
REVIEWED BY M. R. POSEHN

Eleven years have elapsed since the author first defined the concept of hyperstability. Succeeding publications by the author have expanded the applicability of the theory in a fragmentary fashion. Now, with the publication of this monograph, the reader has available a complete and thoroughly rigorous presentation of the concept of hyperstability.

In Chapter 1 the author presents a brief outline of his motivations for considering stability as a property of a family of systems. He discusses the conventional feedback system composed of a linear block and a non-linear block. Through a series of intuitive arguments he proceeds to generalize the specification of the non-linear characteristic. Unfortunately, the reader must painstakingly make his way through Chapters 2, 3, and 4 without the aid of further example problems or intuitive reasoning.

Chapter 2 lays a foundation for the author's theorems on hyperstability by discussing classes of equivalent systems and transformations between equivalent forms. In this chapter and throughout the monograph the presentation is simplified to an extent by first considering single-input systems and then considering in order multi-input, discrete, and time varying systems.

Chapter 3 completes the preliminaries by defining a positive linear block and a non-linear block. Through a series of intuitive arguments he proceeds to generalize the specification of the non-linear characteristic. Unfortunately, the reader must painstakingly make his way through Chapters 2, 3, and 4 without the aid of further example problems or intuitive reasoning.

In Chapter 4 the author presents an extensive study of the properties of hyperstable systems and hyperstable blocks. He then proceeds to give several sets of necessary and sufficient conditions for hyperstability not previously published. He follows with a discussion of allowable configurations of hyperstable blocks which when combined constitute a hyperstable system. The generality of the theorems presented in this chapter suggests the possibility of applications far beyond those realized to date.

Chapter 5 contains a discussion of several applications of hyperstability. Included are necessary and sufficient conditions for the existence of certain Liapunov functions, and analysis of the stability of systems containing nuclear reactors, systems with certain nonlinearities, and the application of hyperstability to optimization of systems with integral performance indices.

In addition, Appendix A contains an excellent discussion of controllability and observability.

Hopefully, before attempting this book the reader will have some knowledge of hyperstability derived from the several papers that have been published in the past. It is suggested that the reader begin by first examining Chapters 1, 5, and 4 before he embarks upon a thorough reading.

There is no doubt about the importance of the concept of hyperstability; therefore, it is essential that the information contained in this monograph is widely understood so that the full potential of hyperstability can be realized.


REVIEWED BY JAMES CASEY

This book is intended as a text for an intermediate-level course in classical theoretical mechanics for physics majors and students from other disciplines. The authors emphasize the application of mechanical ideas to challenging problems. In addition to the more traditional type of worked example, they include applications of the theory to such topics as the boomerang, "superballs," "tippie-tops," the tides, skydiving and the "grand tour of the outer planets." A simple analytical treatment of these problems is presented and is accompanied by physical interpretations to which most students should easily relate. By doing so the authors succeed in portraying the strength of the simple mechanical analysis and its relevance to important practical problems.

Simple analyses are acceptable provided that they are not represented as entirely capturing the essence of a problem. Barger and Olsson, in their enthusiasm, occasionally arouse one's expectations to such a degree that the subsequent analysis of a problem is anti-climactic in its simplicity.

My overall attitude towards the book stems from some differences of opinion as to the spirit in which mechanics is conveyed to students at the intermediate level.

When applications are being taught the stress should be on the process of applying mechanical ideas. This book fails to communicate the fundamental difficulty that the mechanist encounters in casting his physical notions into a form that falls within the scope of the laws of mechanics and yet retain some of the essential features of a physical problem. The authors do not elucidate the delicacy and the severity of the simplifying assumptions which are employed in working their examples. One is presented with a set of assumptions and a method that solves a particular type of problem without an appreciation of the genesis or generality of such assumptions and methods.

With regard to the theory of classical mechanics and its presentation, "Classical Mechanics" lacks a rigorous statement of the laws and theorems of mechanics. Neither are the derivations always satisfactory. For instance, Lagrange's equations are introduced early in the book to allow students some time to become familiar with applications of these equations. However, there is no discussion of the notions of constraints and virtual work, and no mention is made of the difference in the categorization of forces that distinguishes the Lagrangean from the Newtonian approach. The equations are derived for the one-dimensional motion of a single particle and are then "generalized."

In the presentation of the concepts and principles of mechanics, "Classical Mechanics" represents them as established and irrevocable "facts." Mechanics can also be regarded as a sequence of formations based on deep presuppositions and reflecting the cultural prejudices of its creators. By emphasizing mechanics as a constructive endeavour, one inspires one's students to re-
create for themselves and hopefully to extend, mechanics. The book under review not only falls to nurture invention in mechanics but it makes it difficult to comprehend why such work is necessary at all.


REVIEWED BY ARTHUR I. LARKY

Although intended for use in an "independent course in computer engineering," Kohonen has written, not a text, but a reference work. The coverage of the field of digital design is quite broad, but thin. The general impression is one of being spread out to cover the whole house. While all the proper topics are included, their development is sparse, with little attempt to relate the material to practical problems.

One cannot hope to understand the motivation behind digital design techniques without an appreciation of the role of microcomputers in digital systems; yet Kohonen dismisses machine language programming in nine pages while devoting a whole chapter to transmission lines. Minicomputers, peripherals, interfaces, don't even rate an entry in the index.

It is clear that the author has presumed a broader background for his readers than he attests to. Someone familiar with programming and the elements of digital computer design will find this an interesting and useful reference work; those outside the mainstream of computer science will find it not to their liking at all.


REVIEWED BY DAVID JORDAN

One of the fundamental problems of introducing undergraduate students to the basic concepts in system theory is the necessity for a fairly high level of mathematical maturity. Dr. Cadzow's basic premise is that such a level of mathematical attainment is not necessary when restricting the study to discrete time systems. Thus, he has developed a text which is essentially an introduction to discrete system theory that requires only a high school mathematics background.

In evaluating a text which introduces a new concept in presentation of material in a given subject area it is important to answer several questions. Among them are:

(a) Does the book reach the audience for which it is intended?

(b) Is the material cohesive and complete?

(c) How might this approach interface with other portions of a curriculum?

Dr. Cadzow states that the book is primarily intended as an introduction to quantitatively based ideas and the systems approach at the freshman or sophomore level. It appears that the first eight chapters do satisfy this objective. The material in these chapters is written clearly and completely. For the audience intended, however, it would be necessary to supplement the material with lectures and/or recitations to demonstrate the meaning of the concepts presented. Unfortunately, the remainder of the book (Chapters 9-12) requires a significantly higher level of mathematical maturity. The result is that the student is left hanging at the point of wanting to apply the introductory material. It appears that there will be a significant time gap between the time a student would take a course using this text and the time he would continue his study of general system theory and filtering. For this reason, while the book achieves its objectives quite well, I feel that it would be difficult to interface a course using this text with other courses in the systems area in a manner that benefits the student. Thus the text would be better suited to a more advanced student as a lead-in to continuous systems.

The physical presentation of this book is very good. The style of writing is clear and concise. Many examples and problems are presented to illustrate the material. These appear to be very well conceived and broad enough to interest a wide variety of students. Editorially, the book has very few typographical or mathematical errors.

In summary, I believe Dr. Cadzow has presented a very interesting and complete introduction to discrete system theory and that the book would serve as an excellent text on this subject. My main reservation is that there appear to be difficulties in interfacing a course using this text with other courses in the introductory electrical engineering or systems curriculum.


REVIEWED BY BJORN D. TYREUS

About half of the material in this book is presented in unmarked sections. These sections are intended to form a textbook for a two-semester first course on control theory at the senior or first year graduate level. In my mind this is not the right place for the book. It should rather be used in a second course on control theory, preferably at the graduate level, because the book does not teach enough classical control techniques.

However, to the reader who is already familiar with classical control theory (and its limitations in multivariable control), the book will offer a different approach to the problem, namely that of designing linear optimal controllers. The book contains six chapters. The first chapter, dealing with linear systems theory, is rather condensed and a first course on linear systems is required. Such topics as stability, controllability, observability, and duality are presented in fair detail. The last two sections of the first chapter are devoted to description and representation of stochastic processes, and here again it is necessary to have some previous knowledge as the authors point out. Chapter 2 presents the basic ideas of feedback control and some methods for design. Being far from a complete description of classical control theory, the chapter provides an intuitive feel for the benefits of state feedback. Chapter 3 is the heart of the book. Here the control law for the deterministic linear optimal regulator is derived and the result presented as the solution of the matrix Riccati equation. Numerical solutions to this equation are discussed. The stochastic linear optimal regulator and tracking problems are also solved. Of special interest to process engineers are the sections on regulators with constant disturbances and nonzero set points.

Since implementations of the results from chapter 3 are in general unrealistic for all but simple systems, (the full state vector is required), it is reassuring to see an entire chapter (chapter 4) devoted to the problem of optimal reconstruction of the state, leading to the use of the so-called Kalman-Bucy filter. A combination of the results from chapters 3 and 4 is made in chapter 5, and the optimal linear output feedback controller