NT-pro-BNP, but not C-reactive protein, is predictive of atrial fibrillation in patients undergoing coronary artery bypass surgery

Hrvoje Gasparovic *, Ivan Burcar, Tomislav Kopjar, Jakov Vojkovic, Rajka Gabelica, Bojan Biocina, Ivan Jelic

Departments of Cardiac Surgery and Anesthesiology, University Hospital Rebro Zagreb, Kispaticeva 12, 10 000 Zagreb, Croatia

Received 31 March 2009; revised in revised form 30 June 2009; accepted 6 July 2009; Available online 18 August 2009

Abstract

Objective: Atrial fibrillation (AF) remains the most commonly observed complication following myocardial revascularisation surgery. We aimed to evaluate the clinical utility of N-terminal fragment of the brain natriuretic peptide (NT-pro-BNP), troponin T, transcoronary lactate gradient (TCLG) and C-reactive protein (CRP) as predictors of AF in patients undergoing isolated coronary artery bypass surgery (CABG). Methods: This study included 215 consecutive patients in sinus rhythm (SR) undergoing elective CABG between May 2007 and May 2008. The patients were grouped according to their respective postoperative rhythm into SR and AF groups. The data are presented as mean values ± standard deviation, or medians with quartiles. Results: Fifty-five patients developed AF (26%). The preoperative NT-pro-BNP values were 273 ± 5640 pg ml⁻¹ in the SR and AF groups, respectively (p < 0.0001). The postoperative NT-pro-BNP values were 3110 ± 3600 pg ml⁻¹ in the SR and 4625 ± 5640 pg ml⁻¹ in the AF groups (p = 0.027). The transcoronary lactate gradient rose from the pre-cardiopulmonary bypass values to those observed 5 min after revascularisation in both groups (−0.05 ± 0.37 to 0.39 ± 0.46 mmol l⁻¹ (p < 0.0001) in the SR group and −0.01 ± 0.27 to 0.43 ± 0.46 mmol l⁻¹ (p < 0.0001) in the AF group). The CRP values increased from 6 ± 16 to 163 ± 104 mg l⁻¹ (p < 0.0001) in the SR group, and from 6 ± 16 to 163 ± 104 mg l⁻¹ (p < 0.0001) in the AF group. The dynamics of TCLG and CRP did not differ between the groups (p = 0.71, p = 0.44, respectively). The troponin T values on postoperative day 1 were significantly higher in the AF than the SR group (0.86 (0.49–2.1) ng ml⁻¹ vs 0.67 (0.37–1.16) ng ml⁻¹, p = 0.046). The duration of cardiopulmonary bypass (CPB) was 85 ± 24 min in the SR and 93 ± 30 min in the AF group (p = 0.05). Patients who developed AF were older (66 ± 7 years vs 60 ± 9 years, p < 0.0001) and had a higher EuroSCORE (3.9 ± 2.7 vs 2.9 ± 2.2, p = 0.009). Multivariate analysis identified age (p = 0.0043), preoperative NT-pro-BNP (p = 0.019) and duration of CPB (p = 0.035) as independent predictors of AF. Conclusions: Preoperative and postoperative NT-pro-BNP as well as TnT values were significantly higher in patients who subsequently developed AF. TCLG and CRP were not useful in identifying patients at higher risk for AF. Multivariate analysis identified age, preoperative NT-pro-BNP and duration of CPB as independent correlates of AF.

Keywords: Atrial fibrillation; Coronary artery bypass

1. Introduction

Atrial fibrillation (AF) remains a frequent complication after coronary artery bypass surgery (CABG), occurring in 10–40% of patients [1–3]. Notably, the recruitment of older patients into the contemporary cardiac surgical referral pattern is reflected by an increasing incidence of postoperative AF [1,4]. Atrial fibrillation may present as a benign and self-limiting disorder. Conversely, it may have a significant adverse impact on patient recovery as it is associated with haemodynamic compromise, renal insufficiency, prolonged requirement for ventilatory support and stroke [3,5]. It is also responsible for a longer hospital stay and, predictably, cost of care [2,6]. The clinical sequelae of AF combined with the increased use of resources have motivated the definition of various algorithms aimed to identify patients at higher risk for developing this complication. Uncompromising AF prophylaxis in the higher-risk subpopulation of CABG patients could reduce the cost and improve the postoperative patient recovery.

The pathogenesis of postoperative AF is multifactorial and may be linked to age, intra-operative manipulation with the heart, ischaemia, atrial distension, inflammation and structural heart disease [2,7]. C-reactive protein (CRP) is an acute-phase protein which has been effective in defining the degree of inflammation, and was used for that purpose in this study [7]. Increased CRP levels have been linked to the severity of atherosclerosis, risk of coronary events and even...
long-term outcome after CABG [8,9]. The mechanism of its arrhythmogenesis has been postulated to be related to sodium and calcium exchange disturbances following its linkage to phosphocolline [7]. A sympathovagal imbalance coupled with beta blocker withdrawal has also been postulated to be associated with new-onset AF [2,3].

Ischaemia may be responsible for an inhomogeneous distribution of local atrial refractoriness [10]. This dispersion of refractory periods within adjacent atrial regions provides a suitable milieu for the development of re-entry arrhythmias [10]. In the present study, we aimed to quantify the extent of myocardial ischaemia by documenting the transcoronary lactate gradient (TCLG) in addition to measuring troponin T values. The non-physiologic metabolism of the heart during aortic cross-clamping may lead to myocardial injury manifested by impaired ventricular function and delayed recovery [11]. Lactic acid concentrations have been extensively studied as markers of anaerobic metabolism and hypoperfusion [12–15]. Selective sampling of coronary sinus blood may offer insight into the regional metabolic state of the heart, which may be more profoundly affected by its dramatic alteration of normal blood flow than would be reflected by the systemic lactate concentration. Coronary sinus lactate has been used as an adjunct in the diagnosis of perioperative myocardial ischaemia [11].

Troponin T is the structural component of the troponin complex that binds to tropomyosin. The elevation of the serum concentration of troponin T begins as early as 3 h after myocardial injury, and may persist for up to 10–14 days [16]. Brain natriuretic peptide (BNP) is predominantly released from the ventricles in response to myocardial stretch and as such has been found to be instrumental in determining structural heart disease [9,17]. It promotes diuresis, natriuresis, arterial vasodilatation and attenuates the activity of the renin–angiotensin–aldosterone system [9]. The frequent co-existence of structural heart disease and atrial fibrillation prompted us to explore the correlation between the N-terminal fragment of the brain natriuretic peptide (NT-pro-BNP) and AF in the patient population undergoing CABG. NT-pro-BNP is released when the inactive prohormone is split into the active BNP and the inactive NT-pro-BNP.

We hypothesised that myocardial ischaemia, the inflammatory response and the presence of structural heart disease may influence the development of postoperative AF. The aim of our study, therefore, was to test the hypothesis that CRP, TCLG, troponin T and NT-pro-BNP are predictors of postoperative AF.

2. Materials and methods

Following the approval from our institutional ethics committee, 215 consecutive patients found to be in sinus rhythm (SR) undergoing CABG using cardiopulmonary bypass (CPB) were included into our study from May 2007 to May 2008. Informed consent was obtained from all patients. The study was conducted in a prospective observational fashion. Exclusion criteria were concomitant valvular pathology requiring surgery, reoperative surgical myocardial revascularisation and prior history of AF. Patients who developed AF during the postoperative period comprised the AF group, while the remaining patients formed the SR group. Episodes of AF lasting for more than 10 min were defined as sustained AF [2,18]. Only patients in whom sustained AF was noted were included in the AF group.

2.1. Perioperative management

Patients receiving preoperative beta blockers were given their normal dose on the morning of surgery. The patients received diazepam and morphine 30 min prior to the induction of anaesthesia. Endotracheal tube, urinary catheter, as well as radial artery and pulmonary artery catheters were inserted. The anaesthetic regime included induction and maintenance of anaesthesia with midazolam, fentanyl and pancuronium bromide. This was coupled with sevoflurane inhalation. The initial ventilator settings included a tidal volume of 8 ml kg⁻¹, and a respiratory rate of 12 breaths per minute. Typically, the FiO₂ was set at 50%. The critical components of the employed cardiopulmonary circuit were the Medtronic Affinity Trillium membrane oxygenator, venous reservoir and PVC tubing (Medtronic, Minneapolis, MN, USA) and a Stoeckert III roller pump (Stoeckert, Munich, Germany). The ascending aorta and right atrium were cannulated for CPB. Myocardial protection consisted of both antegrade and retrograde cardioplegia. Systemic heparinisation aiming at an activated clotting time >480 s was used, followed by full reversal with protamine after decannulation. Tepid CPB was employed, targeting the flow at 2.2 l min⁻¹ m⁻². The target mean arterial pressure during CPB was 60 mmHg. If necessary, norepinephrine was employed to reach this value. The distal coronary anastomoses were performed on an arrested heart, during a single period of aortic cross-clamping. The lungs were open to atmosphere during CPB. Weaning from CPB was initiated once the patient’s rhythm had stabilised and normothermia had been achieved. Inotropic support was initiated in order to maintain a cardiac index greater than 2.2 l min⁻¹ m⁻². The preferred inotropic agent was dobutamine. Norepinephrine was used if dobutamine produced excessive vasodilatation. Epinephrine was used if the haemodynamic performance remained inadequate with the previously mentioned catecholamines. An intra-aortic balloon pump was inserted if further support was required.

2.2. Measurement and calculations

The study protocol consisted of obtaining arterial blood gas samples from the radial artery and venous blood samples from the coronary sinus. The samples were drawn simultaneously by members of the surgical and anaesthesiological teams. The first samples were drawn prior to the institution of CPB. The second and third samples were drawn 5 and 10 min after completing the revascularisation procedure, respectively. These raw data were then processed to obtain the TCLG by subtracting the radial artery lactate content from the coronary sinus lactate content. Lactate levels were obtained using the IL Gem Premier 3000 auto-analyser (Instrumentation Laboratory, Lexington, MA, USA). This analyser uses amperometry to determine lactate concentration levels. It measures the current level of the analysed
correlates for AF. A multiple linear regression to assess the independent value was used. A multivariate analysis of variables found to be significant on univariate analysis was performed using the Elecsys 2010 analyser (Roche, Basel, Switzerland). An immunomassay method, using a general latex-enhanced immunoturbidimetry measurement kit was used to determine the analyte quantity. Troponin T levels were obtained using the Olympus AU 2700 clinical chemistry analyser (Roche, Basel, Switzerland).

2.3. AF detection, prophylaxis and management

All patients were continuously monitored with telemetry (Nihon Kohden WEP-4208, Tokyo, Japan) until postoperative day 5. A 12-lead EKG was obtained on the day prior to discharge. Any clinical suspicion of arrhythmia was followed by a 12-lead EKG and reinstitution of telemetry monitoring. Patients were routinely started on beta blockers on postoperative day 1 or once inotropic support has been suspended. Throughout their hospital stay, magnesium and potassium supplements were administered to maintain normal levels of these electrolytes. AF was treated with amiodarone, sometimes in conjunction with electrical cardioversion.

2.4. Statistical analysis

The continuous data are presented as mean values ± standard deviation or medians with the interquartile range. Categorical variables are presented as absolute numbers and percentages. Longitudinal comparisons between samples of the same subject were analysed using the Wilcoxon matched-pair test. Analyses of continuous data between different groups of patients were performed using the Mann–Whitney U test. Differences between categorical variables in patients who developed AF and those that remained in sinus rhythm were evaluated using the Fisher’s exact test. A two-tailed p value was used. A multivariate analysis of variables found to be significant on univariate analysis was performed using multiple linear regression to assess the independent correlates for AF. A p < 0.05 was considered to be of statistical significance for all deployed statistical calculations. The data were processed using the Statistica software package (StatSoft Inc., Tulsa, OK, USA).

3. Results

3.1. Perioperative summary

This study included 215 consecutive patients undergoing CABG. The demographic data and the list of co-morbidities are presented in Table 1. Fifty-five patients developed AF for an incidence of 26%. The mean time to develop AF was 2.9 ± 2.1 days. The mean duration of AF was 15.3 ± 12.1 h. There were no differences in the preoperative ejection fraction, body mass index, incidence of hypertension or severity of coronary artery disease between the two groups. Preoperative serum creatinine values as well as left atrial dimensions were similar between the groups. There was no difference in the incidence of mild valvular disease, nor was the preoperative use of antiarrhythmics, statins or angiotensin-converting enzyme (ACE) inhibitors different among the groups. Notably, the group of patients that developed AF was older (66 ± 7 years vs 60 ± 9 years, p < 0.0001), more symptomatic (the New York Heart Association (NYHA) class 2.8 vs 2.2, p = 0.009) and had a higher incidence of hyperlipidaemia.

We found no difference in the duration of mechanical ventilation or the incidence of any major complications (Table 2). The mortality in the SR group was 1.3% (2/160), while one patient died in the AF group with a mortality of 1.8% (p = 1.0). The length of stay in the intensive care unit (ICU) was longer in the AF than the SR group (3 (3—5) days vs 2 (2—3) days, p < 0.0001). There were no strokes with permanent neurologic sequelae in either cohort of patients. One patient in the SR group had a transient ischaemic event, followed by a prompt and complete neurologic recovery. The duration of CPB was longer in the AF group of patients (93 ± 30 min vs 85 ± 24 min, p = 0.05).

Biomarker comparisons between the two groups are presented in Table 3. The mean values of the TCLG increased
from the pre-intervention value of -0.05 ± 0.37 to 0.39 ± 0.46 mmol l$^{-1}$ ($p < 0.0001$) calculated at 5 min after completion of the revascularisation procedure in the group of patients that maintained stable sinus rhythm. A similar increase was observed in the subgroup of patients that later developed AF where the preoperative TCLG value rose from -0.01 ± 0.27 to 0.43 ± 0.46 mmol l$^{-1}$ at 5 min after the revascularisation was complete ($p < 0.0001$). In both the groups, a trend towards normalising the TCLG was seen at 10 min after the completion of bypass grafting. While the trend in longitudinal comparisons within each group was highly statistically significant, we found no difference between the two groups. The CRP-serum concentration increased steadily in both groups, and peaked on postoperative day 2. The values increased from 6 ± 13 to 163 ± 88 mg l$^{-1}$ ($p < 0.0001$) and from 6 ± 16 to 163 ± 104 mg l$^{-1}$ ($p < 0.0001$) in the SR and AF groups, respectively. No difference in the trends of CRP was noted between the two groups. The preoperative NT-pro-BNP concentration was significantly lower in the subset of patients that maintained stable sinus rhythm in comparison to those that went on to develop AF during the immediate postoperative period (273 ± 347 pg ml$^{-1}$ in the SR group vs 469 ± 629 pg ml$^{-1}$ in the AF group, $p < 0.0001$). A similar relationship was observed for the postoperative NT-pro-BNP values as well (3111 ± 3600 pg ml$^{-1}$ in the SR group vs 4625 ± 5640 pg ml$^{-1}$ in the AF group, $p = 0.027$). The longitudinal increase in the observed pre-and postoperative values was highly significant in both groups ($p < 0.0001$ for both groups). The SR group of patients had a less pronounced enzyme leak in comparison to the AF group of patients as quantified by the serum troponin T values (0.67 (0.37–1.16) vs 0.86 (0.49–2.1) $p = 0.046$).

3.2. Multiple linear regression analysis

Variables found to be significantly different between the AF and SR groups on univariate analysis were further scrutinised using the multiple linear regression analysis. The variables included were age, preoperative and postoperative NT-pro-BNP, troponin T, NYHA class, duration of CPB and EuroSCORE. We found age ($p = 0.0043$), preoperative NT-pro-BNP ($p = 0.019$) and the duration of CPB ($p = 0.035$) to be significant independent correlates for AF in our population of patients on multivariate analysis. Troponin T ($p = 0.076$), NYHA class ($p = 0.058$), EuroSCORE ($p = 0.77$) and postoperative NT-pro-BNP ($p = 0.79$) were not found to be statistically significant predictors of AF.

4. Discussion

The pathogenesis of AF is multifactorial and may be linked to intra-operative manipulation with the heart, ischaemia, atrial distension, inflammation and structural heart disease. AF remains the most commonly observed arrhythmia following cardiac surgery. It may have profound implications on the patient’s haemodynamic status as well as contribute to the development of thrombo-embolic complications inherent to the stagnation of blood within the dysfunctional atria. The bleeding burden brought on by the requirement for anticoagulation should also not be neglected. While AF may have a plethora of negative repercussions upon patient recovery, it is often self-limiting and benign in its course. Different treatment strategies have been devised and tested in the clinical setting with the aim of reducing the incidence of postoperative AF in the cardiac surgical patient population.

These include the administration of beta blockers, amiodarone, statins and ACE inhibitors [2,4,19,20–22]. The main origin of BNP is the ventricular myocardium, although the atria may be responsible for some of its production [23]. The relationship between BNP and AF remains elusive. The main origin of BNP is the ventricular myocardium, although the atria may be responsible for some of its production [23]. The relationship between BNP and AF remains elusive. The poor correlation of the intra-operative coronary sinus lactate and the postoperative serum lactate has been previously documented [11] and may indicate that the latter lacks

Table 2

Perioperative data summary.

<table>
<thead>
<tr>
<th></th>
<th>SR group</th>
<th>AF group</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of grafts</td>
<td>2.8 ± 0.7</td>
<td>2.8 ± 0.6</td>
<td>0.58</td>
</tr>
<tr>
<td>Thrombendarterectomy (n/%)</td>
<td>6 (4)</td>
<td>4 (7)</td>
<td>0.28</td>
</tr>
<tr>
<td>Ischaemia (min)</td>
<td>59 ± 19</td>
<td>63 ± 21</td>
<td>0.17</td>
</tr>
<tr>
<td>CPB time (min)</td>
<td>85 ± 24</td>
<td>93 ± 30</td>
<td>0.05</td>
</tr>
<tr>
<td>Inotropic support (n/%)</td>
<td>34 (21)</td>
<td>18 (33)</td>
<td>0.1</td>
</tr>
<tr>
<td>ICU (days)</td>
<td>2 [2–3]</td>
<td>3 [3–5]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mechanical ventilation (h)</td>
<td>9 [8–12]</td>
<td>10 [8–15]</td>
<td>0.28</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>103 ± 25</td>
<td>114 ± 36</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Complications (n/%):
- Permanent stroke: 0 (0) vs 0 (0) NS
- TIA: 1 (1) vs 0 (0) 1.0
- Perip. myocardial ischaemia: 6 (4) vs 3 (5) 0.7
- Reexploration for bleeding: 8 (5) vs 3 (5) 1.0
- Acute renal failure: 1 (1) vs 1 (2) 0.45
- Sternal wound infection: 1 (1) vs 0 (0) 1.0
- IABP requirement (n/%) | 9 (6) vs 4 (7) 0.74
- Mortality (n/%) | 2 (1.3) vs 1 (1.8) 1.0

Table 3

Comparison of biomarkers between the SR and AF groups.

<table>
<thead>
<tr>
<th></th>
<th>SR group</th>
<th>AF group</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLG a</td>
<td>-0.05 ± 0.37</td>
<td>-0.01 ± 0.27</td>
<td>0.93</td>
</tr>
<tr>
<td>TCLG b</td>
<td>0.39 ± 0.46</td>
<td>0.43 ± 0.46</td>
<td>0.71</td>
</tr>
<tr>
<td>TCLG c</td>
<td>0.14 ± 0.30</td>
<td>0.17 ± 0.39</td>
<td>0.29</td>
</tr>
<tr>
<td>CRP ab</td>
<td>8 ± 13</td>
<td>6 ± 16</td>
<td>0.22</td>
</tr>
<tr>
<td>CRP b</td>
<td>88 ± 51</td>
<td>87 ± 41</td>
<td>0.55</td>
</tr>
<tr>
<td>CRP c</td>
<td>163 ± 88</td>
<td>163 ± 104</td>
<td>0.44</td>
</tr>
<tr>
<td>CRP d</td>
<td>137 ± 72</td>
<td>149 ± 82</td>
<td>0.18</td>
</tr>
<tr>
<td>NT-pro-BNP e</td>
<td>273 ± 347</td>
<td>469 ± 629</td>
<td><0.0001</td>
</tr>
<tr>
<td>NT-pro-BNP f</td>
<td>3111 ± 3600</td>
<td>4625 ± 5640</td>
<td>0.027</td>
</tr>
<tr>
<td>TnT</td>
<td>0.67 [0.37–1.16]</td>
<td>0.86 [0.49–2.1]</td>
<td>0.046</td>
</tr>
</tbody>
</table>

TCLG: transcoronary lactate gradient (a priori to cardiopulmonary bypass, b5 and c10 min after cross-clamp removal); CRP: C-reactive protein (dpreoperative, epostoperative day 1, fpostoperative day 2, gpostoperative day 3); NT-pro-BNP: N-terminal fragment of the brain natriuretic peptide (hpreoperative, icpostoperative day 1); and TnT: troponin T.

Data as medians and quartiles.
sufficient sensitivity to detect subtle myocardial metabolic derangement. Whether there exists a relationship between CRP and AF is controversial [7,24].

The aim of our study was to identify biomarkers which could prove to be useful in discriminating between patient populations that would develop AF after surgical coronary revascularisation and those that would maintain stable sinus rhythm. We have demonstrated a short-lived lactate washout from the heart following the revascularisation procedure. This acute and statistically significant increase in the TCLG was seen in both the SR and AF group of patients. There was no significant variability in the TCLG between the patients that maintained sinus rhythm in comparison to those that developed AF. The hypothesis that the magnitude of the inflammatory response would influence the incidence of postoperative AF was not corroborated by the results of our study. While Ahlsson et al. had already found that the CRP concentration measured on postoperative day 3 had no correlation with the incidence of AF, we extended our evaluation to incorporate CRP levels at three different time points.

The serum concentration of CRP increased by a factor of 27 in both the groups, which was highly significant in a longitudinal analysis at different time points. However, there was no variability between the SR and AF groups at any of the studied time points. In contrast, the preoperative NT-pro-BNP values were very dissimilar between the patient subpopulations that developed AF and those that did not. The preoperative NT-pro-BNP concentration was significantly lower indicating perhaps less pronounced cardiac structural abnormality in the group of patients that did not develop atrial dysrhythmia. A dramatic accentuation of the NT-pro-BNP serum concentration was observed in both the SR and AF group of patients. There was no variability between the SR and AF groups at any of the studied time points. However, multivariate analysis further suggested that myocardial ischaemia may prove to be useful in discriminating between patient populations undergoing CABG that developed AF and those that did not.

The present study has certain limitations that warrant mentioning. The patients were monitored up to postoperative day 7. Any episode of AF occurring after that day would not have been recorded and therefore not be reflected by the results of our study. Furthermore, the variability of the coronary sinus anatomy coupled with the fact that not all venous drainage from the heart enters the coronary sinus signifies that the lactate sample from it may not reflect all the areas of the myocardium.

In summary, we believe that definition of algorithms that would aim to identify patients at higher risk for developing AF could select those who would benefit from more vigilant AF prophylaxis. The findings of our study suggest that preoperative NT-pro-BNP should be included into such algorithms as it was an important discriminating biomarker between the patient populations undergoing CABG that developed AF and those that did not.

References

