakelliou et al. 1996). If the centre of the β model is left free to vary, the resulting parameters are consistent within the errors with the ones we present above.

Although a derivation of the small-scale galaxy’s X-ray properties (galactic X-ray halo and active nucleus) is beyond the scope of this paper, we attempted to model them. We added another β model to describe the galactic halo, and a delta function for the active core. Again, the composite models were convolved with the appropriate instrument PSFs. All trials reproduced the cluster properties found before. However, the galaxy parameters were poorly constrained. Better-quality data are required to allow a determination of the galaxy properties.

3.2 Spectral analysis

As mentioned in Section 2, for the purpose of spectral analysis, the original events lists were cleaned further, leaving useful exposures of $\sim 15.9, \sim 16.0$ and ~ 10.2 ks for the MOS1, MOS2 and PN, respectively.

To obtain a spectrum of the ICM, we accumulated counts in a circular region centred on the central galaxy and extending out to 5 arcmin. The background spectrum was taken from the same observation, in an annulus adjacent to the source region, and extending from 5 to 8.3 arcmin. Point sources were removed from the source and background regions. The emission from the host galaxy of 4C 34.16 and the wake were also excluded from the source region. Here, as in any subsequent spectral analysis, responses (rmf) and auxiliary response files (arf) were generated with RMFGEN-1.48.5 and ARFGEN-1.54.7, respectively.

The spectrum in the (0.3–8.0) keV energy range was modelled in XSPEC by a metal thermal model modified by the line-of-sight hydrogen column, as described by the XSPEC model WABS. The Galactic column in the direction of 4C 34.16 is $N_H = 0.162 \times 10^{22}$ cm$^{-2}$. The hydrogen column density (N_H), temperature of the ICM (T_{ICM}), metal abundances (Z) and normalization were left as free parameters. The results of the spectral analysis of the cluster are tabulated in Table 1, along with the spectral properties of the wake (these will be derived in Section 4.1).

Here it should be noted that the kT_{ICM} adopted by Sakelliou et al. (1996) was 1 keV. Their temperature was based on relatively poor spectral fits to the ROSAT PSPC data. However, in their analysis and interpretation, they demonstrated how a larger kT_{ICM} would have changed the final conclusions. In the following sections it will be apparent how a more accurate measurement of the cluster temperature affects the final results.

In Table 1, we also present the number densities (n) of both the cluster and the wake. The tabulated value for the ICM’s density is the central number density (n_0), derived from the central surface brightness applying equation (4) from Sakelliou et al. (1996). We calculated n_0 for each EPIC instrument independently using the best-fitting values of the normalizations of the three β models found in Section 3.1. The values presented in Table 1 are the weighted mean and error of these three values.

4 THE WAKE

Galactic wakes appear as excesses of X-ray emission in the images of galaxies in clusters. Such an enhancement is seen in the (0.3–5.0) keV image of 4C 34.16 (see Fig. 2).

The plot of Fig. 3 clearly shows the asymmetry between the front and behind the galaxy. In this plot we compare the radial profiles taken in regions that lie in front of and behind the galaxy. For the derivation of these profiles we used the background-subtracted, (0.2–4.5) keV, mosaic image discussed in Section 3.1. Both profiles were centred on the core of 4C 34.16. Counts were accumulated in concentric annuli of 8 arcsec width. The ‘in-front’ profile was extracted in a sector between 100 and 140 deg, and the ‘back’ one in a sector between 280 and 320 deg, where 0 deg coincides with the positive x-axis of the image, and angles are measured anticlockwise. This plot shows clearly that there is an excess of X-ray emission behind the galaxy, and that the disruption extends out to ~ 3 arcmin.

Generally, a galactic wake is expected to have softer emission than the surrounding cluster. In order to investigate whether this is true for the 4C 34.16 wake, we constructed the softness ratio image shown in Fig. 4. Images for each XMM–Newton camera were created from the cleaned and filtered events lists in the (0.3–1.0) and (1.0–2.0) keV energy ranges. As before, we generated exposure-corrected mosaic images in each energy band, using the SAS task EMOSAIC. The softness ratio image of Fig. 4 was calculated by $(S - H)/(S + H)$, where S is the softer and H is the harder

<table>
<thead>
<tr>
<th>Table 1. Properties of the ICM and the wake.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM</td>
</tr>
<tr>
<td>$N_H \times 10^{-22}$ cm$^{-2}$</td>
</tr>
<tr>
<td>T (keV)</td>
</tr>
<tr>
<td>Z (Z$_{\odot}$)</td>
</tr>
<tr>
<td>χ^2/d.o.f.</td>
</tr>
<tr>
<td>$n \times 10^{-3}$ cm$^{-3}$</td>
</tr>
</tbody>
</table>

aAll the limits reported are at the 90 per cent level, with $\Delta \chi^2 = 2.71$. The abundance table is from Anders & Grevesse (1989), as implemented in XSPEC.

bThe parameter is frozen during the fitting procedure.
grey mark regions of softer emission. The wake production mechanisms that we will carry out later in this paper will evaluate its temperature and number density, to assist the investigations of the gas in the wake region.

4.1 Spectrum of the wake

Driven by the above results, we used the spectra of the wake to derive its temperature and number density, to assist the investigations of the wake production mechanisms that we will carry out later in this paper.

In order to obtain the spectrum of the wake, we followed the steps set out in Section 3.2. The source and background regions that were used are shown in Fig. 2. The background region was chosen so that the emission from the cluster at the same off-source radius as the wake region is subtracted, while avoiding regions close to the wake that might be contaminated by wake emission.

The source spectrum was fitted in XSPEC by an absorbed mekal model, in a similar manner as done for the cluster in Section 3.2. The hydrogen column \((N_{H,G})\), temperature \((kT)\) and normalization (norm) were left as free parameters. The metal abundances \((Z)\) were held fixed to the value found for the surrounding ICM \((Z = 0.25 Z_{⊙}\), Table 1). Given that we argue later in this paper that the wake consists mainly of galactic material, we fixed the metal abundances to the higher value of \(Z = 1 Z_{⊙}\), and performed the same fitting procedure. We obtained a slightly higher temperature for the wake than the one found for \(Z = 0.25 Z_{⊙}\) (see Table 1) of 1.44 (1.02–2.19) keV. However, since there is no well-established value for the metal abundance of central cluster galaxies, and since the data do not allow us to measure it directly, we have no reason to adopt a higher value for \(Z\).

The spectral fit for the wake resulted in a normalization for the mekal component of \(\text{norm} = 0.6 \times 10^{-18} \text{cm}^{-2}\). Using the dependence of norm on the density \(n\) \((\text{norm} \propto \int n^2 dV)\), we derived a density for the plasma in the wake \((n_w)\) of 2.37 (1.66–8.57) \(\times 10^{-3} \text{cm}^{-3}\). The volume of the wake \((V_w = 1.6 \times 10^{30} \text{cm}^3)\) was calculated from the dimensions of the wake's region shown in Fig. 2, assuming cylindrical symmetry (i.e. the wake is as extended along the line of sight as on the plane of the sky), and that it is on the plane of the sky. For the calculation of the wake's density, we further assumed that the hot X-ray emitting component at the derived temperature is distributed uniformly in the entire volume of the wake.

However, the numerical simulations (Stevens et al. 1999; Acreman et al. 2003) show that the average volume filling factor \(f\) for the material that is at a temperature of \(\sim 1\) keV is between 0.3 and 0.4. For a given X-ray luminosity from a given volume, the inferred density scales as \(n_w \propto f^{-0.5}\). Thus, it can be larger than the calculated value of Table 1. For a filling factor of 0.35, for example, the density of the non-uniformly distributed wake material is 1.7 times larger than the tabulated value, bringing it up to 4.03 (2.82–14.57) \(\times 10^{-3} \text{cm}^{-3}\). Both values are consistent within the errors. In the following sections, we use the wake density given in Table 1, and a volume filling factor of \(f = 1\), and we discuss, when necessary, the implications for \(f < 1\).

The wake's properties derived from the above spectral modelling are presented in Table 1. The comparison of \(N_{H,G}\) with that found from the cluster fits and the \(N_{H,G}\) indicates the presence of some extra absorbing material \([N_{H,G} - N_{H,G} = 5.27 (1.26–11.18) \times 10^{21} \text{cm}^{-2}]\) associated with the wake. This excess of absorption towards the central parts of the the Z0357.9+9432 was noted before in the ROSAT data, and now with XMM–Newton we know that it is restricted to the wake region. However, lacking the appropriate data (e.g. Hi \(21\)-cm radio maps), we cannot be confident that it is due to the presence of neutral material in the wake. This neutral material could be stripped from the galaxy, and cause the absorption of the X-rays towards the wake.

5 DISCUSSION

5.1 The bent radio galaxy 4C 34.16

4C 34.16 is a wide-angle tailed (WAT) radio galaxy, and therefore shows an abrupt ‘flaring’ in its radio jets (Hardcastle & Sakelliou 2004; Jetha et al. 2005; Hardcastle, Sakelliou & Worrall 2005). The
jets in these sources stop suddenly at some tens of kiloparsecs from the radio core. After their termination point, large plumes emerge that are thought to be shaped by the interactions with the surrounding medium.

The jets in 4C 34.16 are transformed to plumes at ~50 kpc from the radio core. These plumes are bent symmetrically into a ‘C’ shape (see Fig. 1). The main force acting on the plumes seems likely to be the ram pressure resulting from the motion of the galaxy relative to the ICM. The same motion should be responsible for the creation of the wake, as the wake direction coincides with the direction in which the plumes are bent. Buoyancy makes an additional contribution, dragging the plumes towards the outskirts of the cluster. After the termination point, the plumes can be traced out to a projected distance of (~120–140) kpc.

By considering the balance of buoyancy and ram pressure forces, Sakelliou et al. (1996) used the ROSAT data to set an upper limit on the galaxy velocity of \(v_{\text{gal}} < 300 \text{ km s}^{-1} \). With the new parameters derived from the XMM–Newton observations [\(kT_{\text{ICM}} = 3.17 \text{ keV} \) compared to 1 keV used by Sakelliou et al. (1996)], the limits allowed by equation (12) of Sakelliou et al. (1996) are somewhat higher. Depending on the exact orientation and geometry of the flow inside the plumes, the required \(v_{\text{gal}} \) would be \(~1000 \text{ km s}^{-1}\) if the plumes are light compared to the surrounding medium. The projected length of the plumes, on the other hand, sets a lower limit on \(v_{\text{gal}} \) if we think that the plumes are just passive clouds left behind by the motion of the galaxy. However, we have independent reasons to believe that the plume physics is more complicated, and we cannot make accurate estimates of the galaxy speed from the radio galaxy structure alone because we cannot measure the particle density or fluid flow speeds in the plumes directly.

Taking into account the above discussion about \(v_{\text{gal}} \), in the next section, we assess the wake production mechanisms demonstrating the implications of a galaxy speed >1200 km s\(^{-1}\).

5.2 Wake production

As mentioned in the introduction, two physical processes can produce galactic wakes: Bondi–Hoyle accretion and ram pressure stripping. Of course, the two processes take place simultaneously (e.g. Acraman et al. 2003). However, Bondi–Hoyle accretion generates pronounced wakes when the galaxy velocity is subsonic or transonic, and their length does not exceed a few kiloparsecs. For example, in a 3-kV cluster, a Bondi–Hoyle wake cannot be longer than ~5 kpc (Sakelliou 2000). Additionally, the accretion radius \(R_{\text{ac}} = 2GM_{\text{gal}}/(v_{\text{gal}}^2 + c_s^2) \) is smaller in richer clusters; in a 3-kV cluster, \(R_{\text{ac}} \) is ~13 kpc if the galaxy is moving at the sound speed \(c_s \), and it reaches only ~19 kpc if \(v_{\text{gal}} \approx 0.6c_s \). Thus, in 4C 34.16 Bondi–Hoyle accretion can only supply the galaxy with ICM material, increasing the mass of its ISM. The mass accretion rate \((\dot{M}_{\text{ac,BH}}) \) should depend on the galaxy and cluster properties, \(M_{\text{gal}} \times \pi R_{\text{ac}}^2 \rho_{\text{ICM}} v_{\text{gal}} \). Using a \(v_{\text{gal}} = 890 \text{ km s}^{-1} \) equal to the local sound speed, \(n_{\text{ICM}} = 1.33 \times 10^{-3} \text{ cm}^{-3} \) (Table 1) and \(R_{\text{ac}} \approx 13 \text{ kpc} \) (Sakelliou 2000), we find that the rate at which ICM is accreted onto the galaxy is \(M_{\text{ac,BH}} \approx 10 M_{\odot} \text{ yr}^{-1} \). It will be apparent that such accretion rates are small compared to the mass of the wake that has already been accumulated.

On the other hand, ram pressure stripping dominates in the supersonic regime. Taking into account the discussion of Section 5.1, we can deduct that the most likely production mechanism for the wake in 4C 34.16 is ram pressure stripping. Of course, some small contribution (indirectly) from the ICM into the wake’s body is also expected, but it should not be substantial compared to the stripped material.

5.2.1 The mass of the wake

In Section 4.1 we measured the density of the wake (Table 1). Multiplying the density of the wake \(n_{\text{w}} \) by its volume \(V_{\text{w}} \), we find a mass of \(M_{\text{w}} = 2.3 (1.6–8.4) \times 10^{10} M_{\odot} \), which is comparable to the masses of the X-ray haloes in elliptical galaxies (e.g. Canizares, Fabbiano & Trinchieri 1987). The material with \(M_{\text{w}} \) is contained in a region between 45 and 135 arcsec from the galactic core. As mentioned in Section 4.1, the filling factor of the cool wake material may be smaller than 1. A filling factor of \(f = 0.35 \) implies that the mass of the wake is \(f v_{\text{gal}}^2 = 0.59 \text{ times the value calculated above, but it is still within the quoted errors} \). A filling factor as small as 0.01 would be required to reduce the calculated mass by an order of magnitude, but such a filling factor is unrealistically small.

If we assume that all the mass calculated above \([M_{\text{w}} = 2.3 (1.6–8.4) \times 10^{10} M_{\odot}] \) has been accumulated during the time taken for the galaxy to cross the current length of the wake (~130 kpc), we find that the wake must have been created during the past \(1.0 \times 10^8 \text{ yr} \), where a galaxy velocity of \(v_{\text{gal}} > 1200 \text{ km s}^{-1} \) (Section 5.1) has been used. To create such a wake over this time period, a relatively large mass accretion rate of \(M_{\text{ac}} \approx 200 M_{\odot} \text{ yr}^{-1} \) is required. Of course, a volume filling factor of 0.35 would reduce \(M_{\text{w}} \) to approximately half the quoted value, and a value of only \(f = 0.01 \) would reduce it by an order of magnitude, which would make it comparable to \(M_{\text{ac,BH}} \) (see Section 5.2). We will return to the issue of this relatively large \(M_{\text{w}} \) in the following sections.

5.2.2 Comparison with the simulations

All the previous results and discussion suggest that the most probable origin of the wake is through ram pressure stripping, and that the galactic motion is transonic or mildly supersonic. Additionally, from Section 5.2 we have a first indication that the mass accretion rate into the wake is substantial, and that the mass of the material that has already accumulated is comparable to the total mass of the X-ray haloes in elliptical galaxies.

To test the above ideas, and to gain a better understanding of the conditions under which such wakes can be created, we decided to compare the XMM–Newton results with hydrodynamical simulations of a galaxy moving through the ICM of a cluster. Similar simulations have been presented elsewhere (Stevens et al. 1999; Acraman et al. 2003). In our simulations, a galaxy with mass of \(M_{\text{gal}} = 2 \times 10^{12} M_{\odot} \) is set into motion in a cluster of temperature \(T_{\text{ICM}} \) equal to the value given in Table 1.

We ran a number of simulations, varying the galaxy velocity \((v_{\text{gal}}) \) and specific mass loss \((\alpha_G) \). We present here a set of four runs that show the dependence of the results on the input parameters, and provide the best match to the XMM–Newton results. The \(v_{\text{gal}} \) and \(\alpha_G \) used for each run are given in Table 2 in columns (II) and (III), respectively. The specific mass loss \(\alpha_G \) is a measure of the mass that is replenished \((M_{\text{rep}}) \) within the galaxy from a combination of stellar mass loss and supernovae (for more details see Stevens et al. 1999).

In Table 2 (column IV) we also list the \(M_{\text{rep}} \) used in the different simulation runs, which is calculated from \(M_{\text{rep}} = \alpha_G M_{\text{gal}} \).

Temperature and density cuts along a line parallel to the direction of the galactic motion are presented in Figs 5(a) and (b), respectively, using the simulated data from all four runs. In Fig. 5(a) we see that in the low-velocity regime the temperature of the wake does not reach the measured value, but is on average \(>2.2 \text{ keV} \). However, increasing the mass replenishment rate (run 2) results in the appearance of cold tongues of material that emanate episodically from the galaxy. These cold features could bring the temperature of the wake down to the measured values. Increasing the mass replenishment
rate means that more cold gas is available within the galaxy to be stripped and added into the wake. However, in simulation 2, the ram pressure is not strong enough to strip the galaxy, and most of the cold gas ends up accumulating around the galactic centre, increasing the density in the galactic core, as seen in Fig. 5(b). Higher galaxy velocities are required to make this cold material accrete into the wake (Fig. 5a). As we see in run 4, the temperature of the wake in the region (320–460) kpc (which is the distance from the radio core where we measure the X-ray properties of the wake of Table 1) drops down to ∼1.5 keV, which is within the range of wake temperatures we measure. In Fig. 5(b) we see that in the same region the wake is over-dense by a factor of between 1.7 and 3.4, again consistent with the measured ratio from the XMM–Newton data (see Table 1).

Thus, a galaxy that is moving at a constant velocity >1200 km s$^{-1}$ through a medium with a uniform density equal to the central density of the 4C 34.16 cluster could produce a wake with the measured properties, but only if $M_{rep} \equiv \alpha_s M_{gal}$ (see Section 5.2.2 for more details).

Table 2. Simulations.

<table>
<thead>
<tr>
<th>No.</th>
<th>v_{gal} (km s$^{-1}$)</th>
<th>α_s</th>
<th>M_{rep} (M$_\odot$ yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1200</td>
<td>27</td>
<td>92.1</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>81</td>
<td>276.2</td>
</tr>
<tr>
<td>3</td>
<td>5000</td>
<td>27</td>
<td>92.1</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>81</td>
<td>276.2</td>
</tr>
</tbody>
</table>

In column (III), $\alpha_{s,m}$ is the specific mass loss rate at the present day ($\alpha_{s,m} = 5.4 \times 10^{-20}$ s$^{-1}$; Mathews 1989). The mass M is calculated from $M_{rep} = \alpha_s M_{gal}$ (see Section 5.2.2 for more details).

5.2.3 A more realistic scenario

We have found that the mass of the wake is a substantial fraction of the X-ray halo of an elliptical galaxy and large accretion rates are required to produce it. The only alternative to the scenario for wake production in Section 5.2.2 is that of a galaxy with a pre-existing halo falling into a cluster: a galaxy with a substantial hot interstellar medium (ISM) has fallen into the cluster, and is currently crossing the central region of the cluster; its halo is stripped severely during this crossing, and most of the pre-existing halo forms its wake.

The large-scale structure of the ICM provides support to this picture. The ROSAT images (Sakelliou et al. 1996) showed that the ICM at large radii is elongated along a direction coincident with the direction of the wake and the bent jets. This characteristic was attributed to a recent disruption of the cluster by a small infalling group. Such a process has been demonstrated numerically with the recent simulations of Acreman et al. (2003). They modelled a spherical galaxy that is falling into a cluster not very different from the one around 4C 34.16 [they used a cluster temperature of 2.7 keV, while the ICM of the 4C 34.16 cluster is at ∼3.2 keV (see Section 3.2)]. Their work showed that: (i) the galaxy velocity becomes mildly supersonic during the core passage (see their fig. 1); (ii) most of the halo is stripped during the first core crossing (see figs 3 and 4 in Acreman et al.); and (iii) the galaxy can lose half or more of its ISM during its initial travel towards the cluster centre.

According to the above scenario, 4C 34.16 should not retain the large quantities of ISM found in similar sources (e.g. Jetha et al. 2005; Hardcastle et al. 2005). In order to see if this is true, we attempted to model the galaxy spectrum in XSPEC. The source region was a circle of 10 arcsec radius around the active core. We fitted the spectrum with a mekal + power law model modified by Galactic absorption. The temperature (kT_{ISM}), power-law index (Γ) and normalizations of the two models were left free to vary. This fitting procedure resulted in a kT_{ISM} of 0.2 keV and $\Gamma = 2.3$ (χ^2/d.o.f. = 15/14). However, the small number of observed counts meant that the best-fitting parameters were not well constrained. We found that the unabsorbed luminosity of the thermal component only in the (0.6–3.5) keV energy range is ∼0.3 × 1032 erg s$^{-1}$, lower than the luminosity of the ISM in 3C 465 (2 × 1032 erg s$^{-1}$; Hardcastle et al. 2005), suggesting that there might be a lack of hot gas from the galaxy in 4C 34.16.
The close match of the Acreman et al. (2003) results and the X-ray properties of 4C 34.16 supports strongly the idea that the process simulated by Acreman et al. (2003) represents the best explanation in hand for what is happening around 4C 34.16.

5.2.4 Is there a compression region in front of the galaxy?

According to the proposed scenario, the host galaxy is currently crossing the cluster core and its velocity is mildly supersonic. Such a motion should compress the region in front of the galaxy, resulting in the heating of the ICM. The galaxy is moving relative to its surroundings with a Mach number of \(M > v_{gal}/c_s \sim 1200/890 = 1.35; \) the compression factor is \(1/x > 1.5. \) From Landau & Lifshitz (1987) we find that such a compression would increase the temperature of the medium in front of the moving galaxy from \(\sim 3.17 \text{ keV} \) up to \(kT_b > 5 \text{ keV} \) (in the above calculation we use \(c_s = 890 \text{ km s}^{-1}. \) This effect can be seen clearly in the results of the simulations in Fig. 5(a), where the temperature in front of the galaxy is enhanced.

The presence of such a hot feature in the XMM–Newton data would provide further support for a supersonic motion. Fig. 6 shows an XMM–Newton image in the (5.0–8.0) keV range. Again, this mosaic is produced in a similar manner to the ones of Section 2, and smoothed with a Gaussian kernel with \(\sigma = 20 \text{ arcsec.} \) As can be seen in this image, the emission from the wake is not visible, as expected, since we have found its emission to be soft and dominant in the soft energy bands. The hard image reveals a potentially intriguing feature. There appears to be a ‘bar’ of bright emission in front of the galaxy. This region might be the above-mentioned compression feature. There is evidence for a ‘bar’ of bright emission in front of the galaxy. The centroid of this ‘bar’ is \(\sim 18 \text{ arcsec} \) away from the galactic centre. One might think that this emission comes from the radio core, but it is very unlikely since at other energy ranges there is a very good alignment between the radio core and the X-ray peak. Additionally, we are not aware of pointing errors as large as the measured offset between the ‘bar’ and the radio core. The ‘bar’ appears extended and not point-like. It is detected with a signal-to-noise ratio \(S/N \sim 5 \) above the local background, which was calculated from the same hard image between 1.5 and 5 arcmin away from the galaxy. The inspection of optical images does not reveal any obvious source that could be responsible for this hard X-ray emission.

To obtain the spectrum of the ‘bar’, we accumulated counts in an elliptical region in front of the galaxy with minor and major axes of 12 and 30 arcsec, respectively. The background spectrum was taken in an annulus between 1 and 2.5 arcmin, similar to the one shown in Fig. 2. We fitted the spectrum with an absorbed mekal model. The \(N_{HI} \) and metal abundance were fixed to the Galactic value and 0.25, respectively. Unfortunately, there are not enough counts in the data to constrain the temperature of the detected feature. The fits indicate that the temperature is \(kT_b > 4 \text{ keV} \) (\(\chi^2/\text{d.o.f.} = 27.3/27 \)). Its unabsorbed luminosity is \(L_X(0.5-5.0 \text{ keV}) \sim 0.7 \times 10^{41} \text{ erg s}^{-1}. \)

Applying the jump conditions from Landau & Lifshitz (1987) for a Mach number of \(M > 1.35, \) we derived that the density of the ‘bar’ should be \(n_b > 2.0 \times 10^{-3} \text{ cm}^{-3}. \) Using

\[P_c = n_b k T_b, \]

we find that the pressure imbalance within the wake will be eliminated within \(t_p \sim R_b/c_s, \) where \(c_s \) is the local speed of sound, and \(R_b \) is the radius of the wake. The pressure imbalance will disappear in \(t_p \sim 0.7 \times 10^8 \text{ yr}, \) assuming that this region of wake material is left behind in the cluster, and that it is not replenished by either stripped ISM or accreted ICM. This time is slightly smaller than the core crossing time \(t_S \sim 2.3 \times 10^8 \text{ yr}. \)

On the other hand, the entropy of the wake is less than the entropy of the surrounding medium: \(S_w/S_{ICM} \approx 0.24 \) (where \(S_w \) is the entropy of the wake and \(S_{ICM} \) the entropy of the ICM at the location of the wake). Here, the entropy is defined as \(S = k + n_s / n_c \).

Entropy imbalances even out by the transport of material towards regions in the surrounding cluster where the entropies match. Thus, the low-entropy wake will tend to go towards lower-entropy regions in the cluster, which are at, or close to, the cluster centre, which in the case of 4C 34.16 coincides with its host galaxy. Therefore, if a

![Figure 6.](https://academic.oup.com/mnras/article-abstract/360/3/1069/997803/1069)
cool and dense wake is left behind, it will move towards the cluster centre by the buoyancy force:
\[\nabla F_B = (\rho_w - \rho_{ICM}) g, \]
where \(\rho_w \) and \(\rho_{ICM} \) are the densities of the wake and the ICM, respectively, and \(g \) is the cluster’s gravitational acceleration:
\[g = \frac{kT_{ICM} \nabla \rho_{ICM}}{\mu m_p \rho_{ICM}}. \]
Thus, the wake will be driven by an acceleration of
\[\alpha = \left(1 - \frac{\rho_{ICM}}{\rho_w} \right) g, \]
where for the calculation of \(g \) we used equation (2), and the properties of the cluster, as derived in earlier sections. The time that it will take for the wake to move to the cluster centre is \(t_w^2 = 2r_w/\alpha \), where \(r_w \) is the current location of the wake relative to the cluster centre. For \(r_w \approx 1 \text{ arcmin} \), \(t_w \approx 3.3 \times 10^8 \text{ yr} \).

The large uncertainties in the density of the wake (see Section 4.1) make the comparison of \(t_B \) and \(t_w \) difficult. With the current determination of the wake’s properties, it is unclear whether the pressure imbalance will disappear quickly, leaving the entropy structure almost unaltered.

6 SUMMARY AND CONCLUSION
We have presented \(XMM–Newton \) observations of the X-ray wake that trails behind the WAT radio source 4C 34.16. Our results can be summarized as follows.

(i) The wake is cooler and denser than the surrounding ICM: its temperature is \(\sim 1.14 \text{ keV} \). For a filling factor of \(f = 1 \), its density is \(\sim 2.6 \times 10^{-3} \text{ cm}^{-3} \), and for a more realistic \(f = 0.35 \) it can be 1.7 times the above value.

(ii) A comparison with hydrodynamical simulations shows that the \(XMM–Newton \) results fit well with the scenario simulated by Acreman et al. (2003): the host galaxy of 4C 34.16 is falling into its cluster, and currently it is crossing the core region, possibly moving supersonically.

(iii) As the galaxy passes through the cluster, it sweeps up the ICM, forming a hotter and denser region in front of it. There is evidence in the \(XMM–Newton \) for the presence of such a feature, although better-quality data are needed to constrain its properties.

ACKNOWLEDGMENTS
We thank Andrew Read for the use of his software and advice on \(XMM–Newton \) analysis, Chris Lee for interesting comments and his help with the figures, and the von Hoerner & Sulger GmbH for their kind hospitality. We would also like to thank the anonymous referee for useful comments that improved this paper. The Digitized Sky Survey and the NASA/IPAC Extragalactic Database have been used. The present work is based on observations obtained with \(XMM–Newton \), an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

REFERENCES