Melt Enrichment of Shallow Depleted Mantle: a Detailed Petrological, Trace Element and Isotopic Study of Mantle-Derived Xenoliths and Megacrysts from the Cameroon Line

Major element, trace element and Sr—Nd—Pb isotopic compositions of ultramafic xenoliths and megacrysts from the continental Cameroon line provide evidence for metasomatism of the uppermost lithospheric mantle by enriched melts during the Mesozoic. The megacrysts probably crystallized within the lower continental crust from melts similar to the host magmas. All the xenoliths originated as depleted residues after the extraction of basaltic melts, but some indicate evidence of interaction with enriched partial melts before entrainment. The U—Pb isotopic data on garnet are consistent with cooling through >900°C at >300 Ma. The Sm—Nd isotope systematics in constituent phases appear to have been in equilibrium on a xenolith scale at the time of entrainment, indicating derivation from mantle that remained at temperatures >600°C until eruption. Spinel Iherzolites that show simple light rare earth element (LREE) depletions are characterized by isotopic compositions that are comparable with, but slightly more depleted than Atlantic N-MORB, suggesting that the unmetasomatized sub-continental lithosphere of the Cameroon line may be isotopically similar to that of sub-oceanic lithosphere. The Nd-depleted mantle model ages of these xenoliths are consistent with late Proterozoic depletion, similar in age to much of the overlying continental crust. In contrast, samples that have LREE-enriched clinopyroxenes (La/Yb = 4–7–9–4) contain trace amounts of amphiboles, which are enriched in U and have more radiogenic Pb and Sr. These xenoliths yield U—Pb and Sm—Nd model ages consistent with Mesozoic enrichment, in agreement with the age of enrichment of the source regions of the basalts, as deduced from Pb isotopic compositions. Clinopyroxenes record three orders of magnitude enrichment in U and LREE accompanied by progressive K depletion associated with the growth of trace amphibole, with K/U ratios that range from 12,000 to 1. The ratios of the trace elements thought to have similar bulk D in mantle melting, Ce/Pb, Ba/Rb and Nd/Sr ratios, display regional variations related to the time integrated history of enrichments indicated by Nd isotopic compositions. Mass balance calculations suggest that the melts responsible for the most recent enrichment of the lithosphere had higher La/Yb and U/Pb than Cameroon line host magmas, and were probably the product of small degrees of partial melting associated with the earliest stages of the breakup of Pangaea.

KEY WORDS: Cameroon line; mantle xenoliths; megacrysts; REE; isotopic composition; trace element.

INTRODUCTION

For many years the role of the sub-continental lithosphere in the genesis of intraplate magmas has been hotly debated (e.g. Brooks et al., 1976; Allègre et al., 1981; Allègre, 1982; Fitton & Dunlop, 1985; Dupuy et al., 1988; Halliday et al., 1988, 1990; Hawkesworth et al., 1988; Altherr et al., 1990; Paslick et al., 1995). It is unclear to what extent the isotopic and trace
element compositions of continental basaltic magmas are acquired by reaction with the lithosphere during upward percolation of asthenospheric-derived melts, as opposed to direct melting of the lithosphere (McKenzie, 1985; Navon & Stolper, 1987). Furthermore, sub-continen- tal lithosphere has been proposed by some as a possible source for ocean island basalts, following delamination and asthenospheric entrainment (McKenzie & O’Nions, 1983, 1995). Therefore, determining the composition and development of this poorly characterized reservoir is a critical task.

There are two general approaches to characterizing the isotopic compositions of the lithospheric mantle. The first is to compare basaltic magmas erupted in young oceanic and older continental settings and to ascribe the differences to the effects of the sub-continentallithosphere or crustal contamination (Allègre et al., 1981; Fitton & Dunlop, 1985). The Cameroon line may be the best location on Earth for such an experiment, as it uniquely comprises a genetically related intraplate volcanic chain that extends for 1600 km from ocean islands in the Gulf of Guinea to volcanic centers in the Precambrian cratons of Africa (Fitton & Dunlop, 1985; Halliday et al., 1988, 1990; Lee et al., 1994). However, unless there is a marked difference in trace element and/or isotopic compositions, the role and composition of the lithosphere cannot be readily ascertained (Paslick et al., 1995).

The second and more direct method is to use the ultramafic xenoliths entrained in kimberlites and alkali basalts during ascent and generally considered to be fragments of the sub-continentallithosphere (e.g. Menzies et al., 1987). The isotopic and incompatible trace element compositions of ultramafic xenoliths thought to be derived from the sub-continentallithosphere are known to be extremely heterogeneous. Although the major and trace element chemistry of many ultramafic xenoliths is consistent with their being residues of partial melt extraction (Frey & Prinz, 1978), some ultramafic xenoliths are enriched in incompatible trace elements with or without changes in major element chemistry (Frey & Green, 1974; Dawson, 1982; Galer & O’Nions, 1989). Such trace element enrichment is commonly attributed to interaction with partial melts similar to the host magmas (Kramers et al., 1983; Navon & Stolper, 1987), and/or CO₂–H₂O-rich partial melts that were trapped in the lithospheric mantle (Menzies & Wass, 1983; Andersen et al., 1984; Menzies et al., 1985; O’Reilly & Griffin, 1988; Song & Frey, 1989). Trace element enrichment processes are also considered as probable precursors to the genesis of alkaline magmas (Frey & Roden, 1987; Wilkinson & Le Maitre, 1987). In this paper we present the first isotopic, trace element and major element study of xenoliths from the Cameroon line, and provide evidence of enrichments of the depleted upper mantle that took place at about the same time as those inferred to have occurred in the source regions of the erupted lavas, permitting well-constrained inferences on the relationship between asthenosphere and lithosphere in this region.

The Cameroon line consists of at least 17 plutonic complexes (~65–30 Ma), all in the continental sector, and 12 major volcanic centers (~42 Ma to the present), extending into the Gulf of Guinea (Fig. 1; Fitton & Dunlop, 1985; Fitton, 1987; Déruelle et al., 1991; Lee, 1994; Lee et al., 1994). The only currently active volcano is Mt Cameroon (Fitton et al., 1983), located at the boundary between the oceanic and the continental sectors of the volcanic chain. Basic lavas, ranging in composition from basanite to hy-norm basalt, are present in all the volcanic centers except for Etinde, which is composed entirely of nepheline. The chemical compositions of basaltic lavas are similar between the oceanic and con-

![Fig. 1. Geological map showing the major Cenozoic volcanic centers of the Cameroon line and the Gulf of Guinea. The boundary between the continental and oceanic crust (thin broken line) and the oceanic transform faults are taken from Emery & Uchupi (1984) and Sibuet & Masde (1978), respectively. C201D is from Mt Cameroon; C235A and C235D are from Lake Baroni Mbo; C241 is from 5 km north of Tombel, C271D and C271I are from Lake Enep; C273Q is from 5 km north-west of Lake Enep; P5, P6, P12 and P13 are from Ngoundéré Plateau; N12, N12-Cpx, -Gt, -Fs and N30-Cpx are from Biu Plateau.](https://academic.oup.com/petrology/article-abstract/37/2/415/1485203)
tinal sectors (Fitton & Dunlop, 1985). Trachyte, trachyphonolite, rhyolite and rare phonolite are the evolved rocks in the continental sector, whereas phonolite and rare trachyte dominate the evolved rocks in the oceanic sector.

The origin of the Cameroon line has been a subject of continuing controversy (Freeth, 1979; Morgan, 1983; Van Houten, 1983; Fitton & Dunlop, 1985; Moreau et al., 1987). Halliday et al. (1988, 1990) showed that there is a Pb isotope anomaly at the continent-ocean boundary, and suggested that it resulted from melting of a fossil plume that was emplaced in the Mesozoic. Lee et al. (1994) found that in the oceanic sector of the volcanic chain the Sr and Pb isotopic compositions vary systematically in both space and time, and attributed this to an enriched sub-lithospheric 'hot zone' periodically fed and melted by a deep mantle plume.

PETROGRAPHY

Ultramafic xenoliths analyzed in this study were collected around the major continental volcanic centers of the Cameroon line (Fig. 1). Samples C235A and C235D are from near Mt Cameroon at the continent-ocean boundary. Samples C271D, C271I and C273Q, are from the vicinity of Bam-bouto and Oku. Samples P3, P6, P12 and P13 are from the Ngaoundéré Plateau, the eastern extremity of the Cameroon line. Sample N12 is from the Biu Plateau, the northern end of the volcanic chain. In addition, six megacrysts from Mt Cameroon, Man-engouba and Biu Plateau have been analyzed. The ultramafic xenoliths are predominantly Group I (Frey & Green, 1974; Frey & Prinz, 1978), or Type I (Menzies, 1983) spinel lherzolites, containing pale green Cr-diopside and brown Cr-spinel. Harzburgite and spinel-garnet websterite are rare. Sample P6 is a spinel-garnet-pargasite websterite that contains Fe-Ti-rich clinopyroxenes, characteristic of Type II xenoliths (Menzies, 1983). The petrography of each sample is as follows.

C271D. Spinel lherzolite (Lake Enep, near Oku)

This protogranular sample has similar texture and sharp grain boundaries to C235A and C235D, although reddish brown hematite or iddingsite is found replacing some of the olivine. The modal assemblage contains 55% olivine, 30% orthopyroxene, 10-12% clinopyroxene and <5% spinel. This sample contains trace amounts (<100 μm) of pargasitic amphibole (Leake, 1978). Fluid inclusions are common and are often associated with grain boundaries.

C271I. Spinel lherzolite (Lake Enep, near Oku)

As with C271D, some of the olivines of this protogranular xenolith are partially replaced by reddish brown hematite or iddingsite. However, compared with C271D, this sample has more orthopyroxene (35%), clinopyroxene (15%), less olivine (45%) and no amphibole. Strained clinopyroxene shows evidence of partial fusion at the grain boundaries.

C273Q. Spinel lherzolite (5 km north-west of Lake Enep, near Oku)

This sample has roughly the same modal compositions and texture as C271I with 45% olivine, 35% orthopyroxene, 15% clinopyroxene and 5% spinel. Some of the clinopyroxenes have reaction rims along the grain boundaries. Brown spinel usually retains sharp contacts with other grains, but reaction rims can be found around small (<0.5 mm) and irregular spinels. These may be, however, late secondary products. Olivine shows evidence of secondary alteration to reddish brown hematite or iddingsite.

N12. Harzburgite (Biu Plateau)

This sample is the only harzburgite analyzed. The sample is coarse grained with porphyroblastic olivine and orthopyroxene ranging up to 8 mm. Olivine (~55-60%) and orthopyroxene (40-45%) account for >95% of the total modal composition. Clinopyroxene makes up <5%, and is generally smaller in size (<1 mm), probably formed as an exsolution product. No reaction rims are found.
P3. Spinel lherzolite (Ngaoundéré Plateau)
Porphyroblastic olivine measures up to 5 mm but the majority of olivine and orthopyroxene grains are 1-2 mm in diameter. Clinopyroxene and spinel are much smaller, usually <1 mm, yet some primary spinels measure up to 2 mm. Spinel displays reaction rims where in contact with pyroxene. The modal mineral assemblage is estimated at 60% olivine, 25% orthopyroxene, 8% clinopyroxene and 7% spinel. Trace amounts of pargasite amphiboles, ≤50 μm, are found in this sample. Some olivines show signs of alteration.

This is the only sample in which amphibole appears as a major mineral phase, and is also the only Type II xenolith found in this study. Pale gray clinopyroxene, in contrast to the green Cr-clinopyroxene of Type I xenoliths, accounts for 65-70% of the total modal composition (up to 4 mm in diameter). Brown pargasite amphiboles (≤20%) appear both as a discrete phase and intergrown with clinopyroxene. Pale gray–green orthopyroxene is rare (≤5%). Gray spinel (≤5%) is surrounded by pink garnet (5%); both range from 0.5 to 2 mm in diameter. Some garnet is in direct contact with clinopyroxene and amphibole. The texture of this sample is transitional between protogranular and equigranular.

P12. Spinel–garnet websterite (Ngaoundéré Plateau)
This sample has coarse-grained elongate clinopyroxene up to 12 mm in size, fine-grained interstitial orthopyroxene, and scattered spinel (≤2 mm in size) surrounded by fine garnet. There are minor amounts of olivine present. Several veins of secondary carbonate cut across clinopyroxenes. Large clinopyroxenes show exsolved blebs of pale pinkish garnet and orthopyroxene. Garnet also forms as coronas around green spinel with thin pale brown reaction rims at the contacts, and as strings along the pyroxene–pyroxene grain boundaries. Similar textures have been found in xenoliths from eastern Australia (Irving, 1974; Pearson et al., 1991) and Salt Lake Crater, Hawaii (Green, 1966; Beeson & Jackson, 1970). Irving (1974) suggested that these textures reflect exsolution of garnet and orthopyroxene from clinopyroxene, and reaction of clinopyroxene and spinel to yield garnet. None of the mineral phases are optically or chemically zoned. The estimated modal composition is 65% clinopyroxene, 15% orthopyroxene, 10% garnet and 10% spinel.

P13. Spinel lherzolite (Ngaoundéré Plateau)
This sample contains 65% olivine, 25% orthopyroxene, 10% clinopyroxene and 5% spinel. Olivine and orthopyroxene range between 1 and 2 mm in size, whereas clinopyroxene and spinel are usually <1 mm in diameter. The sample is reasonably fresh, and no reaction rims are present, with the exception of some secondary alteration replacing olivine. The texture of this sample is transitional between protogranular and equigranular.

ANALYTICAL METHODS
Each mineral was analyzed at the University of Michigan using a Cameca Camebax electron microprobe in wavelength-dispersive mode with the ZAF reduction method. The acceleration voltage was 15 kV with a beam current of 10 nA and peak counting times of 30 s for each element. A minimum of three measurements were performed for each grain. The results listed in Table 1 are averages of two to four grains. The site occupancy for all the minerals was calculated according to a fixed number of cations: four for pyroxenes, three for spinels and eight for garnets, except for olivine which was normalized to four oxygens. The Fe₂O₃ contents of pyroxenes, spinels and garnets were estimated to yield stoichiometric values of oxygen.

No bulk xenolith chemical analysis was performed owing to variable degrees of alteration of most xenoliths. All mineral separates were purified under a binocular microscope (>50), and each grain was hand-picked to insure that no surface alteration nor mineral or fluid inclusion was present. As most of the xenoliths were friable, the initial disaggregation was done by hand. Mineral separates were then treated in an ultrasonic bath in 2.5 N distilled HCl for 10–15 min to remove surface weathering. Two additional steps of picking under the microscope were subsequently performed. All the mineral separates were picked in either methanol or ethanol, which enhances the optical contrast between the minerals and alteration or inclusions.

All the mineral separates were leached before being dissolved. The leaching procedure was adapted from Zindler & Jagoutz (1988). The minerals were treated twice with 8 ml of hot (~90°C) 2.5 N distilled HCl for 20 min, then agitated in an ultrasonic bath for 5 min. The mineral separates were then washed with 8 ml of cold 5% distilled HF for 10 min, and then again agitated in an ultrasonic bath for 5 min. The minerals were then rinsed several times with cold 2.5 N distilled HCl to remove any residual acid left from previous washing steps. All the acids were collected as leachates. The
RESULTS

Mineral chemistry

The Fo content, from 89 to 91% (Table 1a), and the abundances of minor elements (Ni, Mn, Ca) of the olivine are similar to those reported by Simkin & Smith (1970), Frey & Prinz (1978), Stosch (1981) and Galer & O’Nions (1989), typical of Type I ultramafic xenoliths.

Orthopyroxene has generally higher (or equal) mg-number [100 Mg/(Mg + Fe)] than the Fo content of coexisting olivine in each sample (Table 1b). Compared with the samples that contain Cr-diopsides, the orthopyroxene of P6 has higher TiO₂, Al₂O₃ and Fe, and lower Cr₂O₃ and MgO, typical of Type II xenolith (Menzies, 1983). Orthopyroxene from the websterite P12 also has high Al₂O₃ and Fe and low Cr₂O₃ and MgO relative to that in spinel lherzolites. However, the very low TiO₂ and the presence of Cr-diopside would favor this sample being classified as a Type I xenolith. The enstatite in the harzburgite has a much higher Wo content (3-7 wt %) than that of all the other xenoliths, possibly indicating a higher equilibration temperature.

In general, clinopyroxene has higher mg-number than either the coexisting orthopyroxene or olivine.

Table 1a: Representative electron microprobe analyses of olivine

<table>
<thead>
<tr>
<th>Sample</th>
<th>C235A</th>
<th>C235D</th>
<th>C271D</th>
<th>C271I</th>
<th>C273Q</th>
<th>N12</th>
<th>P3</th>
<th>P13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>0-03</td>
<td>0-02</td>
<td>0-03</td>
<td>0-08</td>
<td>0-03</td>
<td>0-06</td>
<td>0-01</td>
<td>0-00</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0-02</td>
<td>—</td>
<td>0-01</td>
<td>—</td>
<td>0-01</td>
</tr>
<tr>
<td>FeO</td>
<td>9-91</td>
<td>10-26</td>
<td>8-61</td>
<td>9-73</td>
<td>9-73</td>
<td>8-85</td>
<td>10-02</td>
<td>10-33</td>
</tr>
<tr>
<td>MnO</td>
<td>0-16</td>
<td>0-14</td>
<td>0-12</td>
<td>0-16</td>
<td>0-14</td>
<td>0-13</td>
<td>0-16</td>
<td>0-16</td>
</tr>
<tr>
<td>NiO</td>
<td>0-38</td>
<td>0-37</td>
<td>0-44</td>
<td>0-35</td>
<td>0-38</td>
<td>0-39</td>
<td>0-37</td>
<td>0-40</td>
</tr>
<tr>
<td>MgO</td>
<td>48-74</td>
<td>48-54</td>
<td>49-56</td>
<td>48-88</td>
<td>49-07</td>
<td>49-45</td>
<td>48-74</td>
<td>48-40</td>
</tr>
<tr>
<td>CaO</td>
<td>0-11</td>
<td>0-06</td>
<td>0-04</td>
<td>0-16</td>
<td>0-08</td>
<td>0-19</td>
<td>0-05</td>
<td>0-05</td>
</tr>
<tr>
<td>Total</td>
<td>99-88</td>
<td>100-04</td>
<td>99-49</td>
<td>100-06</td>
<td>99-87</td>
<td>99-86</td>
<td>100-10</td>
<td>100-01</td>
</tr>
</tbody>
</table>

mineral separates were rinsed with pure H₂O several times before dissolution.

The minerals were treated sequentially with HF, 30% HNO₃ and 6 N HCl. After the mineral separates were dissolved completely in 6 N HCl, the solution was split, using 15% for isotope dilution, and the remaining solution for isotope composition determination. The aliquots for isotope dilution were spiked with K and three other mixed spikes: 235U-208Pb, 87Rb-84Sr and a Ba-REE mixed spike, containing 135Ba and 10 rare earth elements (REE): 138La, 142Ce, 150Nd, 149Sm, 153Eu, 157Gd, 164Dy, 168Er, 171Yb and 176Lu. Chemical separation procedures of U, Pb, Rb and Sr were the same as those of Lee et al. (1994). The separation of Ba and REE was achieved using a 3 ml column containing polytetrafluoroethylene (PTFE) coated with di(2-ethylhexyl) orthophosphoric acid (H-DEHP), collecting sequentially for Ba, La, Ce, Nd, Sm + Eu + Gd + Dy (collecting in a single aliquot) and Er + Yb + Lu. All the isotopic measurements were made on two VG Sector thermal ionization mass spectrometers equipped with 6 and 7 Faraday collectors, respectively. The analytical procedures for each element and the replication of standards are the same as those of Lee et al. (1994).
The chemical compositions of garnets are similar for the two websterites (Table 1c). They both have mg-numbers that are higher (~79) than coexisting spinel but lower than clinopyroxene. Garnet in sample P12 has a very similar chemical composition to that of the garnet websterites from Delegate, Australia (Irving, 1974), but has significantly higher MgO and lower ΣFe than those found in the eastern Australia Craton (Pearson et al., 1991).

The compositions of the amphiboles (pargasite) are shown in Table 1f. In general, amphibole in P6 has higher TiO₂ and lower MgO relative to C271D and P3, consistent with the observations in other major mineral phases. The K₂O content is low in amphiboles from both C271D and P3.

Element partitioning between major mineral phases provides a reasonable test of whether the minerals in a xenolith have achieved chemical equi-

Table 1b: Representative electron microprobe analyses of orthopyroxene

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>54.76</td>
<td>54.29</td>
<td>55.76</td>
<td>54.28</td>
<td>54.12</td>
<td>55.30</td>
<td>54.95</td>
<td>54.11</td>
<td>54.09</td>
<td>55.65</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.12</td>
<td>0.11</td>
<td>0.04</td>
<td>0.12</td>
<td>0.11</td>
<td>0.08</td>
<td>0.09</td>
<td>0.24</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.01</td>
<td>3.99</td>
<td>3.45</td>
<td>4.38</td>
<td>4.18</td>
<td>3.02</td>
<td>4.23</td>
<td>4.75</td>
<td>4.77</td>
<td>3.45</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.30</td>
<td>0.26</td>
<td>0.49</td>
<td>0.33</td>
<td>0.33</td>
<td>1.10</td>
<td>0.39</td>
<td>0.08</td>
<td>0.09</td>
<td>0.27</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.08</td>
<td>2.31</td>
<td>0.45</td>
<td>1.81</td>
<td>2.56</td>
<td>0.47</td>
<td>0.31</td>
<td>0.29</td>
<td>1.38</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>73.02</td>
<td>33.26</td>
<td>33.76</td>
<td>32.91</td>
<td>33.31</td>
<td>32.56</td>
<td>32.69</td>
<td>30.55</td>
<td>31.75</td>
<td>33.06</td>
</tr>
<tr>
<td>CaO</td>
<td>0.63</td>
<td>0.47</td>
<td>0.62</td>
<td>0.69</td>
<td>0.63</td>
<td>1.92</td>
<td>0.61</td>
<td>0.73</td>
<td>0.63</td>
<td>0.51</td>
</tr>
<tr>
<td>MnO</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.15</td>
<td>0.12</td>
<td>0.08</td>
<td>0.04</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Total</td>
<td>99.45</td>
<td>99.53</td>
<td>99.98</td>
<td>99.43</td>
<td>99.46</td>
<td>99.81</td>
<td>99.85</td>
<td>99.91</td>
<td>99.80</td>
<td>100.00</td>
</tr>
</tbody>
</table>

En 89.3 89.1 90.4 89.1 89.4 87.8 88.7 84.4 86.5 88.9
Fs 9.5 10.0 8.4 9.5 9.4 8.5 10.1 14.2 12.3 10.1
Wo 1.2 0.9 1.2 1.4 1.2 3.7 3.7 1.4 1.2 1.0
mg-no. 90.4 89.9 91.5 90.3 90.5 91.2 89.7 85.6 87.5 89.8
librium (Galer & O’Nions, 1989). This information is critical for the interpretation of thermobarometric calculations and isotopic compositions of clinopyroxene. The variations in Al$_2$O$_3$ between pyroxenes and spinels for the Cameroon line xenoliths are shown in Fig. 2a, and indicate that the partitioning of Al follows the relationship of [Al]$^{\text{lp}}$ > [Al]$^{\text{cpx}}$ > [Al]$^{\text{pp}}$. The mg-number of pyroxenes decreases as the Al$_2$O$_3$ of spinel increases. However, there is no clear relationship between Na$_2$O in pyroxenes and Al$_2$O$_3$ in spinel, particularly if the two samples (C271D and P3) that may be affected by the presence of amphibole are ignored (Fig. 2a). The partitioning of Fe–Mg between olivine and pyroxenes (Fig. 2b) follows the relationship of [mg-number]$^{\text{cpx}}$ > [mg-number]$^{\text{pp}}$ > [Fo]$^{\text{ol}}$. The partitioning of Cr between pyroxenes and spinel is shown to be [Cr]$^{\text{pp}}$ > [Cr]$^{\text{cpx}}$ > [Cr]$^{\text{lp}}$ (Fig. 2c). From Fig. 2, the partitioning of Al, mg-number and Cr among the major mineral phases behave as predicted from crystal field theory (Burns, 1969, 1970), implying that these xenoliths may have reached chemical equilibrium. Galer & O’Nions (1989) suggested that Cr$_2$O$_3$ content of pyroxenes saturated at roughly 1–2 wt% for clinopyroxene and 0.6 wt% for orthopyroxene, based on the compositions of ultramafic xenoliths from San Carlos. However, Cr–Al may substitute for Mg–Si in pyroxene. This substitution is buffered for orthopyroxene in spinel lherzolites by Cr-spinel and olivine: MgCr$_2$O$_4$ + MgMgSi$_2$O$_6$ = MgCrSiAl$_2$O$_6$ + Mg$_2$SiO$_3$. Similarly, Cr in clinopyroxene is buffered by spinel and olivine via the equilibrium of MgCr$_2$O$_4$ + CaAl$_2$Si$_3$O$_8$ = MgCrAlO$_4$ + CaCr$_2$SiO$_6$.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>51.79</td>
<td>52.11</td>
<td>52.59</td>
<td>52.17</td>
<td>52.31</td>
<td>51.85</td>
<td>50.75</td>
<td>52.25</td>
<td>52.44</td>
<td>51.82</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.58</td>
<td>0.63</td>
<td>0.23</td>
<td>0.64</td>
<td>0.56</td>
<td>0.36</td>
<td>1.28</td>
<td>0.29</td>
<td>0.27</td>
<td>0.64</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>6.16</td>
<td>7.17</td>
<td>5.46</td>
<td>6.58</td>
<td>6.42</td>
<td>5.66</td>
<td>7.72</td>
<td>6.46</td>
<td>6.64</td>
<td>6.99</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.62</td>
<td>0.72</td>
<td>1.18</td>
<td>0.73</td>
<td>0.76</td>
<td>0.72</td>
<td>0.06</td>
<td>0.20</td>
<td>0.21</td>
<td>0.75</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>2.20</td>
<td>1.24</td>
<td>2.48</td>
<td>1.42</td>
<td>1.25</td>
<td>0.56</td>
<td>0.79</td>
<td>0.68</td>
<td>0.04</td>
<td>1.35</td>
</tr>
<tr>
<td>FeO</td>
<td>0.82</td>
<td>1.55</td>
<td>0.08</td>
<td>1.79</td>
<td>1.60</td>
<td>2.46</td>
<td>3.21</td>
<td>2.60</td>
<td>3.30</td>
<td>1.49</td>
</tr>
<tr>
<td>MnO</td>
<td>0.07</td>
<td>0.05</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.08</td>
<td>0.10</td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>MgO</td>
<td>14.94</td>
<td>13.89</td>
<td>15.08</td>
<td>15.50</td>
<td>14.98</td>
<td>15.31</td>
<td>14.10</td>
<td>14.80</td>
<td>14.15</td>
<td></td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>1.66</td>
<td>2.12</td>
<td>1.89</td>
<td>1.71</td>
<td>1.77</td>
<td>0.99</td>
<td>1.65</td>
<td>1.48</td>
<td>1.43</td>
<td>1.98</td>
</tr>
<tr>
<td>Total</td>
<td>100.08</td>
<td>100.30</td>
<td>100.37</td>
<td>100.37</td>
<td>100.37</td>
<td>99.78</td>
<td>99.80</td>
<td>99.77</td>
<td>99.94</td>
<td>99.98</td>
</tr>
</tbody>
</table>

P12(1), clinopyroxene in contact with garnet and spinel; P12(2), clinopyroxene in contact with garnet and orthopyroxene.
Equilibration temperatures and pressures

The equilibration temperatures and pressures for the Cameroon line xenoliths have been estimated (Table 2) using various thermobarometers to avoid probable systematic errors through using a single thermometer or barometer. The temperatures chosen in this study include Fe–Mg partitioning between pyroxenes (Wells, 1977; Brey & Köhler, 1990) and between garnet and clinopyroxene (Ellis & Green, 1979; Krogh, 1988), and Ca, Al, Cr and Na partitioning in phases of pyroxenes and spinel (Herwig & Smith, 1980; Brey & Köhler, 1990; Witt-Eickschen & Seck, 1991). The absence of pressureresponsive assemblages in spinel lherzolite renders pressure estimates suspect relative to those of garnet lherzolite. A thermobarometer involving partitioning of Ca between olivine and clinopyroxene is available for spinel lherzolite (Köhler & Brey, 1990). Unfortunately, the very low CaO content in olivine, comparable with the detection limit of the electron microprobe, limits its application to natural samples. Three sets of calculations are performed for the garnet websterites (Table 2) based on the same but independently calibrated Al-barometer (Harley, 1984; Nickel & Green, 1985; Brey & Köhler, 1990).

For spinel lherzolites, the estimated equilibrium temperatures fall within the range of 800–1000°C (Table 2), similar to spinel lherzolites reported throughout the world (e.g. O'Reilly & Griffin, 1985;
Table Ie: Representative electron microprobe analyses of garnet

<table>
<thead>
<tr>
<th>Sample</th>
<th>P6</th>
<th>P12(1)</th>
<th>P12(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>41.55</td>
<td>41.50</td>
<td>41.65</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.05</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>23.82</td>
<td>23.83</td>
<td>23.84</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.15</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.79</td>
<td>0.62</td>
<td>0.81</td>
</tr>
<tr>
<td>MgO</td>
<td>18.99</td>
<td>18.88</td>
<td>19.07</td>
</tr>
<tr>
<td>CaO</td>
<td>5.19</td>
<td>5.21</td>
<td>5.17</td>
</tr>
<tr>
<td>Total</td>
<td>99.77</td>
<td>99.54</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Neumann, 1991; Nasir, 1992; Zipfel & Wörner, 1992; Princivalle et al., 1994). Pressure estimates for most of the spinel lherzolites using the Ca-barometer are either negative or very low, suggesting that this barometer cannot be applied to natural samples utilizing electron microprobe data. Alternatively, these spinel lherzolites may have reequilibrated at shallow crustal levels; this can be tested by comparing the isotopic compositions of the xenoliths and the host lavas (and/or local crustal samples).

The crustal thickness around the Cameroon line is estimated to be ~30 km (Stuart et al., 1985; Dorbath et al., 1986; Poudjom Djomani et al., 1992), corresponding to a pressure of ~8 kbar for an average crustal density of 2.7 (g/cm³). Therefore, assuming an average continental geotherm, spinel lherzolites of the Cameroon line were probably sampled by the host alkali basalts at the top of the mantle lithosphere.

The two spinel–garnet websterites have similar temperatures regardless of which thermometer is
Total Fe as Fe$_2$O$_3$. The concentrations of Rb, Sr, Sm, Nd, U and Pb are shown in Table 3.

<table>
<thead>
<tr>
<th>Sample</th>
<th>N12 Fs</th>
<th>N12 Cpx</th>
<th>N12 Gt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>60.43</td>
<td>50.01</td>
<td>40.57</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.05</td>
<td>0.59</td>
<td>0.41</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>24.30</td>
<td>8.95</td>
<td>22.87</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>0.26</td>
<td>7.97</td>
<td>13.50</td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
<td>0.16</td>
<td>0.34</td>
</tr>
<tr>
<td>MgO</td>
<td>0.07</td>
<td>16.18</td>
<td>18.79</td>
</tr>
<tr>
<td>CaO</td>
<td>5.82</td>
<td>15.56</td>
<td>5.64</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>7.35</td>
<td>0.94</td>
<td>—</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.95</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>99.27</td>
<td>100.37</td>
<td>100.14</td>
</tr>
</tbody>
</table>

Roughly 3-20% of the total Ba and Pb went into the leachates. The amount of Pb in the leachates may have been slightly overestimated in some instance because of the very low concentration, for which the blank becomes significant. The leaching process does not appear to fractionate the relative concentrations of REE and U. It has been suggested that alkali elements probably reside on grain boundaries in glass or altered phases of mantle xenoliths (Kuo & Essene, 1986; Schiano & Clocchiatti, 1994), consistent with the large quantity of alkalis in the leachates.

Leaching experiments

Acid leaching of ultramafic xenoliths before dissolution is designed to remove weathered or superficially metasomatized grain surfaces, so that the residues may be better representatives of the lithospheric mantle. Different leaching procedures have been described (Zindler et al., 1983; Machado et al., 1986; Reisberg & Zindler, 1987; Hamelin & Allegre, 1988); the leaching procedure used in this study was adapted from Zindler & Jagoutz (1988). The percentage of various elements removed by leaching is shown in Fig. 3. As expected, alkalis (Rb and K) are the most mobile elements, and up to 70% is partitioned into the leachate. In contrast, U, Sr and REE are immobile: <5% of each element was leached. Roughly 5-20% of the total Ba and Pb went into the leachates. The amount of Pb in the leachates may have been slightly overestimated in some instance because of the very low concentration, for which the blank becomes significant. The leaching process does not appear to fractionate the relative concentrations of REE and U. It has been suggested that alkali elements probably reside on grain boundaries in glass or altered phases of mantle xenoliths (Kuo & Essene, 1986; Schiano & Clocchiatti, 1994), consistent with the large quantity of alkalis in the leachates.

Rare earth element compositions

The REE concentrations of various mineral separates determined by isotope dilution are presented in Table 3. In the absence of amphibole or phlogopite, and with the possible exception of high field strength elements (HFSE), clinopyroxene usually contains the dominant inventory of incompatible trace elements in spinel lherzolites. As a result, its REE contents can be used as a good approximation to the bulk xenolith compositions. The chondrite-normalized REE patterns in clinopyroxenes vary from light REE (LREE) depleted to LREE enriched (Fig. 4). Four samples show depletion of LREE with little fractionation of heavy REE (HREE) (Fig. 4a), consistent with small degrees of melt extraction at depths shallower than that corresponding to where garnet is stable. Similar overall REE concentrations and LREE depletion have been documented in other spinel lherzolites (Stosch et al., 1986; Zindler & Jagoutz, 1988; Roden et al., 1988; Roden & Shimizu,
Lee et al. | Xenoliths from the Cameroon Line

Fig. 2. Plots of Al₂O₃ in spinels vs Al₂O₃, mg-number (= Mg/(Mg+total Fe)) and Na₂O in pyroxenes (a), Fo contents in olivines vs mg-number and Na₂O in pyroxenes (b) and Cr₂O₃ in spinels vs Cr₂O₃ and Al₂O₃ in pyroxenes (c).

1993), as well as some abyssal peridotites (Johnson et al., 1990). This implies that part of the continental lithospheric mantle of the Cameroon line is chemically similar to sub-oceanic mantle.

Clinopyroxenes from two amphibole-bearing spinel lherzolites, C271D and P3, show enrichments of LREE (Fig. 4b), but have similar flat HREE patterns to those for LREE-depleted samples (Fig. 4a). LREE-enriched partial melts or fluids percolating through the lithospheric mantle are capable of generating the observed LREE enrichments in C271D and P3 (Navon & Stolper, 1987). Some differences in mineral chemistry are also observed in C271D and P3, i.e. anomalously low Na₂O in clinopyroxene, and low Al₂O₃ and mg-number and high Cr₂O₃ in spinel (Fig. 3).

Four samples from the continental interior of the Cameroon line (Fig. 1), N12, P6, P12 and P13, are characterized by depletion in both LREE and HREE (Fig. 4c). Despite their different mineral assemblages, clinopyroxenes from P12 and P13 have identical REE patterns and the lowest overall REE concentrations. Given that P12 is garnetiferous, the similarity of clinopyroxenes in these two xenoliths seems to suggest that the equilibration occurred on a scale larger than that represented by the xenolith. This in turn implies that Nd isotopic compositions of mantle xenoliths cannot be age-corrected beyond the time of eruption with confidence, as the Sm/Nd ratio may not be representative of the same volume as the Nd isotopic composition (see Lee et al., 1993). This is a problem for small coarse-grained garnetiferous xenoliths and could explain why Sm/Nd ratio and Nd isotopic compositions are not correlated in many such samples (Snyder et al., 1993). As a consequence, Sm–Nd model ages are not considered for clinopyr-

Fig. 3. Percentage of trace element removed by the leaching experiment.
Table 2: Estimated temperatures (°C) and pressures (kbar)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T(W)</td>
<td>870</td>
<td>820</td>
<td>830</td>
<td>1000</td>
<td>920</td>
<td>—</td>
<td>920</td>
<td>940</td>
<td>940</td>
<td>840</td>
</tr>
<tr>
<td>T(BK) 2 px</td>
<td>840</td>
<td>800</td>
<td>780</td>
<td>1040</td>
<td>940</td>
<td>—</td>
<td>910</td>
<td>960</td>
<td>970</td>
<td>830</td>
</tr>
<tr>
<td>T(BK) Ce-opx</td>
<td>920</td>
<td>860</td>
<td>920</td>
<td>950</td>
<td>920</td>
<td>1210</td>
<td>920</td>
<td>950</td>
<td>920</td>
<td>880</td>
</tr>
<tr>
<td>T(BK) Na-px</td>
<td>970</td>
<td>910</td>
<td>890</td>
<td>1100</td>
<td>1030</td>
<td>—</td>
<td>930</td>
<td>1010</td>
<td>1010</td>
<td>830</td>
</tr>
<tr>
<td>T(HS)</td>
<td>960</td>
<td>910</td>
<td>900</td>
<td>1060</td>
<td>1000</td>
<td>—</td>
<td>920</td>
<td>990</td>
<td>990</td>
<td>850</td>
</tr>
<tr>
<td>T(WS) Cr-Al-opx</td>
<td>900</td>
<td>840</td>
<td>950</td>
<td>900</td>
<td>870</td>
<td>—</td>
<td>960</td>
<td>850</td>
<td>850</td>
<td>870</td>
</tr>
<tr>
<td>T(WS) opx-ep</td>
<td>850</td>
<td>850</td>
<td>710</td>
<td>890</td>
<td>870</td>
<td>—</td>
<td>880</td>
<td>—</td>
<td>—</td>
<td>800</td>
</tr>
<tr>
<td>T(EK)</td>
<td>—</td>
</tr>
<tr>
<td>T(K)</td>
<td>—</td>
</tr>
</tbody>
</table>

The thermometers and barometers chosen are: T(W), Wells (1977); T(BK), Brey & Köhler (1990); T(HS), Hervig & Smith (1980); T(WS), Witt-Eickschen & Seck (1991); T(EK), Ellis & Green (1979); T(K), Krogh (1988); P(KB), Köhler & Brey (1990); P(H), Harley (1984); P(NG), Nickel & Green (1985).

The depletion of HREE with HREE depletion in subsequent discussions.

The depletion of LREE in P6 and N12 is not as significant as in P12 and P13. Figure 4d illustrates the REE patterns of coexisting minerals from P6. As expected, clinopyroxene and amphibole dominate the LREE to medium REE (MREE), whereas garnet contains the bulk of the HREE. The amphibole of P6 has an REE pattern parallel to that of the clinopyroxene, but with slightly higher overall concentrations. The amphibole is clearly in chemical equilibrium with the clinopyroxene, endorsing the view, based on the major element compositions, that the metasomatism in these xenoliths occurred before entrainment and the last equilibration of the mineral phases. Although garnet was not found in P13 and N12, the HREE depletion suggests that both equilibrated in a larger system that contained garnet.

The REE compositions of orthopyroxene from C271I and P12 are shown in Fig. 4e. Both orthopyroxenes have HREE enrichment, and the difference between clinopyroxene and orthopyroxene REE contents is more than two orders of magnitude. No REE analysis has been performed on olivine or spinel, which should contain insignificant amounts of REE (Hanson, 1980; Kramers et al., 1983; McKay, 1989; McKenzie & O’Nions, 1991; Kennedy et al., 1993).

Other incompatible trace elements

The concentrations of U, Pb, Rb, Sr, Ba and K in the mineral separates were also determined by isotope dilution (Table 3). All the plots shown in Fig. 5 are normalized to the trace element compositions of primitive mantle (Sun & McDonough, 1989). The four samples that show LREE-depleted patterns exhibit depletion of the most incompatible elements, e.g. Rb and Ba, and gradual enrichment of less incompatible elements such as Sr, Nd and Sm (Fig. 5a). In all four samples U is much less depleted than K, and the variations in both U and K exceed the variations for other elements despite their very similar incompatibility in the mid-ocean ridge basalt (MORB) source (Jochum et al., 1986). This combined enrichment of U and depletion of K is even more obvious in the two LREE-enriched samples, C271D and P3 (Fig. 5b). In general, Rb, Ba and K are consistently depleted, whereas U can be either depleted or enriched, correlated with the behavior of the LREE. The Pb abundance of C271D also shows clear enrichment, but Pb is depleted in P3. The four samples that show both LREE and HREE depletions are plotted in Fig. 5c. They also show depletions in Rb, Ba and Pb (only in N12 and P6) relative to other elements. However, again these elements are not as variable as K and U. The trace elements Ba,
Table 3: Trace element concentrations

| Sample: | Min. | Rb* | Sr | U* | Pb | K | Ba | La | Ce | Nd | Sm | Eu | Gd | Dy | Er | Yb | Lu |
|---------|------|-----|----|----|----|---|----|----|----|----|----|----|----|----|----|----|
| **Xenoliths** | | | | | | | | | | | | | | | | | |
| C235A cpx | 2.84 | 69 | 11.4 | 0.107 | 3.64 | 0.168 | 1.08 | 4.29 | 4.088 | 1.661 | 0.684 | 2.67 | 3.35 | 2.18 | 1.92 | 0.299 |
| C235D cpx | 1.27 | 59 | 9 | 13.3 | 0.152 | 2.19 | 0.0896 | 0.771 | 3.03 | 3.266 | 1.379 | 0.579 | 2.28 | 2.99 | 1.93 | 1.74 | 0.257 |
| C271D cpx | 3.15 | 33 | 37 | 777 | 0.408 | 0.967 | 0.203 | 6.96 | 7.29 | 2.352 | 1.144 | 0.482 | 1.99 | 2.59 | 1.71 | 1.48 | 0.23 |
| C271I cpx | 3.39 | 53 | 17 | 3.69 | 0.287 | 2.76 | 0.159 | 3.01 | 3.612 | 1.574 | 0.662 | 2.63 | 3.41 | 2.24 | 1.95 | 0.268 |
| opx | 1.82 | 0.249 | 0.99 | — | 0.39 | — | 0.00457 | 0.00300 | 0.0218 | 0.0130 | 0.105 | 0.145 | 0.171 | 0.265 | 0.489 |
| C273Q cpx | 2.47 | 56 | 1 | 50.9 | 0.182 | 12.7 | 0.204 | 0.699 | 2.51 | 3.085 | 1.303 | 0.644 | 2.12 | 2.69 | 1.73 | 1.48 | 0.205 |
| N12 cpx | 9.69 | 140 | 9 | 12.8 | 0.0955 | 1.55 | 0.387 | 2.06 | 7.2 | 5.074 | 1.390 | 0.499 | 1.55 | 1.06 | 0.464 | 0.342 | 0.0545 |
| opx | — | — | — | — | — | — | 0.168 | 0.0699 | — | — | — | — | — | — | — | — | — |
| P3 cpx | 12.1 | 148 | 1 | 231 | 0.254 | 2.77 | 0.83 | 14.8 | 27.5 | 8.354 | 1.517 | 0.565 | 1.99 | 2.488 | 1.62 | 1.57 | 0.244 |
| P6 cpx | 7.12 | 103 | 9 | 60.1 | 0.0993 | 2.67 | 0.422 | 4.67 | 15.4 | 13.99 | 4.002 | 1.36 | 4.34 | 3.3 | 1.23 | 0.343 | 0.0657 |
| amp | 4300 | 425 | 1 | 41.2 | 0.462 | 610 | 71.7 | 5.65 | 18.0 | 16.33 | 4.717 | 1.67 | 5.82 | 4.02 | 1.68 | 0.893 | 0.108 |
| gt | 6.76 | 13 | 9 | 8.2 | 0.0264 | 36.8 | 0.403 | 0.341 | 0.218 | 0.7686 | 1.039 | 0.672 | 4.04 | 10.9 | 11.4 | 13.0 | 1.80 |
| P12 cpx | 4.63 | 36 | 14 | 1.43 | 0.0612 | 5.37 | 0.402 | 0.495 | 1.72 | 1.761 | 0.6988 | 0.287 | 1.11 | 0.995 | 0.379 | 0.23 | — |
| opx | 1.45 | 1.33 | — | 0.0023 | 1.38 | 0.039 | 0.00314 | 0.00967 | 0.0106 | 0.00775 | 0.00425 | 0.0226 | 0.0437 | 0.0348 | 0.0412 | 0.0063 |
| P13 cpx | 2.42 | 36 | 72 | 1.52 | 0.0680 | 4.82 | 0.862 | 0.481 | 1.74 | 1.775 | 0.7015 | 0.285 | 1.14 | 0.987 | 0.432 | 0.34 | 0.0298 |
| **Megacrysts** | | | | | | | | | | | | | | | | | |
| C201D cpx | 5.31 | 64 | 16 | 2.9 | 0.045 | 6.65 | 0.225 | 1.82 | 7.10 | 6.887 | 1.988 | 0.659 | 2.14 | 1.62 | 0.706 | 0.471 | 0.0729 |
| C241 fs | 878 | 1964 | — | — | 573 | 242 | 8.36 | 10.4 | 2.403 | 0.219 | 0.728 | 0.208 | 0.035 | 0.050 | 0.0213 | 0.020 |
| N12 gt | 196 | 1.47 | 18.7 | 0.498 | 4.46 | 17 | — | 0.656 | 1.280 | 1.188 | 0.710 | 3.87 | 3.66 | 8.92 | 9.906 | 1.59 |
| N12 fs | 2880 | 3945 | — | 1.35 | 8176 | 628 | 2.830 | 0.283 | 0.961 | 0.192 | 0.038 | 0.0234 | 0.0136 | 0.0019 |
| N12 cpx | 12.4 | 37 | 63 | 4.44 | 0.0369 | 26.0 | 0.32 | 0.936 | 3.34 | 3.564 | 1.234 | 0.469 | 1.67 | 1.53 | 0.798 | 0.692 | 0.0564 |
| N30 cpx | 4.51 | 143 | 2 | — | 35.3 | 0.386 | 5.44 | 21.9 | 25.39 | 8.526 | 2.95 | 8.98 | 4.65 | 0.778 | 0.211 | 0.0130 |

Cpx, clinopyroxene; opx, orthopyroxene; amp, amphibole; gt, garnet; fs, feldspar. The concentrations shown are in p.p.m., except for those with *, which are in p.p.b. All measurements performed by isotope dilution.
Rb and Pb are relatively uniform, varying by less than one order of magnitude, in contrast to U and K, which vary by over two orders of magnitude. Again, the most U-rich sample (P6) is the most K depleted. The harzburgite, N12, has the highest K and moderate U contents, distinct from the patterns of clinopyroxene from spinel lherzolites, in which the clinopyroxenes are enriched in U but depleted in K (Fig. 5a and b).

The clinopyroxene in the websterite P6 shows the same extreme K/U fractionation found in P3 and C271D (Fig. 5c), and all three samples contain amphibole, which provides clear evidence that LREE and U enrichment is coupled with the growth of amphibole, resulting in the depletion of K in the coexisting clinopyroxene (Fig. 5d). The amphibole is enriched in Rb, Ba, K, Pb and Sr relative to co-existing clinopyroxene. However, the U and REE contents of clinopyroxene and amphibole are very similar. Trace amounts of amphibole are found in both C271D and P3, but these were difficult to separate for analysis owing to the small grain size. If the partitioning of K and U between amphibole and clinopyroxene in P6 (Table 4) is applied to C271D and P3, the approximate bulk rock trace element compositions for these two samples can be calculated (Table 5). This estimate does not consider contributions from olivine or spinel, owing to their very low incompatible trace element concentrations. Compared with the unmetasomatized samples (C235D and C271I), C271D and P3 have significantly higher bulk rock Rb, Ba, U, La, Ce and Pb concentrations (Table 5). The K depletions in the clinopyroxenes of C271D and P3 are compensated by the presence of trace amounts of amphibole, which yield bulk rock compositions indistinguishable from C271I. The
Fig. 5. Primitive mantle normalized trace element compositions of clinopyroxene (a, b and c), coexisting amphibole and garnet (d), orthopyroxene (e), and reconstructed bulk xenolith (C235D, C271D, C271I and P3) composition (f). The normalizing values are taken from Sun & McDonough (1989).

presence of amphibole and the U and LREE enrichment in C271D and P3 are clearly equilibrium features caused by metasomatism some considerable time before entrainment.

Although the K/U ratios in the clinopyroxenes vary through four orders of magnitude from 1 to >10 000, the Ba/Rb ratios of all clinopyroxenes are relatively consistent (Fig. 6), with the exception of P13. However, the Ba/Rb ratios are significantly higher than those found in MORB and ocean island basalt (OIB) (Hofmann & White, 1983; Fig. 6). The Ba/Rb ratios of the clinopyroxenes tend to decrease slightly with increasing Rb concentration (Fig. 6), suggesting that varying degrees of depletion have had only a small effect on the Ba/Rb ratios and that Ba is slightly less incompatible than Rb. The K/U ratios of clinopyroxenes, excluding C271D, P3 and P6 that contain amphibole, range from 166 to 12 000. This range includes all OIBs, and reaches to N-type MORB (Sun & McDonough, 1989). The K/U is one of the most variable incompatible trace element ratios in OIB, probably reflecting the role of amphibole as a fractionating phase at very small degrees of partial melting (Halliday et al., 1995).

The large K depletion relative to the primitive mantle in the clinopyroxenes of the LREE-depleted spinel lherzolites also records a significant trace element fractionation process. Although clinopyroxenes of P3 and C271D are relatively depleted in K compared with all other clinopyroxenes, calculated whole rocks are not depleted in K, owing to high K contents in amphibole (Table 5). A possible explanation of K depletion in other xenoliths is that they were also hydrated, followed by the preferential removal of amphibole either by a later melting event or upon decompression during emplacement. The
large variations in K contents of clinopyroxene from spinel lherzolites can be explained if there is formation and removal of amphibole as a consequence of enrichment and depletion by small degree partial melts. The D values calculated in Table 4 indicate that K removal via amphibole melt would also deplete the xenolith in Rb relative to Ba and explain the non-MORB-like Ba/Rb ratios.

Hofmann et al. (1986) showed that the Ce/Pb ratio in MORB and OIB is fairly uniform (25 ± 5) and represents the present-day upper-mantle Ce/Pb ratio. The range of Ce/Pb ratios of clinopyroxenes varies from 1.3 to 154, much larger than the suggested range for the upper mantle. However, Halliday et al. (1995) showed that Ce/Pb tends to be higher (extending up to 90) in OIB from regions of older oceanic lithosphere. This is paralleled by the Cameroon line xenoliths. That is, the Ce/Pb ratios are higher in the continental interior, where the lithosphere is probably older. Those xenoliths from the continental margin are in closer agreement with average OIB and MORB (Ce/Pb = 23 ± 10). If only LREE-depleted clinopyroxenes are chosen, the range of Ce/Pb is further restricted. OIB display a positive correlation between Ce/Pb and U/Pb (Halliday et al., 1995), and no correlation between Ce/Pb and Ce/U. The xenolith clinopyroxenes, however, display no clear relationship between Ce/Pb and U/Pb, nor between Ce/U and Ce/Pb (Fig. 6).

Ratios of other trace elements that should have similar mineral–melt bulk D values also display a very simple relationship with geography. That is, clinopyroxene from the continental margin xenoliths, where the lithosphere is probably younger, have lower and more uniform Ba/Rb and Sr/Nd ratios than clinopyroxene from the interior. The Ba/Rb ratios are particularly significant because they are very uniform in the five samples from the continental margin (71 ± 9), despite the large degrees of variability in degrees of trace element enrichment superimposed on depletion ($U = 3.7-777$ p.p.b.), and the greater leachability of Rb relative to Ba (Fig. 3).

Mineral–mineral partition coefficients

Mineral–mineral partition coefficients for various incompatible trace elements for coexisting minerals that are in 'chemical equilibrium' were calculated from our concentration data (Table 4). The range of orthopyroxene–clinopyroxene partition coefficients from this study fall within the range of those reported by Stosch (1982) and Zindler & Jagoutz (1988), significantly lower than the older values reported by Philpotts et al. (1972), Stueber & Ikramuddin (1974), Dasch & Green (1975), Hanson (1977), Basu & Murthy (1977), Ottonello et al. (1978) and Ottonello (1980). Zindler & Jagoutz (1988) attributed the differences to inclusions or impurities in the mineral separates of earlier workers owing to the poorer lighting employed then com-

Table 4: Apparent mineral–mineral partition coefficients

<table>
<thead>
<tr>
<th>Element</th>
<th>C2711</th>
<th>P12</th>
<th>P6</th>
<th>P6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opx–Cpx</td>
<td>Opx–Cpx</td>
<td>Amp–Cpx</td>
<td>Gr–Cpx</td>
</tr>
<tr>
<td>Rb</td>
<td>0.637</td>
<td>0.314</td>
<td>599</td>
<td>0.961</td>
</tr>
<tr>
<td>Ba</td>
<td>—</td>
<td>0.0976</td>
<td>170</td>
<td>0.956</td>
</tr>
<tr>
<td>U</td>
<td>0.282</td>
<td>—</td>
<td>0.826</td>
<td>0.121</td>
</tr>
<tr>
<td>K</td>
<td>0.0162</td>
<td>0.259</td>
<td>220</td>
<td>13.3</td>
</tr>
<tr>
<td>Pb</td>
<td>—</td>
<td>0.0403</td>
<td>4.63</td>
<td>0.274</td>
</tr>
<tr>
<td>Sr</td>
<td>0.00394</td>
<td>0.0369</td>
<td>4.09</td>
<td>0.134</td>
</tr>
<tr>
<td>La</td>
<td>0.000769</td>
<td>0.00351</td>
<td>1.21</td>
<td>0.0732</td>
</tr>
<tr>
<td>Ce</td>
<td>—</td>
<td>0.00503</td>
<td>1.16</td>
<td>0.0141</td>
</tr>
<tr>
<td>Nd</td>
<td>0.00831</td>
<td>0.00655</td>
<td>1.17</td>
<td>0.0549</td>
</tr>
<tr>
<td>Sm</td>
<td>0.0139</td>
<td>0.0111</td>
<td>1.18</td>
<td>0.260</td>
</tr>
<tr>
<td>Eu</td>
<td>0.0196</td>
<td>0.0148</td>
<td>1.23</td>
<td>0.494</td>
</tr>
<tr>
<td>Gd</td>
<td>0.0399</td>
<td>0.0204</td>
<td>1.34</td>
<td>0.932</td>
</tr>
<tr>
<td>Dy</td>
<td>0.0426</td>
<td>0.0439</td>
<td>1.22</td>
<td>3.29</td>
</tr>
<tr>
<td>Er</td>
<td>0.0763</td>
<td>0.0918</td>
<td>1.29</td>
<td>9.32</td>
</tr>
<tr>
<td>Yb</td>
<td>0.136</td>
<td>0.179</td>
<td>1.41</td>
<td>20.5</td>
</tr>
<tr>
<td>Lu</td>
<td>0.170</td>
<td>—</td>
<td>1.64</td>
<td>27.4</td>
</tr>
</tbody>
</table>

Table 5: Reconstructed whole-rock trace element compositions

<table>
<thead>
<tr>
<th>Element</th>
<th>C235D</th>
<th>C2711</th>
<th>C271D</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>0.0003</td>
<td>0.0011</td>
<td>0.010</td>
<td>0.039</td>
</tr>
<tr>
<td>Ba</td>
<td>0.011</td>
<td>0.016</td>
<td>0.20</td>
<td>0.61</td>
</tr>
<tr>
<td>U</td>
<td>0.0023</td>
<td>0.0009</td>
<td>0.16</td>
<td>0.036</td>
</tr>
<tr>
<td>K</td>
<td>0.23</td>
<td>4.3</td>
<td>1.2</td>
<td>3.3</td>
</tr>
<tr>
<td>La</td>
<td>0.077</td>
<td>0.089</td>
<td>0.88</td>
<td>1.3</td>
</tr>
<tr>
<td>Ce</td>
<td>0.31</td>
<td>0.61</td>
<td>0.93</td>
<td>2.4</td>
</tr>
<tr>
<td>Pb</td>
<td>0.026</td>
<td>0.042</td>
<td>0.11</td>
<td>0.051</td>
</tr>
<tr>
<td>Sr</td>
<td>0.06</td>
<td>9.57</td>
<td>4.72</td>
<td>14.9</td>
</tr>
<tr>
<td>Nd</td>
<td>0.34</td>
<td>0.55</td>
<td>0.31</td>
<td>0.74</td>
</tr>
<tr>
<td>Sm</td>
<td>0.14</td>
<td>0.24</td>
<td>0.15</td>
<td>0.14</td>
</tr>
</tbody>
</table>

The trace element concentrations of olivine and spinel are ignored. The concentrations of orthopyroxene and amphibole are calculated according to the mineral–mineral partition coefficients listed in Table 5. The amounts of amphibole in C271D and P3 are set to be 0.5 wt%. All elements are expressed as p.p.m.
pared with more recent mineral picking. Both samples C271D and P12 yield similar orthopyroxene–clinopyroxene partition coefficients for REE and Rb, but different values for K and Sr. This variability in partition coefficients is independent of the absolute concentrations of these elements in the clinopyroxenes. The orthopyroxene–clinopyroxene partition coefficients for REE display gradual increases with increasing atomic number, despite the difference in REE patterns of clinopyroxenes between these two samples. Petrographically, the amphibole of P6 seems to be in chemical equilibrium with coexisting clinopyroxene. All the amphibole–clinopyroxene partition coefficients exceed unity except for U, which is close to unity. These results are similar to those of O’Reilly et al. (1991). The amphibole–clinopyroxene partition coefficients for REE are very constant at ~1.2, but, as expected, the partition coefficients of garnet–clinopyroxene indicate that K and HREE (Dy to Lu) tend to concentrate in garnet, whereas U, Pb, Sr and LREE are excluded less by clinopyroxene.

Isotopic compositions

The ε_{Nd} of clinopyroxene from the xenoliths, megacrysts (Table 6) and the basaltic lavas from the Cameroon line are plotted in Fig. 7, where the lavas are divided into oceanic sector, continent–ocean boundary (c.o.b.) and the continental sector (Halliday et al., 1990). Megacrysts have the same range of ε_{Nd} as the basaltic lavas from the oceanic and the continental sectors, except sample C201D, which has an ε_{Nd} similar to the c.o.b. lavas with slightly lower ε_{Nd}. C201D was collected from Mt Cameroon, which is part of the c.o.b. and thus explains its ε_{Nd}. The similarity in ε_{Nd} between the megacrysts and the Cameroon line lavas strongly suggests a genetic relationship between the Cameroon line magmas and the megacrysts, but not necessarily the host magmas in which they were entrained. A cogenetic relationship between megacrysts and their host magmas has been advocated by some others (Kramers et al., 1983; Irving & Frey, 1984; Menzies et al., 1985; Erlank et al., 1987), but criticized by
Table 6: Isotopic and trace element ratios

<table>
<thead>
<tr>
<th>Sample:</th>
<th>Rock type</th>
<th>Mineral</th>
<th>87Sr/86Sr ± 2e errors</th>
<th>143Nd/144Nd ± 2e errors</th>
<th>208Pb/204Pb</th>
<th>207Pb/204Pb</th>
<th>206Pb/204Pb</th>
<th>87Rb/86Sr</th>
<th>147Sm/144Nd</th>
<th>238U/204Pb</th>
<th>T_{DM} (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xenoliths</td>
<td></td>
</tr>
<tr>
<td>C235A</td>
<td>sp Iherz</td>
<td>cpx</td>
<td>0.702389 ± 8</td>
<td>0.513287 ± 5</td>
<td>+13</td>
<td>17.73</td>
<td>15.45</td>
<td>38.75</td>
<td>0.000118</td>
<td>0.2572</td>
<td>6.69</td>
</tr>
<tr>
<td>C235D</td>
<td>sp Iherz</td>
<td>cpx</td>
<td>0.702560 ± 17</td>
<td>0.513260 ± 12</td>
<td>+12</td>
<td>17.90</td>
<td>15.49</td>
<td>37.62</td>
<td>0.000061</td>
<td>0.2656</td>
<td>6.27</td>
</tr>
<tr>
<td>C271D</td>
<td>sp Iherz</td>
<td>cpx</td>
<td>0.703074 ± 10</td>
<td>0.513267 ± 7</td>
<td>+12</td>
<td>19.78</td>
<td>16.65</td>
<td>39.38</td>
<td>0.000272</td>
<td>0.3027</td>
<td>125</td>
</tr>
<tr>
<td>N12</td>
<td>harz</td>
<td>cpx</td>
<td>0.701749 ± 10</td>
<td>0.513511 ± 10</td>
<td>+17</td>
<td>17.78</td>
<td>15.21</td>
<td>36.73</td>
<td>0.000154</td>
<td>0.2758</td>
<td>1.67</td>
</tr>
<tr>
<td>C273Q</td>
<td>sp Iherz</td>
<td>cpx</td>
<td>0.70230 ± 4</td>
<td>0.51348 ± 14</td>
<td>+16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.021</td>
<td>0.456</td>
<td>—</td>
</tr>
<tr>
<td>N12</td>
<td>harz</td>
<td>opx</td>
<td>—</td>
<td>0.512567 ± 12</td>
<td>+14</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P3</td>
<td>sp Iherz</td>
<td>cpx</td>
<td>0.702919 ± 10</td>
<td>0.513019 ± 7</td>
<td>+7.4</td>
<td>20.13</td>
<td>15.67</td>
<td>39.99</td>
<td>0.000235</td>
<td>0.1098</td>
<td>60.4</td>
</tr>
<tr>
<td>P6</td>
<td>sp-gt web</td>
<td>cpx</td>
<td>0.702761 ± 11</td>
<td>0.512910 ± 7</td>
<td>+5.3</td>
<td>19.91</td>
<td>15.54</td>
<td>38.67</td>
<td>0.000196</td>
<td>0.1729</td>
<td>32.2</td>
</tr>
<tr>
<td>P12</td>
<td>sp-gt web</td>
<td>amp</td>
<td>—</td>
<td>0.512961 ± 12</td>
<td>+6.6</td>
<td>18.92</td>
<td>15.54</td>
<td>38.64</td>
<td>0.0291</td>
<td>0.1747</td>
<td>5.84</td>
</tr>
<tr>
<td>P13</td>
<td>sp Iherz</td>
<td>cpx</td>
<td>0.702293 ± 15</td>
<td>0.513234 ± 11</td>
<td>+12</td>
<td>18.13</td>
<td>15.51</td>
<td>37.58</td>
<td>0.000368</td>
<td>0.2392</td>
<td>1.46</td>
</tr>
<tr>
<td>Megacrysts</td>
<td></td>
</tr>
<tr>
<td>C201D'</td>
<td>megacry</td>
<td>cpx</td>
<td>0.703355 ± 13</td>
<td>0.512792 ± 8</td>
<td>+3.0</td>
<td>20.21</td>
<td>15.74</td>
<td>39.89</td>
<td>0.000244</td>
<td>0.1827</td>
<td>4.24</td>
</tr>
<tr>
<td>N12</td>
<td>megacry</td>
<td>fs</td>
<td>0.703117 ± 13</td>
<td>0.512934 ± 7</td>
<td>+6.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.00129</td>
<td>0.05496</td>
<td>—</td>
</tr>
<tr>
<td>C241</td>
<td>megacry</td>
<td>gt</td>
<td>0.709848 ± 26</td>
<td>0.512870 ± 10</td>
<td>+4.5</td>
<td>17.81</td>
<td>15.56</td>
<td>37.64</td>
<td>0.0338</td>
<td>0.5874</td>
<td>2.34</td>
</tr>
<tr>
<td>N12</td>
<td>megacry</td>
<td>fs</td>
<td>0.703024 ± 17</td>
<td>0.512915 ± 8</td>
<td>+5.4</td>
<td>19.83</td>
<td>15.68</td>
<td>39.78</td>
<td>0.0021</td>
<td>0.0633</td>
<td>—</td>
</tr>
<tr>
<td>N30</td>
<td>megacry</td>
<td>cpx</td>
<td>0.70334 ± 4</td>
<td>0.512903 ± 7</td>
<td>+5.2</td>
<td>20.46</td>
<td>15.79</td>
<td>40.52</td>
<td>0.000945</td>
<td>0.2104</td>
<td>8.09</td>
</tr>
</tbody>
</table>

Megacry, megacrystal; sp Iherz, spinel Iherzolite; harz, harzburgite; sp-gt web, spinel-garnet websterite; cpx, clinopyroxene; opx, orthopyroxene; gt, garnet; amp, amphibole; fs, feldspar.

*The isotopic compositions of C201D were taken from Halliday et al. (1990).

All isotopic compositions and parent/daughter ratios are blank corrected. The uncertainties of 87Rb/86Sr, 147Sm/144Nd and 238U/204Pb are estimated to be 1%, 0.5% and 2%, respectively.
XENOLITHS FROM THE CAMEROON LINE

Fig. 7. Histogram of ε_{Nd} for the clinopyroxenes from xenoliths, megacrysts and basic lavas from the oceanic, continent-ocean boundary (c.o.b.) and continental sector of the Cameroon line (Halliday et al., 1988, 1990; Lee, 1994; Lee et al., 1994).

Cameroon line ocean island basalts

Cameroon line c.o.b.

Cameroon line continental basalts

Megacrysts

Fig. 8. Plot of $^{87}\text{Sr} / ^{86}\text{Sr}$ vs $^{143}\text{Nd} / ^{144}\text{Nd}$ of the clinopyroxenes in this study. Also included are Atlantic N-MORB (Newton et al., 1986), Cape Verdes (CV; Davies et al., 1989), St. Helena (SH; White & Hofmann [1982]), Ascension, (AS) Azores (AZ) and Madeira (MD) [all from Halliday et al. (1992)], Cameroon line OIBs (CAM) and c.o.b. (Halliday et al., 1988, 1990; Lee, 1994; Lee et al., 1994).

others (Shimizu & Richardson, 1987). In contrast, the xenoliths display larger variations in ε_{Nd} from -1 to +17 (Table 6). Xenoliths from the continental interior are systematically lower in ε_{Nd} (Fig. 7).

The isotopic compositions of Sr and Nd for clinopyroxenes are plotted in Fig. 8, along with various ocean island basalts (OIB) for reference. The xenoliths cover a large range of isotopic compositions from depleted to near Bulk Earth. The spinel lherzolites with LREE depletions and the two samples with concave-downward REE patterns, PI2 and PI3, have the most unradiogenic Pb isotopic compositions, plotting to the left or within the field of the Atlantic N-MORB (Fig. 9). The harzburgite (N12) exhibits slightly enriched Sr and Nd isotopic compositions close to Bulk Earth, differing from the rest of the Cameroon line xenoliths and the host lavas. The three samples with the least radiogenic Nd, N12, P3 and P6, all have distinctly higher Ce/Pb (78-155, compared with 14-40 for the rest of the xenoliths). This supports the view that the trace element compositions reflect the age of the lithospheric mantle, and provides clear evidence that increases in Ce/Pb are related to a long-term history of source LREE enrichment (Halliday et al., 1995). It should be noted that this is consistent with enrichment of the continental lithosphere by OIB-like melts (Brooks et al., 1976; Paslick et al., 1995). There is no evidence for enrichment from subduction-related components with low Ce/Pb (Miller et al., 1994).

As with the Sr and Nd data, Pb isotopic compositions of the clinopyroxenes cover a large range (Fig. 9). The LREE-depleted lherzolites and the two samples with concave-downward REE patterns, P12 and P13, have the most unradiogenic Pb isotopic compositions, plotting to the left or within the field of the Atlantic N-MORB (Fig. 9). The two LREE-enriched lherzolites, C271D and P3 (with high
\[^{238}\text{U}/^{204}\text{Pb}, \mu \text{, values of } 125 \text{ and } 60, \text{ respectively}, \]
plot close to the field of the Cameroon line lavas. Given the measured \(\mu \) values, both amphibole-bearing lherzolites have ‘relatively’ unradiogenic \(^{207}\text{Pb}/^{206}\text{Pb}\) ratios, consistent with a ‘relatively’ recent U/Pb enrichment in the sources (Halliday et al., 1990, 1992, 1995). Amphibole-bearing websterite P6 has Pb isotopic compositions intermediate between those of LREE-depleted and LREE-enriched lherzolites, lying close to the field of the Cameroon line lavas. Harzburgite N12 records the highest \(^{206}\text{Pb}/^{204}\text{Pb}\) (21-0) and \(^{206}\text{Pb}/^{204}\text{Pb}\) (40-4) ratios in this study. However, this is distinct from HIMU and any other typical mantle component if one considers \(^{207}\text{Pb}/^{206}\text{Pb}\), \(^{87}\text{Sr}/^{86}\text{Sr}\) and \(^{143}\text{Nd}/^{144}\text{Nd}\).

Although the differences in isotopic compositions (particularly Pb) are substantial among different volcanic centers, there is no systematic relationship between geography and isotopic compositions for the xenoliths. The variations in \(^{87}\text{Sr}/^{86}\text{Sr}\) for xenoliths within individual volcanic centers are minor, e.g. 0-70222-0-70229 for Ngaoundéré plateau and 0-70237-0-70256 for Mt Cameroon, implying localized homogeneity of the lithosphere.

Clinopyroxene data are also plotted on conventional Sm–Nd and U–Pb isochron diagrams (Fig. 10). The \(^{143}\text{Nd}/^{144}\text{Nd}\) of clinopyroxenes are positively correlated with \(^{147}\text{Sm}/^{144}\text{Nd}\) corresponding to an age of 460 Ma. Xenoliths from this study have lower Sm/Nd ratios than abyssal peridotites (Johnson et al., 1990), consistent with the xenoliths representing a potential MORB source for the local mantle, rather than residues of recent MORB extraction. The majority of the clinopyroxenes have \(\mu \) values <10, yet the clinopyroxenes for those xenoliths containing amphibole have \(\mu \) values up to 125 (C271D). Consequently, two samples from within the same volcanic center have very different \(\mu \) values, 1-6 and 125. Halliday et al. (1990) suggested that a U/Pb fractionation and enrichment occurred in the Cameroon line upper mantle at \(\sim 125 \) Ma. High \(\mu \) (>10) xenoliths yield Pb isotopic compositions consistent with such Mesozoic enrichments of the source (Fig. 10). Such enrichments find no parallel in the volcanism of the Cameroon line (Fitton,
1987), which was probably triggered by a deep mantle plume that produced melts that interacted with this previously enriched mantle (Lee et al., 1994). However, the timing and long-term isotopic effects of such Mesozoic enrichment appear to be similar in the xenoliths and the source regions of the Cameroon line magmas.

The Nd model ages (relative to depleted mantle, DM) for the clinopyroxenes with Sm/Nd that differ from depleted mantle or Bulk Earth, vary from late Proterozoic to Mesozoic (880–170 Ma; Table 4). For rocks having low \(\varepsilon_{\text{Nd}} \) relative to depleted mantle, a late decrease in Sm/Nd (addition of LREE-enriched partial melts) tends to lower their model ages. Similarly, for rocks that have high \(\varepsilon_{\text{Nd}} \) relative to depleted mantle, a late increase in Sm/Nd (extraction of partial melts) will also lower their model ages. Therefore, it is significant that the three samples with high U/Pb and Sm/Nd ≠ Bulk Earth or depleted mantle all yield young \(t_{\text{DM}} \) model ages (Table 4), even though only P3 is LREE enriched with \(\varepsilon_{\text{Nd}} < \text{DM} \). This is consistent with U/Pb fractionation—enrichment in the Mesozoic, concomitant with both extraction (C273Q) and addition (P3) of partial melts in the lithospheric mantle. The mantle represented by C271D must have experienced both processes, and the enrichment probably took place shortly after the extraction of partial melts (Fig. 4).

Inter-mineral isotopic equilibrium

Orthopyroxenes from both C271I and P12 and the amphibole of P6 all have higher \({\text{Sr}}^{87}/{\text{Sr}}^{86} \) than that of coexisting clinopyroxene (Fig. 11). Even though all three mineral pairs demonstrate positive correlations between \({\text{Rb}}^{87}/{\text{Sr}}^{86} \) and \({\text{Sr}}^{87}/{\text{Sr}}^{86} \), there are concerns about interpreting the variations in \({\text{Sr}}^{87}/{\text{Sr}}^{86} \) as reflecting radiogenic ingrowth. It is no surprise that orthopyroxene is more susceptible to contamination in the mantle, by fluids or melt, than clinopyroxene because of its lower Sr concentrations. In addition, the inter-mineral \({\text{Sr}}^{87}/{\text{Sr}}^{86} \) variations are no larger than inter-xenolith \({\text{Sr}}^{87}/{\text{Sr}}^{86} \) variations of clinopyroxenes from the same outcrop, e.g. C235A vs C235D and C271I vs C271D. The clinopyroxenes are unlikely to be contaminated to any significant extent, given the unradiogenic Sr, the very low Rb/Sr and the uniform but non-basaltic Ba/Rb.

Convincing evidence of isotopic equilibration is found in the Nd. The clinopyroxene and orthopyroxene of C271I have similar Nd isotopic compositions that are within analytical uncertainty, whereas their \({\text{Sm}}^{147}/{\text{Nd}}^{144} \) ratios show significant differences (Fig. 11). Similarly, the clinopyroxene, amphibole and garnet of P6 also show isotopic equilibration in Nd but display significant variations in \({\text{Sm}}^{147}/{\text{Nd}}^{144} \) by up to a factor of four (Fig. 11). The lack of inter-mineral difference in \({\text{Nd}}^{143}/{\text{Nd}}^{144} \) suggests that the Nd isotopic compositions in C271I and P6 have been reset recently, or that the xenoliths recently cooled below the blocking temperature for Nd in garnet (600–650°C; Mezger et al., 1992). In contrast, the two pyroxenes of N12 show minor differences in \({\text{Nd}}^{143}/{\text{Nd}}^{144} \). This could be attributed to small blank contributions (≤ 0.1%) to the orthopyroxene. Alternatively, it is possible that the two pyroxenes of N12 were not in isotopic equilibrium given that the orthopyroxene is porphyroblastic in contrast to smaller (< 1 mm) and interstitial clinopyroxene. The clinopyroxene and amphibole from P6 have similar \({\text{Sr}}^{86}/{\text{Sr}}^{87} \) and \({\text{Rb}}^{87}/{\text{Sr}}^{86} \) despite a huge difference in \(\mu \) suggesting recent equilibration, whereas garnet has more radiogenic \({\text{Pb}}^{206}/{\text{Pb}}^{204} \) and intermediate \(\mu \) (Table 6). The amphibole–clinopyroxene equilibrium implies recent equilibration of Pb between these phases. The radiogenic Pb in the garnet of P6 might reflect the very high closure temperature of Pb in this phase (Mezger et al., 1992; Burton et al., 1995). This being the case, the 'age' calculated is ~340 Ma, and defines the time of garnet growth or the last time that this portion of the lithosphere cooled through ≥900°C (Burton et al., 1995). These data

![Fig. 11. Plots of inter-mineral isotopic variations in Rb-Sr and Sm-Nd isotope systems.](https://academic.oup.com/petrology/article-abstract/37/2/415/1485203/figs11)
combined with the Sm–Nd equilibration imply that the upper portion of the sub-continental lithosphere has remained at \(\geq 600^\circ\text{C} \) for several hundred million years.

Origin of megacrysts

Six megacrysts, three of clinopyroxene, two feldspar and one garnet, have been analyzed in this study [one from Mt Cameroon (C201D), one from Bam-bouto (C241) and four from Biu Plateau (N12 and N30); Fig. 1]. All three clinopyroxenes display depletions in both LREE and HREE with concave-downward patterns (Fig. 4f). The more significant depletion of HREE vs LREE in each sample probably reflects the presence of garnet during crystallization. The REE patterns of the feldspars (fs) and the garnet are typical of fractional crystallization products, LREE enriched with positive Eu anomalies for the feldspar and HREE enriched for the garnet. Three megacrysts of N12 are from the same lava flow. Despite the presence of a positive Eu anomaly in the feldspar, neither clinopyroxene nor garnet shows a deficit in Eu, which indicates they are genetically unrelated or the feldspar grew after the other phases. All the megacrysts included in this study have similar Nd isotopic compositions to the Cameroon line lavas, in favor of the megacrysts having precipitated from magmas genetically linked with the Cameroon line lavas (Fig. 9).

Although the Nd isotopic composition of the garnet megacryst is no different from that of the Cameroon line lavas, its Sr and Pb isotopic compositions are comparable with lower-crustal xenoliths of the Cameroon line (Fig. 12; Halliday et al., 1988). This is explicable if the megacrysts grew by fractional crystallization from earlier underplated Cameroon line lavas while assimilating the lower continental crust. Although the Sr and Pb in the garnet were affected by continental contributions, the Nd retained the signature of the Cameroon line lavas, indicating that Nd is less susceptible to contamination. Consequently, these data provide little meaningful age information, as the isotopic variations do not reflect \(\text{in situ} \) radioactive decay. Crustal assimilation is also documented in some basaltic lavas from Bam-bouto and Oku areas and in the majority of the evolved rocks from the Cameroon line (Lee, 1994).

DISCUSSION AND CONCLUSIONS

Although the variations in major element chemistry of the Cameroon line xenoliths can be ascribed simply to partial melt extraction, the incompatible trace element and isotopic compositions of these samples imply multi-stage depletions and metasomatic enrichments. It has been previously noted that fertile peridotites, high in \(\text{Al}_2\text{O}_3 \) and \(\text{CaO} \), essential components of basalt, are generally LREE depleted whereas infertile peridotites are often LREE enriched, i.e. the degree of LREE depletion increases with \(\text{Al}_2\text{O}_3 \) in the xenolith (Frey & Green, 1974; Frey, 1984; Stosch et al., 1986; Kempton, 1987; O'Reilly & Griffin, 1988; Zindler & Jagoutz, 1988; Galer & O’Nions, 1989). This is the opposite of that predicted by a conventional partial melting model. The observed differences between major and trace elements are usually attributed to either: (1) mixing between a partial melting residue that dominates the major element chemistry and a second component that controls the bulk of the incompatible trace elements (Frey & Green, 1974; Frey & Prinz, 1978; Song & Frey, 1989); or (2) partial melting and metasomatism occurring concurrently in magma conduits (Galer & O’Nions, 1989). Although it is not required, the first scenario favors a lithospheric mantle that is partly stratified, with fertile peridotites at the base and infertile peridotites and harzburgites on top. The idea of stratified mantle finds support from ocean ridge melting models
(McKenzie, 1985) and studies of xenolith suites world-wide (Irving, 1980; Griffin et al., 1984; Kempton et al., 1984; Menzies et al., 1985; O'Reilly & Griffin, 1985; Kempton, 1987; Nielsen & Noller, 1987). The second model explains the coupling of metasomatic enrichment and infertile lherzolites by interactions between the depleted lherzolites and locally derived xenoliths (Galer & O'Nions, 1989). Thus, host magmas and the metasomatized xenoliths should have roughly the same isotopic compositions if the second model is correct.

The relationship between La/Nd in clinopyroxene, an indication of LREE depletion, and Al₂O₃ contents in spinel is illustrated in Fig. 13. The samples from the Cameroon line show an overall negative correlation, with the majority of the anhydrous lherzolites plotting to the lower right. This trend is defined mainly by C271D and P3; the remaining samples display a positive correlation not normally found in xenoliths (Frey & Green, 1974; Frey & Prinz, 1978; Song & Frey, 1989), but typical of many peridotite masses (e.g. Pearson et al., 1993). This positive correlation between major and trace element chemistry in the ultramafic xenoliths is consistent with that predicted with a basaltic melt extraction model: the more fertile the lherzolite the less depleted the LREE. This implies that the metasomatism of C271D, P3 and P6 is distinct from the main depletion of the anhydrous peridotites in this study, and these anhydrous peridotites probably record the lithospheric mantle compositions associated with the most recent crust-forming events (Late Proterozoic).

Amphibole can be stable throughout the stability field of spinel lherzolite at $T \leq 1050^\circ$C (Jenkins, 1983; Olafsson & Eggler, 1983), and is frequently associated with LREE enrichment in metasomatized ultramafic xenoliths (Menzies & Murthy, 1980; Stosch et al., 1980; Menzies, 1983; Neal, 1988; Stolz & Davies, 1988). Metasomatism provides LREE to the peridotites along with volatiles to form amphibole. Pargasitic amphibole appears as a trace mineral phase in the two LREE-enriched lherzolites, C271D and P3, and as a major mineral phase in P6, which lack LREE enrichment.

The amphiboles in C271D and P3 are associated with Mesozoic enrichments, similar to those that are recorded in the source regions of later Cameroon line magmatism. Both C271D and P3 have Sr and Pb isotopic compositions similar to those of the Cameroon line lavas (Fig. 9), whereas unmetasomatized lherzolites, e.g. C271I and P13, have significantly more depleted isotopic compositions. The Nd isotopic compositions of the metasomatized xenoliths, however, are more radiogenic than the host lavas. Furthermore, a mass balance calculation suggests that compared with the depleted xenoliths (e.g. C235) the metasomatic component must have had an La/Nd ratio between 2-8 and 3-2. This calculated component is significantly more LREE enriched than any of the Cameroon line lavas, which have La/Nd ratios in the range of 0.7-1.7 (Fitton, 1987).

The Nd model ages of LREE depleted spinel lherzolites (C235A, C235D and C271I) range from Paleozoic to late Proterozoic (Table 4). These model ages probably reflect events of crustal formation. In contrast, the U-Pb data (Fig. 10) seem to indicate some U enrichments occurred in the Mesozoic, and all three U-enriched lherzolites (P3, C271D and C273Q) yield similar Mesozoic Nd model ages (Table 4). Such enrichment events are supported by the Pb isotope data for the Cameroon line basaltic lavas (Halliday et al., 1990), and are consistent with formation during a major thermal event associated with the opening of the Atlantic Ocean in the Mesozoic. The inter-mineral Nd isotopic equilibrium observed in P6 (Fig. 11) also indicates that the metasomatism happened sufficiently long ago that the minerals subsequently reached chemical and isotopic equilibrium. These constraints demonstrate that the depletion and enrichment observed in the Cameroon line xenoliths cannot have occurred concurrently (Figs 8 and 10), and argue against the model of simultaneous melt extraction and contamination (Galer & O'Nions, 1989). None the less, the Nd model ages suggest that U/Pb enrichment was accompanied by either Sm/Nd depletion or enrichment such that on a local scale the model of Galer & O'Nions (1989) may be upheld. These xenoliths may represent fragments of sub-continental lithosphere that formed at about the same time as the last major crust-forming event, the Pan-African.

Fig. 13. Plot of Al₂O₃ in spinel vs La/Nd ratios for the clinopyroxene, which indicates the depletion of light rare earth elements.
and were subsequently enriched by small melt fractions percolating through the upper mantle at the time of early break-up of Pangaea. The passage of small melt fractions also produced the concomitant trace element enrichment in the sources of the Cameroon line basaltic lavas (Halliday et al., 1990).

ACKNOWLEDGEMENTS

Comments by M. Gurnis, M. Menzies, S. Mukasa, J. Rosenbaum and an anonymous reviewer are greatly appreciated. C. Hall, M. Johnson and R. Keller are thanked for their technical assistance. This research was supported by NSF Grants EAR 89-15936 and EAR 92-05435 to A. N. Halliday.

REFERENCES

Green, T. H. & Adam, J., 1991. Assessment of the garnet-clino-
pyroxene Fe-Mg thermometer using new experimental data.
Journal of Metamorphic Geology 9, 341–347.

xenoliths from Bullenmerri and Gootuk maars, Victoria,
Australia: petrology of a subcontinental crust-mantle transition.

Halliday, A. N., Dickin, A. P., Fallick, A. E. & Fitton, J. G.,
1988. Mantle dynamics: a Nd, Sr, Pb and O isotopic study of the
211.

D.-C. & Fitton, J. G., 1990. Trace-element fractionation in
plume and the origin of HIMU mantle beneath the Cameroon

Halliday, A. N., Davies, G. R., Lee, D.-C., Tommasini, S.,
evidence for young trace element enrichment in the oceanic
362, 184.)

Halliday, A. N., Lee, D.-C., Tommasini, S., Davies, G. R.,
trace elements in OIB and MORB and source enrichment in the
395.

Hanson, G. N., 1977. Geochemical evolution of the suboceanic

Hanson, G. N., 1980. Rare earth elements in petrogenetic studies of
igneous systems. Annual Review of Earth and Planetary Sciences 8,
371–406.

Harley, S. L., 1984. Comparison of the garnet-orthopyroxene
geobarometer with recent experimental studies, and applications

Lithospheric demobilization during Parana CFB magmatism.

pyroxenes in garnet and spinel lherzolites. Journal of Geology 88,
337–342.

Hofmann, A. W. & White, W. M., 1983. Ba, Rb and Cs in the
Earth's mantle. Ztschrift fur Naturforschung 38a, 256–266.

Hofmann, A. W., Koch, K. P., Seufert, M. & White, W. M.,
1986. Nb and Pb in oceanic basalt: new constraints on mantle

Irving, A. J., 1974. Geochemical and high pressure experimental
studies of garnet pyroxenite and pyroxene granulate xenoliths
from the Delegate basaltic pipe, Australia. Journal of Petrology
15, 1–40.

ultramafic xenoliths in alkali basalts and implications for mag-
matic processes within the mantle. American Journal of Science

megacrysts and their host basalt: constraints on partition co-
efficients and megacryst genesis. Geochimica et Cosmochimica Acta 48,
1201–1221.

Jenkins, D. M., 1983. Stability and composition relations of calcic
amphiboles in ultramafic rocks. Contributions to Mineralogy and

The solar-system abundances of Nb, Ta and Y and the relative
abundances of refractory lithophile elements in differentiated

the oceanic mantle: an ion microprobe study of diopsides in

different styles of metasomatism in spinel lherzolite xenoliths:
enriched mantle source regions of basalts? In: Menzies, M. A. &
Hawkesworth, C. J. (eds) Mantle Metasomatism. London:
Academic Press, pp. 45–89.

Petrography, petrology and geochemistry of xenoliths and
megacrysts from the Geronimo Volcanic Field, Arizona. In:
Kromproast, J. (ed.) Kimberlites II: The Mantle and Crust-Mantle

experimental study of trace element partitioning between eli-
vine, orthopyroxene and melt in chondrules: equilibrium values
195.

olivine and clinopyroxene calibrated as a geothermometer for
natural peridotites from 2 to 60 kb with applications.
Geochimica et Cosmochimica Acta 54, 2375–2388.

Kramers, J. D., Roddick, J. C. M. & Dawson, J. B., 1983. Trace
element and isotope studies on veined, metasomatic and
'MARID' xenoliths from Bultfontein, South Africa. Earth and

Krogh, E. J., 1988. The garnet-clinoxyroxene Fe-Mg-geotherm-
ometer— a reinterpretation of existing experimental data.
Contributions to Mineralogy and Petrology 99, 44–48.

Kuo, L.-C. & Essene, E. J., 1986. Petrology of spinel xenoliths
from the Kibsh Plateau, Saudi Arabia. Contributions to Mineralogy
and Petrology 93, 335–346.

Mineralogist 63, 1025–1052.

Lee, D.-C., 1994. A chemical, isotopic and geochronological study
of the Cameroon line, west Africa. Ph.D. Thesis, University of
Michigan, Ann Arbor.

Lee, D.-C., Halliday, A. N., Hunter, R. H., Holden, P. & Upton,
B. G. J., 1993. Rb-Sr and Sm-Nd isotopic variations in dis-
230.

Isotopic variations with distance and time in the volcanic
islands of the Cameroon line: evidence for a mantle plume

initial 87Sr/86Sr and 143Nd/144Nd in primary minerals from
mafic and ultramafic rocks: experimental procedure and implica-
tions for the isotopic characteristics of the Archean mantle
under the Abitibi greenstone belt, Canada. Geochimica et Cosmochimica
Acta 50, 2335–2348.

of mutually normalized rare-earth patterns of chondrites.
Geochimica et Cosmochimica Acta 37, 239–248.

major silicate minerals and basaltic melt. In: Lipin, B. R. &
McKay, G. A. (eds) Geochemistry and Mineralogy of Rare Earth
Elements. Mineralogical Society of America, Reviews in Mineralogy
21, 45–77.

McKeezie, D., 1985. The extraction of magma from the crust and

RECEIVED JULY 29, 1994
REVISED TYPESCRIPT ACCEPTED OCTOBER 31, 1995