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Downscaling technique uncertainty in assessing

hydrological impact of climate change in the Upper Beles

River Basin, Ethiopia
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ABSTRACT
We investigate the uncertainty associated with downscaling techniques in climate impact studies,

using the Upper Beles River Basin (Upper Blue Nile) in Ethiopia as an example. The main aim of the

study is to estimate the two sources of uncertainty in downscaling models: (1) epistemic uncertainty

and (2) stochastic uncertainty due to inherent variability. The first aim was achieved by driving a

Hydrologic Engineering Centre-Hydrological Modelling System (HEC-HMS) model with downscaled

daily precipitation and temperature using three downscaling models: Statistical Downscaling Model

(SDSM), the Long Ashton Research Station Weather Generator (LARS-WG) and an artificial neural

network (ANN). The second objective was achieved by driving the hydrological model with individual

downscaled daily precipitation and temperature ensemble members, generated by using the

stochastic component of the SDSM. Results of the study showed that the downscaled precipitation

and temperature time series are sensitive to the downscaling techniques. More specifically, the

percentage change in mean annual flow ranges from 5% reduction to 18% increase. By analyzing the

uncertainty of the SDSM model ensembles, it was found that the percentage change in mean annual

flow ranges from 6% increase to 8% decrease. This study demonstrates the need for extreme caution

in interpreting and using the output of a single downscaling model.
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INTRODUCTION
The impacts of climate change may significantly alter the

natural environment on our planet and consequently

create less favourable conditions for overall socio-economic

development. Since nearly all natural and socio-economic

systems critically depend on water, the impacts of climate

change on the hydrological cycle are of high significance.

The alteration of water resources availability and changing

patterns of hydrological disasters such as floods and

droughts may be direct impacts of climate change, with

many indirect effects on agriculture, food and energy pro-

duction and overall water infrastructure.

On a global scale, climate change and resulting changes

in the hydrological cycle are commonly predicted from
global circulation models (GCMs) which are driven by var-

ious possible scenarios with greenhouse gas emissions as

inputs. However, outputs from GCMs (precipitation, temp-

erature and other climatic variables) are available only on

large scales, usually ranging over several hundreds of kilo-

metres (Solomon et al. ), which are inadequate for

analysis and prediction of climate change impacts on hydro-

logical systems at a local or river basin scale. To overcome

this problem, different downscaling methods have been

developed and proposed. These all aim to provide adequate

hydrological variables at a local scale from GCM outputs.

These variables are then used as inputs to basin-scale hydro-

logical models for predicting climate-induced changes in
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flow patterns. This article focuses on the downscaling

methods and uncertainties associated with their

implementation.

As described by Elshamy et al. (), the specific steps

in assessing climate change impacts on local-scale hydro-

logical systems are as follows:

1. Choosing one or more emission scenarios of the Inter-

national Panel on Climate Change (IPCC) special

report (Nakicenovic et al. ), which depend on the

future economy and energy use policies.

2. Choosing one or more GCM.

3. Downscaling of the GCM output to the specific river-

basin scale.

4. Using the downscaled GCM outputs as inputs for a

hydrological model.

5. Analysis of hydrological model results by comparing

them to the corresponding results related to current cli-

mate or different possible future climates.

This approach has become very popular as it potentially

allows the quantification of changes in floods, flow duration

curves or other parts of the hydrological cycle which may

be of interest in particular studies (Blöschl & Montanari

).

However, the entire modelling chain is affected by the

range of uncertainties which need to be taken into account

in decision-making processes (Di Baldassarre et al. ).

The first steps of the modelling chain have uncertainties in

estimates of emission scenarios and climate modelling,

which are commonly assessed in studies of global socio-

economic development and climate modelling studies,

respectively (beyond the scope of this study). The uncer-

tainty of downscaling methods, which are in the middle of

the modelling chain, are the main focus of this study. At

the end of the modelling chain are the hydrological model-

ling and local impact assessment. Hydrological modelling

is affected by significant uncertainty as many sources of

error propagate through the models and affect its output

(Montanari ). These sources can be classified (Götzin-

ger & Bárdossy ) as: (1) observation uncertainty

(Daren Harmel & Smith ), which is the approximation

in the observed hydrological variables used as input or cali-

bration data (e.g. rainfall, temperature and river discharge);

(2) parameter uncertainty (Beven & Binley ), which is
om http://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
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induced by imperfect model parameterization; and (3)

model structural uncertainty (Butts et al. ; Refsgaard

et al. ), which originates from the inability of models

to perfectly schematize the (often incompletely understood)

physical processes involved. While hydrological model

uncertainty is fully recognized, it is not considered in this

study. Local impact uncertainty, which depends on actual

target of the analysis (availability of water resources for

various purposes, analysis of floods or droughts, etc.), is

also not considered in this study. We focus instead on the

uncertainty in climate change studies associated with

downscaling techniques.

As mentioned, downscaling is necessary because even

the most fully developed GCMs are currently only able to

calculate atmospheric processes at a spatial resolution of

several hundred kilometres. This is much too coarse to be

used as input data for climate impact hydrological models

(Busuioc et al. ; Giorgi et al. ; Wood et al. ;

Dibike & Coulibaly ). This scale mismatch comes

from the different nature of the models. Hydrological

models deal with small- or subcatchment-scale processes

whereas GCMs simulate planetary-scale and parameterize

many regional and smaller-scale processes. Downscaling

techniques have therefore emerged as a means of relating

the scale mismatch between what GCMs are able to provide

and the increasingly small scales required for impact studies

(Wilby & Wigley ; Dibike & Coulibaly ; Maurer &

Hidalgo ). Downscaling is a term given to the process of

deriving finer-resolution data (e.g. for a particular site) from

coarser-resolution GCM data.

There are two main approaches to downscaling: dyna-

mical and statistical. Dynamic downscaling involves

extraction of local-scale information by developing and

using regional climate models (RCMs) with the coarse

GCM data used as boundary (Wilby & Wigley ; Hay-

lock et al. ). Statistical downscaling involves the

extraction of local-scale information by statistically relating

large-scale climate features to fine-scale climate for the

region of interest. The latter approach is mostly performed

on station data (observations in appoint) and it can provide

point-scale climatic variables from GCM-scale output. An

excellent reference source for climate models and climate

science more generally is the Fourth Assessment report of

the IPCC (Solomon et al. ).
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Since RCM with higher resolution was not available for

the current study, the dynamic downscaling method was not

considered and the focus here is on statistical downscaling

methods. Statistical downscaling techniques are straightfor-

ward techniques for constructing finer-resolution climate

scenarios from GCM outputs at the local level. Although

there are various statistical downscaling techniques, it is

not yet clear which method provides the most reliable esti-

mate of daily rainfall and temperature series for

hydrological impact studies (Dibike & Coulibaly ).

The uncertainty introduced by the application of downscal-

ing techniques tends to increase as scale is reduced and for

more extreme hydrological events (Blöschl & Montanari

).

A few studies have examined the uncertainty of differ-

ent downscaling models. However, as far as the authors

are aware, there have not been any such studies in the

Blue Nile where long-term and well-distributed climatic

information is not available and the topography is

complex.

Khan et al. () carried out uncertainty analysis of

three downscaling models, namely: Statistical Downscaling

Model (SDSM), Long Ashton Research Station Weather

Generator (LARS-WG) and artificial neural networks

(ANNs) in the Chute-du-Diable sub-basin located in the

Saguenay–Lac-Saint-Jean watershed in northern Quebec,

Canada. Uncertainty assessment was carried out by compar-

ing monthly means and variance of downscaled and

observed daily precipitation and daily minimum and maxi-

mum temperature. Khan et al. () applied both

parametric and non-parametric tests for downscaled data,

and demonstrated that SDSM is the most efficient in repro-

ducing various statistical characteristics of observed data in

its downscaled result with a 95% confidence level. The ANN

is the least capable and LARS-WG is between SDSM and

ANN.

Dibike et al. () carried out similar uncertainty analy-

sis for the SDSM model. They used two complementary

methods, namely: Wilcoxon signed-rank testing and the

bootstrap confidence interval estimation technique. Khan

& Coulibaly () also addressed the issue of SDSM uncer-

tainty for hydrological impact assessment. In their study

they used the SDSM model to undertake uncertainty analy-

sis of a SDSM in simulating daily river and reservoir flow
://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
in the Serpent and the Chute-du-Diable watershed, respect-

ively, located in northeast Canada. This study found that

the uncertainty bands of the mean ensemble flow (i.e. flow

simulated using the mean of the ensemble members of the

downscaled meteorological variables) were able to encom-

pass all other flows simulated with various individual

downscaled meteorological ensemble members. The study

claimed that, when dealing with uncertainty with regard to

hydrological impact of climate change, there is no need to

use individual downscaled members; rather, it would be suf-

ficient to use the mean of the ensemble flow and the

uncertainty band.

The main objective of the study presented here is to

examine the uncertainty of three downscaling techniques –

SDSM, ANN and LARS-WG – for hydrological impact

assessment. We first obtain downscaling results from these

three techniques in terms of precipitation and temperature,

the most important variables for hydrological impacts. Sec-

ondly we examine runoff uncertainty by using a

Hydrological Engineering Centre-Hydrological Modelling

System (HEC-HMS) rainfall–runoff model using the down-

scaled precipitation and temperature data as inputs. We

aim to estimate two types of uncertainty: (1) epistemic

uncertainty (associated with the lack of knowledge, impreci-

sion in data and observations), estimated by making

comparative analysis of results from the three downscaling

methods; and (2) stochastic uncertainty (associated with

the randomness observed in nature, regarded as irreducible)

as defined by Walker et al. (), which is estimated using

precipitation and temperature ensemble members generated

from the stochastic component of the SDSM. To this end,

the Upper Beles River Basin, Upper Blue Nile, Ethiopia is

used as application example.
STUDY AREA AND DATA USED

The study area selected for this study is the Beles sub-basin

of the Upper Blue Nile in Ethiopia. The main stem of the

Beles River originates on the face of the escarpment across

the divide to the west of the south-western portion of Lake

Tana (Figure 1). It then flows on in a westerly direction

and enters the Blue Nile just before it crosses the Ethio-

pia–Sudan frontier. It is the only major right-bank



Figure 1 | Tana and Beles basin map.
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tributary of the Blue Nile. The Beles basin covers an area of

about 14,000 km2 and geographically it extends from 10W560

to 12WN latitude and 35W120 to 37WE longitude. The basin

has two gauged subcatchments, namely Upper Main Beles

and Giligile Beles which have an area of 3,474 km2 and

675 km2, respectively. The focus of this study is the Upper

Main Beles sub-basin. The elevation in the Upper Main

Beles basin ranges from 2,718 m above mean sea level

(a.m.s.l) in the north at the watershed divide between the

Tana and Beles basins to 1,015 m (a.m.s.l) at the gauging

station.
om http://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf

 2025
The climate in the study area is warm and subtropical.

The annual mean minimum and maximum temperature

ranges over 16.5–32.5 WC (Pawe station). Precipitation is

moderately abundant (about 1,000 mm yr�1), even when

adjacent areas are very severely affected by drought. Rainfall

in the study area increases with elevation. Annual potential

evapotranspiration (ET) is about 1,500 mm. Climatic sea-

sons are mainly controlled by the annual migration of the

Inter-tropical Convergence Zone (ITCZ) and the associated

atmospheric circulation, which are modulated by the com-

plex topography of the region.
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Three meteorological stations in and around the Upper

Beles sub-basin, namely Pawe, Dangila, and Bhardar, are

used in the downscaling experiments (geographical coordi-

nates are listed in Table 1 and the stations are shown in

Figure 1). Precipitation, temperature, wind speed, radiation

and relative humidity data were gathered from the National

Meteorological Agency of Ethiopia. For Bhardar station,

30 years of data (1961–1990) were used for the downscaling

experiment. Since the other two stations have shorter records

of only 15 years (1987–2001), daily precipitation and daily

maximum and minimum temperature records have been

used as predictands. In this study, only the downscaling

results from Bhardar station are discussed for two reasons:

(1) it has a longer time series that can show a wide range of

temporal variability; and (2) the longer time series enables

comparison of downscaling models. Downscaling results

for the other two stations are also summarized in tables.
Table 2 | Large-scale daily atmospheric variables from the NCEP reanalysis and HadCM3 simu

normalized with respect to the 1961–1990 mean and standard deviation, except the

No. Predictors Description

1 mslpaf Men sea level pressure

2 p_faf Men sea level pressure

3 p_uaf Surface air flow strength

4 p_vaf Surface zonal velocity

5 p_zaf Surface meriodinal velocity

6 p_thaf Surface vorticity

7 p_zhaf Surface wind direction

8 p5_faf Surface divergence

9 p5_uaf 500 hpa air flow strength

10 p5_vaf 500 hpa zonal velocity

11 p5_zaf 500 hpa meriodinal velocity

12 p500af 500 hpa voritcity

13 p5thaf 500 hpa geopotential height

Table 1 | Locations of meteorological stations used in the downscaling experiment

Locations in degree
Latitude (N) Longitude (E) Altitude (m a.s.l)

Pawe 11.28 36.39 1,050

Bhardar 11.6 37.42 1,770

Dangila 11.28 36.91 2,180

://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
Atmospheric predictor variables used to calibrate the

downscaling models were obtained from the National

Centre for Environmental Prediction (NCEP) reanalysis

(Kalnay et al. ). Future climate change scenarios

from the Hadley Centre’s coupled ocean/atmosphere cli-

mate model (HadCM3) (Gordon et al. ) were used.

HadCM3 was selected due to the availability of both the

outputs for the considered emission scenario and the pri-

mary downscaling variables archived daily. Pre-processed

predictor variables for NCEP reanalysis and HadCM3

were obtained from the Canadian Institute for Climate

Studies (CICS). The archive of NCEP and GCM output

contains 26 daily predictor variables (describing atmos-

pheric circulation, thickness and moisture content at the

surface, 850 and 500 hPa levels), listed in Table 2. Predic-

tor variables are provided on a grid-box-by-grid-box basis

of size 2.5W latitude and 3.75W longitude. In the present

study, predictors from a grid-box corresponding to 12.5W

latitude and 37.5W longitude were employed for A2

(medium–high emissions) scenario of the IPCC Special

Report on Emission Scenarios (SRES) (Nakicenovic

et al. ). Other climate variables corresponding to

future climate scenarios such as monthly wind speed,

radiation and relative humidity were obtained from the

Hadley Centre, UK.
lation output that are used as potential inputs to the SDSM and ANN. All predictors were

wind direction (http://www.cccsn.ec.gc.ca/?page=pred-help)

No. Predictors Description

14 p5_ zhaf 500 hpa divergence

15 p8_faf 850 hpa airflow strenght

16 p8_uaf 850 hpa zonal velocity

17 p8_vaf 850 hpa meriodinal velocity

18 p8_zaf 850 hpa vorticity

19 p850af 850 hpa geopotential height

20 p8thaf 850 hpa wind direction

21 p8zhaf 850 hpa divergence

22 r500af Relative humidity at 500 hpa

23 r850af Relative humidity at 850 hpa

24 Rhumaf Near surface relative humidity

25 shumaf Surface specific humidity

26 tempaf Mean temperature at 2 m

http://www.cccsn.ec.gc.ca/?page=pred-help
http://www.cccsn.ec.gc.ca/?page=pred-help
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METHODS

In this study we adopted a top-down approach where out-

puts from GCMs were downscaled to obtain local climate

signals to be used as input to a hydrological model to

assess the potential impact of climate change. The follow-

ing three-step methodology was followed. First, local

precipitation and temperature values were obtained

using statistical downscaling approaches for the baseline

(1961–1990) and future (2040–2069) climates. Second, a

hydrological model was applied to simulate daily

river flows. Third, the simulated future river flows

were compared with those simulated with the baseline.

The following sections describe the downscaling

models, downscaling experiments and the hydrological

modelling.
DOWNSCALING MODELS

Statistical downscaling model

The SDSM (Wilby et al. ) is a hybrid of the multiple

linear regression and stochastic downscaling models. It

is a freely available decision-support tool. In SDSM down-

scaling, a multiple linear regression model is developed

between a few selected large-scale predictor variables

and local-scale predictands such as temperature and pre-

cipitation. The stochastic component of SDSM enables

the generation of multiple simulations with slightly differ-

ent time series attributes, but the same overall statistical

properties. Precipitation in SDSM is modelled as a con-

ditional process in which local precipitation amount is

correlated with the occurrence of wet days. Minimum

and maximum temperatures are modelled as uncondi-

tional processes, where a direct link is assumed

between the large-scale predictors and the local-scale

predictand. The SDSM model reduces the task of down-

scaling into a series of discrete processes such as quality

control and data transformation, screening of predictor

variables, model calibration and weather and scenario

generation (for a more detailed description, see Wilby

et al. ()).
om http://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
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LARS-WG stochastic weather generator

LARS-WG is a public-domain stochastic weather generator

model developed by Mikhail Semenov of Rothamsted

Research, UK (Semenov & Barrow ). It generates a

suite of climate variables, namely precipitation, maximum

and minimum temperature and solar radiation, by utilizing

semi-empirical distributions for the lengths of wet and dry

day series. Precipitation in this case is considered as the pri-

mary variable, and the other three variables on a given day

are conditioned on whether the day is wet or dry. The simu-

lation of precipitation occurrence is therefore based on

distributions of the length of continuous sequences of wet

and dry days, whereas daily minimum and maximum temp-

eratures are considered as a stochastic process with daily

means and daily standard deviations conditioned on the

wet or dry status of the day. Downscaling with LARS-WG

is based on relative monthly change in mean daily precipi-

tation amount, daily wet and dry series, mean daily

temperature and standard deviations between the current

and future GCM outputs.

Artificial neural networks

ANNs are simplified representations of the structure and

function of the brain system that perform parallel and dis-

tributed information processing, mimicking the basic

structure and operations of the neuron system. The neurons

and corresponding synapses are represented as nodes and

several connecting links, respectively. The strength of the

connections in terms of weighting factors of output from

previous nodes characterizes the synaptic efficiency of

signal transmission. A bias term provides the threshold

required to commence the firing of signals to the next

nearby nodes. The summation of all inputs into the neural

node at a specific time is filtered through the activation func-

tions in order to control the amplitude of nodal outputs.

Haykin () has provided theoretical and analytical

description of the neural networks in greater detail.

The architecture of ANNs is versatile enough to describe

a wide range of relationships between geophysical variables.

In particular, an appropriate topology of the neural network

can satisfactorily represent a non-linear association that

could not be explained by explicit mathematical



Table 4 | Large-scale climate predictors selected for computing surface meteorological

variables at different stations with SDSM model (variables corresponding to

each predictor no. as for Table 2)

Predictor no.
Precipitation Maximum temperature Minimum temperature

Pawe 5,9,23 2,17,26 3,5,12

Table 3 | Large-scale atmospheric predictor variables for SDSM used to downscale daily

temperature and precipitation at Bhardar station. The partial correlation coeffi-

cient r shows the explanatory power that is specific to each predictor. All are

significant at p¼ 0.05

Predictand Predictors (NCEP reanalysis) Partial r

Precipitation Surface meridional velocity �0.053

Relative humidity at 500 hpa 0.07

Mean temperature at 2 m �0.039

Maximum temperature 500 hpa zonal velocity 0.121

500 hpa geopotential height 0.078

Relative humidity at 500 hpa �0.078

Relative humidity at 850 hpa �0.069

Mean temperature at 2 m 0.49

Minimum temperature 500 hpa geopotential height 0.291

Relative humidity at 500 hpa 0.191

Surface specific humidity 0.379

Mean temperature at 2 m 0.248
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formulations. Among the various types of topologies, a

multilayer feed-forward neural network has received con-

siderable attention due to its ability and efficiency in

approximating physical relationships. The layer of neural

networks consists of nodes that have a similar order of con-

necting links before and after the processing node. The

computations across layers proceed in one direction and

are not reversible. Although feed-forward neural networks

are popular in many application areas, they lack time

delay and/or feedback connections necessary to provide a

dynamic model for temporal sequences processing. Time-

lagged feed-forward networks (TLFN) and recurrent neural

networks (RNN) are the two major groups of dynamic

neural networks used in time series analysis. However, the

latter require complex training algorithms and are hence

computationally expensive (Dibike & Coulibaly ).

The advantage of dynamic neural networks is that they

have a memory structure for holding past samples of the

input signals. The application of TLFN in downscaling

daily precipitation and temperatures can be found in

the work of Dibike & Coulibaly (). In this study,

multi-layer perceptron (MLP) was used for downscaling

daily precipitation amount and minimum and maximum

temperatures.
Dangila 9,22,24 1,2,4,12,22,26 3,5,12,26
DOWNSCALING EXPERIMENTS

Statistical downscaling model

In SDSM downscaling, large-scale predictor variables repre-

senting the current climate conditions (1961–1990) derived

from the NCEP reanalysis datasets were used to investigate

the percentage of variance explained by each predictand–

predictor pair. Predictor variables were selected based

on correlation analysis, partial correlation analysis and

visual inspection of scatter plots. Table 3 shows the partial

correlation coefficients for each predictor–predictand

relationship for Bhardar station, while Table 4 shows

selected predictor variables for the other two stations used

in the downscaling experiments. After potential predictor

variables were identified, the coefficients of the multiple

regression equation that relate potential large-scale atmos-

pheric predictor variables derived from NCEP and local-
://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
scale surface variables were computed in the calibration

process.

The SDSM model was calibrated and validated separ-

ately for daily precipitation, daily maximum and

minimum temperature. Fifteen years of data (1961–1975)

for Bhardar station and 10 years of data (1987–1996) for

Pawe and Dangila stations were used for calibration.

During calibration, some of the SDSM setup parameters

such as event threshold, bias correction and variance

inflation were adjusted until a good statistical agreement

between observed and simulated climate variables was

obtained. To assess the performance of the model for

further downscaling experiments, the SDSM model was

validated using the identified atmospheric predictor vari-

ables derived from the NCEP reanalysis dataset with

15 years of data (1976–1990) for Bhardar station and

5 years of data (1997–2001) for Pawe and Dangila stations.



Table 5 | Quarterly probability distributions for the length of wet and dry series of precipi-

tation compared using the chi-squared goodness-of-fit test. The probabilities of

each season are the probability that the observed and synthetic wet and dry

lengths come from the same probability distribution

Degree of freedom Chi-squared Probability

Dec–Feb 2 0.79 0.672

6 60.67 0

Mar–May 5 0.73 0.981

8 1.64 0.99

Jun–Aug 8 3.26 0.917

6 0.21 1

Sept–Nov 9 1.03 0.999

9 1.91 0.993
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The calibrated and validated SDSM model using

observed data and large-scale predictors from NCEP reana-

lysis dataset was used to downscale the future climate

scenario by forcing the empirical relationship between

observed station data and NCEP predictors with predictor

variables supplied by the HadCM3model. One hundred syn-

thetic daily time series were generated for A2a SRES

emission scenarios for a period of 139 years (1961–2099).

The generated time series for the period covering the

2050s (2040–2069) was used for hydrological impact

studies. The same period (2040–2069) was also used for

analysis of hydrological impact with LARS-WG and ANN

downscaling, explained in the following sections.

LARS-WG stochastic weather generator

Unlike SDSM and ANN, LARS-WG does not use large-scale

atmospheric variables directly in the model; rather, it

uses direct GCM outputs of daily precipitation and maxi-

mum and minimum temperature. Its calibration involves

calculating the relevant statistical parameters for each

meteorological variable from observed historical data.

These calculated parameters or those modified based on

future climate scenario were then used to stochastically gen-

erate realistic climate data corresponding to the present or

future climate scenario, respectively. In order to ensure that

the simulated data probability distributions are close to

the true long-term observed distribution, the statistical charac-

teristics of the observed data were used to generate 300 years

of synthetic data for each climate variable considered.

Statistical characteristics of the observed and synthetic

weather data were also analyzed using the t-test, f-test and

chi-squared test to determine if there were any statistically

significant differences. The chi-squared test was used to

compare observed and synthetic data histograms. As can

be seen in Table 5, except for a particularly dry winter

spell, the chi-squared goodness-of-fit test for the seasonal

mean wet and dry spell lengths resulted in confidence

values of above 95%. The significant difference during the

winter season is likely to be due to LARS-WG smoothing

the observed data.

Tables 6 and 7 show t-test and f-test values respectively,

which were used to test the equality of means and variances

between the observed and simulated maximum and
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minimum temperature values. Each of these tests calculates

p-values, which are used to accept or reject the hypothesis

that there is no difference between the observed and

simulated climate variables. As shown in Table 6, the differ-

ence between observed and simulated monthly minimum

and maximum temperature values are insignificant at a sig-

nificance level of 0.01. However, the p-value computed for

the f-test (Table 7) shows a significant difference at signifi-

cance level of 0.1 for some of the months. Again, the

differences are likely to be due to the departures of the

observed values from the smooth curves which LARS-WG

fits to average daily mean values of minimum and maximum

temperature values. (For a detailed description of possible

reasons of significant difference between observed and

simulated data in LARS-WG, see Semenov & Barrow

()). In most cases, the stochastic weather generator is

able to generate synthetic data with statistical properties

quite similar to the observed regional climate variables,

namely daily precipitation as well as daily minimum and

maximum temperature values.

To generate daily precipitation and temperature data

corresponding to future scenarios using LARS-WG, site ana-

lyses were carried out using the daily GCM data (HadCM3)

for both the baseline (current) and future periods. To incor-

porate the change in climate, the relative change in monthly

mean precipitation and monthly mean wet and dry series

lengths were calculated from the HadCM3 output of the

baseline and future scenarios. Similarly, for each month

relative change in mean temperature and standard deviation

were calculated from the parameter files generated during



Table 7 | Maximum and minimum temperature per day: observed and WG standard devi-

ation, f-values and p-values

Maximum temperature Minimum temperature

Obs
stdv

WG
stdv

f-
value

p-
value

Obs
stdv

WG
stdv

f-
value

p-
value

J 1.66 1.7 1.05 0.339 2.82 2.74 1.06 0.237

F 1.84 1.8 1.04 0.384 2.89 2.94 1.03 0.531

M 1.77 1.75 1.02 0.634 3.36 3.31 1.03 0.545

A 1.88 1.74 1.17 0.001 3.47 3.19 1.18 0.001

M 1.88 1.98 1.11 0.039 2.33 2.55 1.2 0.001

J 1.98 1.84 1.16 0.002 1.88 1.79 1.1 0.048

J 1.43 1.52 1.13 0.015 1.62 1.48 1.2 0.001

A 1.43 1.31 1.19 0.002 1.53 1.69 1.22 0.002

S 1.23 1.26 1.05 0.34 1.87 1.81 1.07 0.179

O 1.12 1.22 1.19 0.001 2.01 2.03 1.02 0.695

N 1.27 1.22 1.08 0.1 2.64 2.62 1.02 0.749

D 1.37 1.44 1.1 0.044 2.68 2.88 1.15 0.004

Table 6 | Maximum and minimum temperature per month: observed and WG mean, t-values and p-values

Maximum temperature Minimum temperature

Obs mean WG mean t-value p-value Obs mean WG mean t-value p-value

J 26.4 26.6 �1.66 0.10 6.6 6.8 �0.76 0.45

F 27.7 27.8 �0.71 0.48 8.2 8.4 �0.74 0.46

M 29.3 29 2.39 0.02 11.4 11 1.37 0.17

A 29.6 29.7 �0.8 0.43 12.2 12.5 �1 0.32

M 28.7 28.9 �1.49 0.14 13.7 13.3 1.71 0.09

J 26.5 26.3 1.65 0.10 13.5 13.6 �0.63 0.53

J 23.8 24 �1.89 0.06 13.3 13.4 �0.71 0.48

A 23.6 23.6 0.00 1.00 13.1 12.8 1.84 0.07

S 24.8 24.8 0.00 1.00 12.3 12.5 �1.15 0.25

O 26.0 26.0 0.00 1.00 11.7 11.8 �0.56 0.57

N 26.1 26.0 1.09 0.28 9.7 9.6 0.42 0.67

D 26.0 25.8 1.99 0.05 6.9 7.7 �3.36 0.01
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the site analysis, corresponding to climate variables

(HadCM3 outputs) for the baseline and future scenarios.

This information was then used to construct the climate

scenario file which LARS-WG uses to determine how the

weather generator parameter values (obtained from

observed precipitation and temperature data) should be per-

turbed to generate regional climate scenarios.
://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
Artificial neural networks

The neural network model for this study was developed

using Neuro-Solutions neural network development

environment. The 26 predictor variables obtained from the

NCEP reanalysis datasets were used as input to the neural

network model. Daily precipitation amount and maximum

and minimum temperatures were specified as desired

output and modelled separately. For Bhardar station, from

the 30 years of data representing the current climate con-

dition, the first 15 years of data (1961–1975) were used for

training and the remaining 15 (1976–1990) were used for

testing. Similarly for Pawe and Dangila stations, of the

15 years of data representing the current climate condition,

the first 10 years of data (1987–1996) were used for training

and the remaining 5 years (1997–2001) for testing.

The neural network design and development were car-

ried out as follows. With the 26 predictor variables as

input, the model was trained and sensitivity analysis was

carried out to determine the most relevant predictors

which need to be retained for further analysis or retraining.

The neural network was retrained with a few selected pre-

dictor variables until acceptable validation performance

was achieved. Table 8 presents the selected predictor vari-

ables based on sensitivity analysis. Hyperbolic tangent

activation function was used at both the hidden and



Table 8 | Large-scale daily climate predictors selected for computing surface meteorological variables at different stations with ANN model (variables corresponding to each predictor no.

as for Table 2)

Predictor no.
Precipitation Maximum temperature Minimum temperature

Pawe 1,5,17,19,21,22,24 1,4,7,16,17,19,21,23,24,26 1,5,16,17,23,24,25,26

Bhardar 1,5,9,16,17,23,25,26 1,2,5,12,17,19,26 1,4,5,7,21,24

Dangila 1,2,4,12,22,26 1,4,9,12,16,17,19,23 1,3,5,16,24
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output layers of the neural networks and the neural network

was trained using a learning rule of momentum. The num-

bers of hidden nodes were optimized during training. The

trained ANN using NCEP predictor variables was used to

downscale a future climate scenario using predictor vari-

ables from HadCM3 outputs.
HYDROLOGICAL MODELLING

Various hydrological models, ranging from simple conceptual

models to comprehensive physically based models, have

been used to study the impact of climate change scenarios

including: Hydrologiska Byråns Vattenbalansavdelning

(HBV; Dibike & Coulibaly ); Soil and Water Assessment

Tool (SWAT; Jha et al. ); Cascade Consulting Hydrologi-

cal (CAS-Hydro; Reaney & Fowler ); Precipitation–

Runoff Modelling System (PRMS; Najafi et al. );

HEC-HMS (Simonovic et al. ); Catchment Hydrological

model (CATCHMOD; Wilby ); and Topography-based

Hydrological model (TOPMODEL; Bastola et al. ).

There are numerous criteria which can be used when

selecting the appropriate hydrological model. The four

common fundamental criteria are: (1) required model out-

puts; (2) hydrological processes that need to be modelled

to estimate the desired outputs; (3) availability of input

data; and (4) cost. Cunderlik () carried out a compari-

son study of existing hydrological models for choosing an

appropriate hydrological model for the assessment of

water resources risk and vulnerability to changing climatic

conditions. In that study, lumped semi-distributed and fully

distributed models were compared. Results of the study

showed that semi-distributed model HEC-HMS is one of

the first ranked hydrological models. Semi-distributed

models were found to be a more attractive choice than
om http://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
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lumped or distributed models as they are a good compro-

mise between the high simplification of the governing

processes used in lumped models and extensive data

requirements of the distributed models. The HEC-HMS

model was selected to investigate the potential impact of cli-

mate change in this study due to the model’s physical basis,

limited data requirement, easy availability (public domain)

and wider use.

HEC-HMS is a comprehensive hydrologic model devel-

oped by the Hydrologic Engineering Centre (HEC) of

United States Army Corps of Engineers (USACE). It is

designed to simulate the precipitation–runoff processes of

watershed systems in a wide range of geographic areas,

such as large river basins and small urban or natural water-

sheds (Feldman ). The current version of HEC-HMS is

a highly flexible package. It includes different methods to

simulate infiltration losses, transform excess precipitation,

base flow estimation and channel routing. For this particular

study, a continuous Soil Moisture Accounting (SMA) model

was used. The SMAmethod allows for long-term continuous

simulation of hydrologic processes that occur and change

over time in a given watershed. This can be achieved by

simulating the movement of precipitation through storage

volumes that represent canopy interception, surface

depressions, the soil profile and two groundwater layers.

Computational components of this algorithm also include

ET, surface runoff and groundwater flow. As well as precipi-

tation, the only other input to the SMA algorithm is

potential ET rate. Catchment monthly potential ET rate

was determined using the Penman–Monteith method

(Allen et al. ) using Ethiopia Meteorological Office

monthly climate data (radiation, minimum and maximum

temperature, air humidity and wind speed) as input. The

spatial and temporal distribution of precipitation was deter-

mined using the gauge weight method. The Thiessen
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polygon technique was used to determine the spatial gauge

weights.

HEC-HMS has four main model components: basin

model, meteorological model, control specifications and

input data (time series, paired data and gridded data). The

basin model, for instance, contains information relevant to

the physical attributes of the model such as basin areas

and river reach connectivity. Likewise, the meteorological

model holds rainfall data. The control specifications section

contains information pertinent to the timing of the model

run. The input data component stores parameters or bound-

ary conditions for basin and meteorological models. The

Army Corps of Engineers Geospatial Hydrologic Modelling

Extension (HEC-GeoHMS) (Doan ), an ArcView exten-

sion, was used for creating the basin model, background

map file and stream network from the digital elevation

model (DEM) which in turn were used as input to HEC-

HMS model. A DEM was downloaded from the Consortium

for Spatial Information (CGIAR_CSI) which provides the

NASA Shuttle Radar Topographic Mission (SRTM) 90 ×

90 m resolution digital elevation data for the entire world.

The sub-basin physical characteristics such as longest flow

lengths, centroidal flow length and slopes derived from the

DEM were used for estimating hydrologic parameters. The

longest flow path information, for example, was used for

estimating time of concentration. Background maps can be

loaded in HEC-HMS that provide spatial context for the

hydrologic elements composing the basin model. The

maps are not actually used in the computational process,

but they can be very helpful in showing the spatial relation-

ship between the elements. They are commonly used for

showing the boundaries of a watershed or the location of

streams.

Observed daily river discharges obtained from the Min-

istry of Water Resources of Ethiopia were used to calibrate

the hydrologic model. Model parameters were determined

by minimizing the sum of squares of differences between

observed and simulated flows. Both automated and

manual calibration methods were used to determine a prac-

tical range of parameter values, preserving the hydrograph

shape and minimum error in volumes. The emphasis was

on simulating low and average flows accurately rather than

peak flows. The period 1994–1998 was used for model cali-

bration and model fit was validated for 1999–2001.
://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
The maximum infiltration rate and the maximum soil

depth, as well as the percolation rates and groundwater com-

ponents, were found to be more sensitive to simulated flows.

The coefficient of determination (R2) and Nash–

Sutcliffe simulation efficiency (E) (Nash & Sutcliffe )

were used as evaluation criteria. The coefficient of determi-

nation (R2) during calibration and validation in a daily time

step were found to be 0.7 and 0.62, respectively, and Nash–

Sutcliffe simulation efficiency (E) was found to be 0.66

during calibration and 0.6 during validation. Figure 2

shows observed and simulated daily river flow for the vali-

dation period. In general, the validation result shows that

the model performance is reasonably good in simulating

low flows for periods outside the calibration period.

Table 9 summarizes calibrated model parameters. The

obtained calibrated parameters, however, may still not rep-

resent one unique solution. It is always possible to

construct an equally well-calibrated model with different

sets of parameters (the known ‘equifinality’ problem).
RESULTS

For this study we considered only temperature and precipi-

tation downscaling, which are the essential parameters for

simulating the effect of climate change on river flows. For

both parameters, downscaling results were presented in

the subsequent sections for the present-day and future cli-

mate simulations.

Comparison of downscaling model validation statistics

The model biases (the difference between the observed and

downscaled result using relevant NCEP predictor) for Bhar-

dar station during the validation period (1976–1990) for the

three downscaling models are shown in Figures 3–5. The

model biases for Pawe and Dangila stations for all three

meteorological variables in the validation period (1997–

2001) are provided in Tables 10 and 11, respectively. In

order to ensure that the derived scenarios are a result of pro-

jected future climate, the downscaling algorithms were

trained with NCEP and observed data and validated with

the baseline climate of NCEP and HadCM3 derived predic-

tors. As shown in Table 12, the amount of explained



Table 9 | Calibrated model parameters

Parameter Units Values Parameter Units Values

Muskingum k hr 6 Groundwater 1 storage mm 50

Muskingum x hr 0.1 Groundwater 2 percolation mm hr�1 0.6

Max infiltration mm hr–1 1.9 Groundwater 1 coefficient hr 600

Soil storage mm 200 Groundwater 2 storage mm 80

Tension storage mm 150 Groundwater 2 percolation mm hr�1 0.6

Soil percolation mm hr�1 0.9 Groundwater 2 coefficient hr 1,800

Storage coefficient hr 60

Time of concentration upper sub basin hr 24 Time of concentration lower sub-basin hr 12

Figure 2 | Observed and simulated daily flows in the Beles River for the validation period.
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variance (R2) obtained for the validation period (using

HadCM3 daily predictors) varies between 0.17 and 0.21

for precipitation, 0.39 and 0.52 for maximum temperature

and 0.33 and 0.37 for minimum temperature. The low

explained variance for precipitation underlines the more sto-

chastic nature of precipitation and the difficulty in capturing

its characteristics and variability in the downscaling. Wilby

et al. () reported that, for heterogeneous variables

such as daily precipitation occurrence or amounts,

explained variance of less than 40% is more likely. Since
om http://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
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precipitation depends on other intermediate processes

such as humidity, cloud cover, etc., it is identified by many

researchers as one of the most problematic variables in

downscaling (Zhang et al. ).

The comparison of means of observed and downscaled

daily precipitation in each month (Figure 3) shows that

SDSM and LARS-WG models were able to reproduce the

observed mean daily rainfall better than ANN in all

months. One reason could be that SDSM and LARS-WG

consider precipitation downscaling as a conditional process



Figure 3 | Model biases in absolute values (the difference between the observed and downscaled mean daily precipitation using relevant NCEP predictors) for Bhardar station during

validation period (1976–1990).

Figure 4 | Model biases in absolute values (the difference between the observed and downscaled mean daily maximum temperature using relevant NCEP predictors) for Bhardar station

during validation period (1976–1990).
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Table 10 | Model bias between observed and simulated values for the validation period for Pawe station

Mean daily precipitation (mm) Mean daily Tmax (WC) Mean daily Tmin (WC)
SDSM LARS ANN SDSM LARS ANN SDSM LARS ANN

J 0.02 0.01 0.22 0.24 0.31 0.42 �0.40 0.74 1.24

F 0.03 0.11 0.57 0.23 �0.17 �0.23 0.46 0.80 0.62

M 0.08 0.14 0.60 0.45 �0.17 �0.25 �1.79 �0.82 �1.97

A 0.32 0.31 0.98 0.67 0.32 �0.40 �0.27 �0.02 �1.22

M �2.08 0.18 �0.61 1.00 0.62 0.52 0.27 0.09 �0.24

J �0.71 �1.69 �1.61 0.93 0.18 1.22 0.43 0.75 0.34

J 1.39 1.39 1.39 0.16 0.17 0.47 0.29 �0.17 0.27

A �0.84 2.66 �1.96 0.08 �0.03 0.36 0.37 �0.05 0.50

S 1.74 1.63 0.83 �0.38 �0.62 0.79 0.27 0.36 0.67

O �0.50 �0.88 �1.39 1.01 0.30 2.44 �0.40 �0.95 �0.26

N 0.80 0.30 0.35 0.83 0.41 1.32 �0.38 0.07 0.45

D �0.06 0.04 0.22 0.54 0.08 0.48 �0.83 �0.76 0.23

Figure 5 | Model biases in absolute values (the difference between the observed and downscaled mean daily minimum temperature using relevant NCEP predictors) for Bhardar station

during validation period (1976–1990).
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in which local precipitation is correlated with the occur-

rence of wet days, whereas the ANN model does not

consider precipitation as a conditional process. It only estab-

lishes a direct non-linear relationship between large-scale
om http://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
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predictors and local-scale predictands without considering

the precipitation occurring process. Indeed, in another

study, the ANN model was also found to be poor in simulat-

ing daily precipitation, particularly for wet-day occurrence,



Table 12 | Correlation coefficients and explained variances between observed daily precipitations, maximum and minimum temperature and corresponding relevant HadCM3 derived

predictor variables for Bhardar station during validation. For the case of LARS-WG, large-scale predictor variables are not used directly in the model; rather it is based on

direct GCM output

Precipitation Maximum temperature Minimum temperature

Correlation R2 Correlation R2 Correlation R2

SDSM 0.46 0.21 0.71 0.51 0.61 0.37

ANN 0.45 0.2 0.62 0.39 0.57 0.33

Table 11 | Model bias between observed and simulated values for the validation period for Dangila station

Mean daily precipitation (mm) Mean daily Tmax (WC) Mean daily Tmin (WC)

SDSM LARS ANN SDSM LARS ANN SDSM LARS ANN

J 0.03 0.12 0.22 0.72 0.24 0.44 0.54 0.56 1.99

F 0.02 �0.02 0.54 �0.06 �0.56 �0.47 0.47 �0.46 0.79

M 0.87 –0.36 0.49 0.20 �0.41 �0.05 �0.49 �0.55 �0.02

A 0.46 0.58 1.18 0.70 �0.13 �0.11 0.36 �0.22 �0.27

M �1.92 �0.70 �1.56 0.61 0.45 0.99 �0.05 0.79 –0.04

J �1.05 �0.54 �2.43 0.59 �0.37 0.95 0.74 0.59 0.57

J 0.71 0.39 �0.35 0.90 0.55 1.05 �0.04 �0.32 0.13

A 1.65 0.33 �0.08 0.59 �0.03 1.16 0.39 �0.34 0.21

S 0.28 1.79 �0.27 0.09 �0.66 0.29 0.29 0.61 1.09

O �1.46 �0.13 �2.06 0.56 0.33 1.04 0.13 �0.07 �0.13

N �0.42 �0.14 �0.42 0.06 0.12 0.79 1.13 1.23 1.22

D 0.54 0.26 0.19 0.00 �0.56 0.14 0.31 �0.14 1.16
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due to the simplistic treatment of days with zero amounts

(Khan et al. ). In the case of LARS-WG, as shown in

Table 6, model biases are found to be insignificant for

both maximum and minimum temperature downscaling.

Comparative downscaling results

The monthly statistics of downscaling results for daily pre-

cipitation as well as daily maximum and minimum

temperature for the three downscaling models are summar-

ized and plotted in Figures 6–8. Figure 6 shows a decreasing

trend in summer precipitation by both the SDSM and ANN

models. However, the overall result of the LARS-WG seems

to suggest the possibility of an increase in mean daily pre-

cipitation in the region for future scenarios considered in

this study. As shown in Table 13, there is a large divergence
://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
regarding the change in summer precipitation which ranges

from þ5.6% (LARS-WG) to –27.3% (SDSM) at Bhardar

station, –4.5% (LARS-WG) to þ57.6% (ANN) at Pawe

station and þ14.5% (LARS-WG) to –31.1% (ANN) at

Dangila station by the 2050s. Figures 7 and 8 show a consist-

ently increasing trend both in maximum and minimum

temperature values for all months of the year. However,

large differences emerge in the rates of annual warming

downscaled with the three models (Table 13). The rate of

annual maximum temperature change between the 1961–

1990 and 2050s range from: þ1.5 WC (SDSM) to þ3 WC

(ANN) at Bhardar station, þ0.7 WC (SDSM) to þ2.5 WC

(LARS-WG) at Pawe station and þ2 WC (ANN) to þ4 WC

(SDSM) at Dangila station. The annual rate of change of

minimum temperature at Bhardar station also ranges from

þ1.2 WC (SDSM) to 3 WC (ANN).



Figure 6 | General trend in mean daily precipitation corresponding to climate change scenario (2040–2069) and observed mean daily precipitation (1961–1990) at Bhardar station.

Figure 7 | General trend in mean daily maximum temperature corresponding to climate change scenario (2040–2069) and observed mean daily maximum temperature (1961–1990) at

Bhardar station.
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Figure 8 | General trend in mean daily minimum temperature corresponding to climate change scenario (2040–2069) and observed mean daily minimum temperature (1961–1990) at

Bhardar station.

Table 13 | Changes in downscaled temperature and precipitation (2050s) with respect to the 1961–1990 average

Bhardar Pawe Dangila

SDSM LARS ANN SDSM LARS ANN SDSM LARS ANN

Maximum temperature (WC) Summer 2.0 1.9 3.5 1.5 4.4 1.0 5.5 3.7 2.6
Annual 1.5 2.5 3.0 0.7 2.5 1.1 4.0 2.5 2.0

Minimum temperature (WC) Summer 0.4 0.3 2.5 0.4 0.1 1.8 1.7 � 0.3 � 0.2
Annual 1.4 1.2 3.0 1.5 1.1 1.1 1.6 1.1 0.0

Precipitation (%) Summer � 27.3 5.6 � 25.0 4.1 � 4.5 57.6 � 0.1 14.5 � 31.1
Annual � 21.3 17.9 � 7.0 2.7 22.6 � 5.4 2.3 12.1 20.3
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DISCUSSION

The ultimate goal of downscaling is to generate an estimate

of meteorological variables corresponding to a given scen-

ario of future climate, so that these meteorological

variables can be used as a basis for hydrological impact

assessments. After calibrating and validating the hydrologi-

cal model with the historical data, we have used this

model to simulate flows corresponding to future climate
://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
conditions corresponding to the downscaled precipitation

and temperature data. This will help to identify any specific

trend in the mean flows in the Beles River, corresponding to

the future time horizon considered in this study. The future

simulation (2050s) was carried out with the downscaled pre-

cipitation and temperature data from the three downscaling

models, namely SDSM, ANN and LARS-WG. The gener-

ated river flows were then used for assessing the epistemic

and stochastic uncertainty.
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The epistemic uncertainty (i.e. the uncertainty due to

imperfect knowledge) was first assessed by comparing the

impact of projected climate change on simulated river

flows for the baseline (1961–1990) and future climate con-

ditions (2040–2069), corresponding to downscaled

precipitation and temperature time series using three con-

ceptually different downscaling methods (SDSM, LARS-

WG and ANN). Subsequently, the stochastic uncertainty

(i.e. uncertainty due to inherent variability, e.g. climate

variability) was assessed by simulating river flows for the

same time period using different ensemble members of

downscaled precipitation and temperature time series.

The latter was performed using only SDSM, because the

random element in SDSM introduces variability in each of

the downscaled time series and hence has been used to

derive 100 daily precipitation as well as maximum and mini-

mum temperature values. However, LARS-WG and ANN

are limited to producing only one time series of the down-

scaled variables; it was therefore not possible to assess this

uncertainty component using these models. In this study,

the SDSM was used in two ways: (1) the mean of the 100

downscaled ensemble members was used for the hydrologi-

cal model to simulate river flow; and (2) among the 100 time
Table 14 | Simulated change in mean Beles flow between current (1961–1990) and future

(2040–2069) climates corresponding to precipitation and temperature values

downscaled with the three downscaling models

Mean annual flow
increase or
decrease (%)

Mean winter flow
increase or
decrease (%)

Mean summer
flow increase or
decrease (%)

SDSM �3.3 18.4 �4.4

LARS-WG �4.8 29.5 �14.6

ANN 17.5 55 12.3

Table 15 | Simulated change in mean Beles flow between current (1961–1990) and future (20

SDSM downscaled values

Ensemble member
no.

Average increase or
decrease (%)

Ensemble member
no.

Avera
decre

1 2.2 40 �0.7

10 �0.7 50 5.0

20 �5.5 60 �8.2

30 0.48 70 �4.0

om http://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
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series (ensembles), 11 individual time series (1st, 10th, 20th,

30th, 40th, 50th, 60th, 70th, 80th, 90th and 100th) were used

as input for hydrological simulations.

The impact of projected climate change in mean annual

river flow ranges from –3.3% (SDSM) to þ17.5% (LARS-

WG) between the baseline and 2050s (Table 13). Large

differences in flow simulation also emerge in mean river

flow changes in summer (–4.4% for SDSM to þ12.3% for

ANN) and in winter (þ18.4% for SDSM to þ55% for

ANN) between the baseline and 2050s, as shown in

Table 14. The percentage change in mean annual flow

change between the current and future scenario considered

in this study using different ensemble members downscaled

with SDSM model ranges between 6% increase and 8%

reduction (Table 15).

The epistemic uncertainty seems to be larger than the

stochastic uncertainty. Figure 9 shows the comparison of

simulated change in the average monthly mean flows of

Beles River, corresponding to the downscaled precipitation

and temperature data of the current (1961–1990) and

future (2040–2069) climate using the three downscaling

models. As can be seen in Figure 9, the major difference

in simulated flow occurs in the month of June. In this

month, LARS-WG showed significant reduction in flow.

Although the magnitudes are different, SDSM and ANN

showed a possible reduction in flows from June to Septem-

ber and a possible increase from October to December.

While ANN showed an increase in mean monthly flows in

all months, SDSM showed a decrease in mean monthly

flows for almost all months. In contrast, in the case of

LARS-WG, the number of months where river flow

increases is less than the number of months where river

flow decreases. Figure 10 also shows the average mean

flow change in river flow simulated with the downscaled
40–2069) climates corresponding to precipitation and temperature ensemble members of

ge increase or
ase (%)

Ensemble member
no.

Average increase or
decrease (%)

2 80 5.92

4 90 �4.29

0 100 �6.36

7



Figure 9 | Simulated change in the average monthly mean flows in Beles River corresponding to the downscaled precipitation and temperature data of the current (1961–1990) and future

(2040–2069) 2050s climate with the three downscaling models.

Figure 10 | Simulated change in the average monthly mean flows in Beles River corresponding to the downscaled precipitation and temperature data of the current (1961–1990) and

future (2040–2069) 2050s climate using SDSM. The heavy solid line represents the simulated river flow using mean of the downscaled variables and the thin lines represent the

simulated flow using individual downscaled ensemble members.
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climate variables using the SDSM model for different

ensemble members (1st, 10th, 20th… 100th).
CONCLUSIONS

A comparison of three downscaling models (SDSM, ANN

and LARS-WG) for daily maximum and minimum surface

temperature and precipitation values for A2 SRES emission

scenario were presented. The comparative downscaling

results show that both maximum and minimum tempera-

tures have an increasing trend throughout the year for all

the stations in a future climate. For the case of precipitation,

this trend is however not clear; moreover, there is a remark-

able variability between stations and downscaling methods.

More specifically, the precipitation downscaling at Bhardar

and Dangila stations by both SDSM and ANN downscaling

models shows a decreasing trend in summer precipitation

(rainy season of the region) while LARS-WG shows an

increase in summer precipitation. In contrast, while SDSM

and ANN show an increase at Pawe station, LARS-WG

shows a decrease in summer precipitation (Table 13).

The result of projected impact on river flow caused by

climate change is subject to various sources of cascading

uncertainties. This study investigated the impact of climate

change on river flows using an HEC-HMS rainfall–runoff

model driven by downscaled daily precipitation and temp-

erature values. The ability of downscaling methods to

represent the baseline climate is a necessary condition

(not sufficient) to have reasonable confidence on the

reliability of the future climate computed from the scenario

runs. This study specifically addressed uncertainties associ-

ated with downscaling methods.

The epistemic uncertainty of downscaling methods was

investigated by comparing three conceptually different

SDSMs; the stochastic uncertainty was investigated using

stochastic components in one of the downscaling models

(SDSM). Regarding epistemic uncertainty, depending on

the statistical downscaling methods used, we obtained a

highly variable projection of future stream flow changes.

The results of the three downscaling models showed that

the percentage change in mean annual flow ranges from a

4.8% reduction to a 17.5% increase. The results also show

a possible decrease (15%) and an increase (12%) in mean
om http://iwaponline.com/hr/article-pdf/44/2/377/370255/377.pdf
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monthly river flow during the summer. Regarding stochastic

uncertainty, the percentage change in mean annual flow

simulated with different ensemble members of the SDSM

model showed mean annual flow change ranging from a

6% increase to an 8% decrease. These uncertainties are par-

ticularly associated with the lack of ability of models to

downscale future precipitation values which have a major

impact on the stream flow simulations. An important conse-

quence of this finding is that uncertainty across the

downscaling models seems to be larger than the stochastic

uncertainty. The uncertainty shown here clearly indicates

how the outcome of a hydrologic impact study can be

affected by the choice of a downscaling technique.

It should be noted that the standard error of a downscal-

ing estimate is inversely proportional to the sample size

(record length). There is therefore a bias associated with

the short record length of Pawe and Dangila considered in

the downscaling experiments. Relatively shorter records

may not reveal the full extent of natural variability and

also may not capture some of the less frequent climate

events (e.g. droughts); long-term records can however

place recent trends and extremes in a broader context.

Only changes in the climatic inputs to the catchment

system were considered here; it was assumed that catchment

land use remained constant and that there would be no

changes in catchment physical properties. Finally, down-

scaling in this study is based on a single GCM model

output (HadCM3). However, previous studies showed that

data taken from different GCMs could differ significantly.

Analyzing the uncertainties from climate forcings through

multi-model ensembles and constraining the hydrological

model with ensemble spread of information therefore

remains the recommended approach.
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