In-vitro activity of chlorhexidine, hexetidine and bacitracin against perinatal pathogens

J Antimicrob Chemother 1996; 37: 192-194

Sir,

To prevent microbial contamination and subsequent infection of the newborn during birth, it would be desirable to have a safe and efficacious antimicrobial agent that could be applied to the vaginal mucosa to prevent transmission of neonatal pathogens during labour. We studied the in-vitro activities of three possibly useful agents: chlorhexidine, hexetidine and bacitracin against clinical isolates of Chlamydia trachomatis (5 strains), Ureaplasma urealyticum (4), Mycoplasma hominis (4), Streptococcus agalactiae (50), Escherichia coli (50) and Listeria monocytogenes (10). Reference strains were C. trachomatis ATCC VR348B, U. urealyticum ATCC 27618 and ATCC 27813, M. hominis ATCC 14027 and ATCC 23114, S. agalactiae ATCC 13813 and NTCC 8181, E. coli ATCC 25922 and Staphylococcus aureus ATCC 29213.

Susceptibility testing of S. agalactiae, E. coli, L. monocytogenes and S. aureus was performed by broth dilution in microtitre plates according to the guidelines of the NCCLS. Bacteria were grown on blood agar overnight at 37°C. Serial dilutions of the three test drugs were prepared in Iso-sensitest broth (Oxoid CM 473, Basingstoke, UK) in microtitre plates containing final concentrations of 0.25-1024 mg/L of chlorhexidine, 4-256 mg/L of hexetidine and 1.0-8192 mg/L of bacitracin per mL; 100 μL of each dilution were mixed with an equal volume containing 10^5 cfu of each bacterial strain in broth. Plates were incubated for 18 h at 37°C and the MIC was defined as the lowest concentration of each drug to inhibit growth in all four tubes.

Strains of M. hominis were grown in 65.5 mL PPLO broth (Difco 0554, Detroit, USA) supplemented with 10 mL yeast extract, 10 mL horse serum, 10 mL L-arginine hydrochloride, 1.5 mL thallium acetate, 0.002% w/v phenol red and 1000 IU/mL penicillin (final pH 7.0). Strains of U. urealyticum were cultured in 90 mL 3% w/v Trypticase Soy broth (Oxoid CM 129, Basingstoke, UK) supplemented with 3.6 mL yeast extract, 24 mL inactivated horse serum, 3 mL 40% w/v urea, 0.002% w/v phenol red, 40 mg/L cefuroxime and 4 mg/L amphotericin B (final pH 6.0). A suspension of 20,000 colour changing units/mL was mixed with 1 mL of each dilution of each drug, incubated for 30 min at 37°C and diluted 100-fold in broth medium. One mL was then pipetted into four culture tubes which were incubated for 72 h at 37°C. The MIC was read as the lowest concentration of each drug to inhibit growth in all four tubes.

Strains of C. trachomatis were grown on McCoy cells in flat bottom tubes as described by Heessen & Muytjens (1984). Growth medium consisted of Eagle's MEM with HEPES 20mm, 3% inactivated fetal bovine serum, 6g/L glucose, 50 mg/L gentamicin, 100 mg/L vancomycin, 2.5 mg/L fungizone and 1 mg/L cycloheximide. After inoculation, centrifugation (60 min at 3000 rpm) and incubation (72 h at 37°C), cultures were homogenized, fixed with methanol and stained with monoclonal antibodies for demonstration of inclusion bodies by immunofluorescence. A suspension of 20,000 inclusion forming units/mL was mixed with 1 mL of each dilution of test drug, left for 30 min, diluted 100-fold in chlamydia growth medium and 1 mL was inoculated on to each of four culture tubes and screened for inclusions after 72 h at 37°C. The MIC was defined as the lowest concentration of each drug completely inhibiting formation of inclusions.

The results of the in-vitro tests are given in the Table. Hexetidine did not inhibit C. trachomatis and E. coli, but was highly active against the other organisms; bacitracin only inhibited Gram-positive organisms; all strains were susceptible to 512 mg/L chlorhexidine or less. Although hexetidine was found to reduce the vaginal microflora by preoperative application (Wewalka et al., 1991, Weidinger et al., 1991), we think that it would be unsuitable for perinatal antisepsis, it not being active against E. coli and C. trachomatis which are significant neonatal pathogens. The same conclusion was made for bacitracin. For chlorhexidine we calculated that 10 mL of 1% chlorhexidine solution would result in local concentrations of 0.4 mg/cm² assuming the surface area of the normal vagina during labour being about 250 cm². This concentration is far above the highest MIC for the organisms tested, being the volumetric MIC of 512 mg/L equivalent to 0.064 mg/cm². This is in agreement with the experience that chlorhexidine can indeed prevent neonatal transmission of S. agalactiae (Kollée et al., 1989; Burman et al., 1992). Chlorhexidine has been used in obstetrics and gynaecology for several purposes and is not absorbed to any large extent (Vorherr et al., 1984), making it a safe substance. It may be of interest to study the efficacy of routine vaginal application of chlorhexidine in the prevention of several neonatal infections.
Table. In-vitro activities of chlorhexidine and hexetidine against *C. trachomatis, U. urealyticum, M. hominis, S. agalactiae, E. coli, and L. monocytogenes* and of bacitracin against *S. agalactiae* and *L. monocytogenes*

<table>
<thead>
<tr>
<th>Antimicrobial agent and organism (no. tested)</th>
<th>Cumulative number of organisms susceptible to concentrations (mg/L) indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorhexidine</td>
<td></td>
</tr>
<tr>
<td>C. trachomatis (6)</td>
<td>0.25 0 5 1 2 4 8 16 32 64 128 256 512</td>
</tr>
<tr>
<td>U. urealyticum (6)</td>
<td></td>
</tr>
<tr>
<td>M. hominis (6)</td>
<td></td>
</tr>
<tr>
<td>S. agalactiae (52)</td>
<td>1 43 51* 52*</td>
</tr>
<tr>
<td>E. coli (51)</td>
<td>20* 50 51</td>
</tr>
<tr>
<td>L. monocytogenes (10)</td>
<td>4 10</td>
</tr>
<tr>
<td>S. aureus ATCC 29213</td>
<td>1</td>
</tr>
<tr>
<td>Hexetidine</td>
<td></td>
</tr>
<tr>
<td>C. trachomatis (6)</td>
<td>4 8 16 32 64 128 256</td>
</tr>
<tr>
<td>U. urealyticum (6)</td>
<td>0</td>
</tr>
<tr>
<td>M. hominis (6)</td>
<td></td>
</tr>
<tr>
<td>S. agalactiae (52)</td>
<td>12 52*</td>
</tr>
<tr>
<td>E. coli (51)</td>
<td>0</td>
</tr>
<tr>
<td>L. monocytogenes (10)</td>
<td>10</td>
</tr>
<tr>
<td>S. aureus ATCC 29213</td>
<td>1</td>
</tr>
<tr>
<td>Bacitracin</td>
<td></td>
</tr>
<tr>
<td>S. agalactiae (52)</td>
<td>1 2 4 8 16 32 64 128 256</td>
</tr>
<tr>
<td>L. monocytogenes (10)</td>
<td>3* 4 7 18 31 48 51 52* 5 10</td>
</tr>
<tr>
<td>S. aureus ATCC 29213</td>
<td>1</td>
</tr>
</tbody>
</table>

*Indicates MIC of reference strain.
Acknowledgements. We thank M. Gielen, J. Kissing and H. G. R. Roelofs-Willemse for technical assistance and Dr J. P. Donnelly for reviewing the manuscript. This work was supported in part by a grant from Zeneca, Ridderkerk, The Netherlands.

*Department of Obstetrics and Gynaecology; **Department of Medical Microbiology, University Hospital Nijmegen St Radboud, PO Box 9101, 6500 HB Nijmegen, The Netherlands
Telephone: +31-20 5669111. Fax: +31-20 6963489.

References

Paradoxical susceptibility to cephalothin and cefamandole of a Klebsiella pneumoniae isolate producing extended-spectrum β-lactamase (TEM-3).

Sir,

Extended-spectrum β-lactamases (ESBL) are plasmid-mediated enzymes which confer resistance to most β-lactam antibiotics, including first-generation cephalosporins and oxyimino-β-lactams such as cefotaxime, ceftazidime and aztreonam. Since their discovery in the mid-1980s, about 40 enzymes have been identified, most of them derived by one or more amino acid substitutions from TEM or SHV enzymes. Most ESBL are inhibited by clavulanic acid, tazobactam or sulbactam, and can be readily detected by the double-disc synergy test showing that β-lactam activity is restored by the addition of clavulanic acid (Philippon, Arlet & Lagrange, 1994). Klebsiella pneumoniae is the most common bacterial species in which clavulanate-sensitive ESBL have been identified, and outbreaks of hospital-acquired infections involving multiresistant strains of this organism have been reported (Philippon et al., 1994).

During a survey of intestinal carriage of K. pneumoniae resistant to third-generation cephalosporins in patients hospitalized in a surgical intensive care unit (Hôpital Boucicaut, Paris), a strain (BOU 92) producing an unusual ESBL was isolated from a patient by cultivating stools on Drigalski agar containing 2 mg/L cefotaxime. Surprisingly, this isolate, although resistant to amoxycillin, ticarcillin, piperacillin, cefotaxime, ceftazidime and aztreonam, was susceptible to cefalothin and cefamandole (Table). In addition, strain BOU 92) was resistant to aminoglycosides (except for gentamicin), trimethoprim, sulphonamides, tetracycline, fosfomycin and quinolones. Resistance to β-lactams was transferred by conjugation from K. pneumoniae strain BOU 92 to Escherichia coli K-12 recipient strain HB101 and the recombinant strain was designated MS 92.1. Unlike the Klebsiella donor strain, the E. coli transconjugant was resistant to cefalothin and cefamandole (Table). Resistance to β-lactams was then transferred by conjugation from the E. coli transconjugant MS 92.1 to a wild-type strain of K. pneumoniae (JLG III.10) and the K. pneumoniae transconjugant (strain MS 92.2) exhibited the same phenotype as the E. coli donor strain (Table).

BOU 92, MS 92.1 and MS 92.2 all produced an identical plasmid-mediated β-lactamase with pl of 6.3 as determined by isoelectric focusing on polyacrylamide gel of crude cell sonic extracts with TEM-1 and TEM-3 enzymes as pl markers (Jarlier et al., 1988). The β-lactam resistance pattern and the enzyme pl strongly suggested that the ESBL produced was TEM-3; this assumption was confirmed by gene amplification with primers.