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Abstract
Purpose: Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical

responses in the majority of patients with BRAF-mutant tumors. However, resistance to these inhibitors

develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination

with adoptive T-cell transfer (ACT)will bemore effective at inducing long-term clinical regressions of BRAF-

mutant tumors.

Experimental Design: BRAF-mutated human melanoma tumor cell lines transduced to express gp100

and H-2Db to allow recognition by gp100-specific pmel-1 T cells were used as xenograft models to assess

melanocyte differentiation antigen–independent enhancement of immune responses by BRAF inhibitor

PLX4720. Luciferase-expressing pmel-1 T cells were generated to monitor T-cell migration in vivo. The

expression of VEGF was determined by ELISA, protein array, and immunohistochemistry. Importantly,

VEGF expression after BRAF inhibition was tested in a set of patient samples.

Results: We found that administration of PLX4720 significantly increased tumor infiltration of adop-

tively transferred T cells in vivo and enhanced the antitumor activity of ACT. This increased T-cell infiltration

was primarily mediated by the ability of PLX4720 to inhibit melanoma tumor cell production of VEGF by

reducing the binding of c-myc to the VEGF promoter. Furthermore, analysis of human melanoma patient

tumor biopsies before and during BRAF inhibitor treatment showed downregulation of VEGF consistent

with the preclinical murine model.

Conclusion: These findings provide a strong rationale to evaluate the potential clinical application of

combining BRAF inhibition with T-cell–based immunotherapy for the treatment of patients with mela-

noma. Clin Cancer Res; 19(2); 393–403. �2012 AACR.

Introduction
The identification of activating point mutations of the

BRAF gene, present in approximately half of all human
cutaneous melanomas, has proven to be a milestone for

contributing not only to our understanding of melanoma
biology but also for changing the treatment and clinical
outcomes of the disease (1). As a component of the RAS-
RAF-MEK-MAPK signal transduction pathway, BRAF is also
mutated to a constitutively activated form in many other
cancers, including thyroid, colorectal, and hairy cell leuke-
mia (1–6). Although more than 50 distinct mutations in
BRAF have been described to date, a valine to glutamic acid
substitution at amino acid position 600(V600E), is by far
the most frequent, comprising more than 70% of BRAF
mutations in melanoma (1, 7). Thus, BRAF(V600E) being
so widely expressed, has provided a strong rationale for the
development and clinical application of small-molecule–
based pharmaceutical inhibitors that selectively target BRAF
(V600E) to treat patients withmetastatic melanoma, whose
treatment options are limited (8–11).

Recent clinical trials have shown that over half of mel-
anoma patients with BRAF(V600E)–expressing tumors
experience objective clinical responses to selective inhibi-
tors of BRAF. However, complete and durable remissions
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were rarely observed in these patients, and disease relapses
accompanied by BRAF inhibitor resistance typically
occurred within a year (12, 13). Themechanisms that cause
resistance are diverse and includemitogen-activated protein
kinase (MAPK) pathway reactivation by alternate means
(14–19). Hence, to improve long-term clinical responses
and avoid selection of drug-resistant tumors, combination-
al therapies that target multiple pathways have been pro-
posed (3, 4, 20).

Although therapeutic approaches that combine small-
molecule–based inhibition of multiple signal transduction
pathways has been an area of ongoing investigation, 1
alternative involves the combination of BRAF inhibitors
with immune-based therapies. This approach seems partic-
ularly promising due to the emerging link between MAPK
pathway activation in cancer and the suppression of anti-
tumor immunity. For example, knockdown of BRAF
(V600E) inmelanoma cell lines has been shown to decrease
the production of immunosuppressive soluble factors, such
as interleukin (IL)-10, VEGF, and IL-6 (21). Recent in vitro
experiments showed that blocking of MAPK signaling in
melanoma cells could increase the expression of melano-
cyte differentiation antigens (MDA), leading to improved
recognition by MDA-specific T cells (22, 23). In addition, a
study by Jiang and colleagues showed that the paradoxical
activation of MAPK promoted programmed death ligand 1
(PD-L1) expression in melanoma cells resistant to BRAF
inhibition (24). Perhaps most importantly, the exquisite
specificity of recently developed small-molecule inhibitors
that target mutated oncogenes have shown little or no
detrimental effects on immune cells that also use the MAPK
pathway (23, 25).

In the current preclinical study, we assessed whether
the addition of a selective BRAF(V600E) inhibitor could

improve the efficacy of T cell–based immunotherapy in
vivo. We found that adoptive T-cell transfer (ACT) with
melanoma-specific T cells was much more effective in the
context of concurrent BRAF inhibition, which led to
increased T-cell infiltration of tumors that could be
attributed largely to decreased VEGF production by the
tumor cells. Furthermore, a subset of responding patients
with melanoma showed similar changes in the tumor
microenvironment following BRAF-inhibitor treatment,
providing a strong rationale to explore the use of com-
bination treatments involving MAPK pathway inhibition
and T cell–based immunotherapy.

Materials and Methods
Animals and cell lines

C57BL/6, C57BL/6J-Tyr-2J/J albino, and pmel-1 TCR
transgenic mice on a C57BL/6 background were pur-
chased from the Jackson Laboratory. B6 nude mice were
purchased from the Taconic Farms. All mice were
maintained in a specific pathogen-free barrier facility at
The University of Texas MD Anderson Cancer Center
(Houston, TX). Mice were handled in accordance with
protocols approved by the Institutional Animal Care
and Use Committee. A375 (BRAF V600Eþ), Mel624
(BRAF V600Eþ/HLA-A2þ/MART-1þ), WM35 (BRAF
V600Eþ/HLA-A2þ/gp100þ/MART-1þ), MEWO (BRAF
Wild-Type/HLA-A2þ/MART-1þ), and C918 (BRAF Wild-
Type) human melanoma cell lines and MC38 murine
colon adenocarcinoma cell line were maintained in
RPMI-1640 medium supplemented with 10% heat-inac-
tivated FBS, and penicillin–streptomycin (all from
Invitrogen). MART-1–reactive DMF5 T cells were
obtained from the National Cancer Institute (26) and
cultured in RPMI-1640 medium containing 10% heat-
inactivated human AB serum (Valley Biomedical), b-Mer-
captoethanol (Invitrogen) and recombinant human IL-2
(TECIN, National Cancer Institute Biological Resources
Branch).

Patient samples
Patients with metastatic melanoma possessing BRAF

(V600E) mutation were enrolled on clinical trials for treat-
ment with a BRAF inhibitor (RO5185426) or combined
BRAFþMEK inhibitor (GSK2118436þGSK1123212) and
were consented for tissue acquisition per Institutional
Review Board (IRB)–approved protocol. Tumor biopsies
were conducted pretreatment (day 0), at 10 to 14 days on
treatment.

Generation of luciferase-expressing pmel-1 T cells
Splenocytes from pmel-1 mice were cultured in com-

plete medium containing 300 IU/mL IL-2, and 0.3 mg/mL
anti-mouse CD3 (BD Bioscience). After 24 hours, the cells
were infected with a retroviral vector encoding a modified
firefly luciferase gene OFL and GFP, as previously
described (27, 28). Three days after viral transduction,
cells were sorted by a FACSAria (BD Bioscience) based on
expression of GFP.

Translational Relevance
BRAF-targeted therapy has resulted in objective

responses in the majority of patients with melanoma
harboring the BRAF(V600E) mutation; however, the
median duration of response is less than a year. There
is evidence for immune evasion in BRAF-mutant
melanoma, which may be reversed with BRAF-targeted
therapy, strongly implicating the rationale for a BRAF-
targeted therapy in combination with immunotherapy.
Adoptive T-cell transfer (ACT) therapy using tumor-
infiltrating lymphocytes is one of the most promising
immunotherapeutic approaches for melanoma treat-
ment resulting in objective responses for more than
50% of treated patients. Here, we report that BRAF
inhibition in melanoma increases the T-cell infiltration
into tumors, via decreased VEGF production, and
enhances the antitumor activity of ACT therapy. Our
findings provide a rationale of combining BRAF inhib-
itor with ACT therapy for clinical application to improve
durable response rates to therapy.
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Bone marrow–derived dendritic cells
Dendritic cells were generated from murine bone mar-

row cells as previously described (29, 30). Dendritic cells
pulsed with 10 mmol/L H-2Db–restricted gp100 peptide
(KVPRNQDWL) for 3 hours at 37�C on day 7. After wash
with PBS, dendritic cells were immediately injected into
mice.

Lentiviral transduction of tumor cells
Lentiviral vectors and packaging vectors, VSV-G andD8.9,

were cotransfected into 293T cells using Lipofectamine
2000, and supernatant was collected after 36 hours culture.
A total of 1� 106 tumor cells were preseeded in each well of
6-well plates for 6 hours and spun at 850� g for 1 hourwith
1 mL virus supernatant and 8 mg/mL polybrene. The fol-
lowing day, the supernatantwas removed and replacedwith
growth medium. Infected tumor cells were collected and
sorted on the basis of the expression of the reporter gene
using a FACSAria.

Adoptive transfer, vaccination, and treatment
B6 nude mice were subcutaneously implanted with 6 to

10 � 106 melanoma cells on day 0. When tumors were
established, 1 � 106 luciferase-transduced pmel-1 T cells
were adoptively transferred into tumor-bearing mice,
followed by intravenous injection of 0.5 � 106 pep-
tide-pulsed dendritic cells. IL-2 (5 � 105 IU/mouse) was
intraperitoneally administered twice daily for 3 days after
T-cell transfer. Two days after T-cell transfer, PLX4720
(provided by PLexxikon) was administered for 3 days.
PLX4720 powder was suspended in vehicle [3% dimethyl
sulfoxide (DMSO), 1% methylcellulose] and adminis-
tered by oral gavage daily (100 mg/kg). In some experi-
ments, mice were fed by a chow diet containing 417 mg/
kg PLX4720. For anti-VEGF treatment, anti-hVEGF anti-
body (Ab; hybridoma, A4.6.1 from American Type Cul-
ture Collection) was administered at 250 mg/mouse on
day 7, 9, and 11. Mouse immunoglobulin G (IgG) was
used as control Ab. Because antitumor response of ACT is
dependent on lymphodepletion (31), in some experi-
ments using C57BL/6J-Tyr-2J/J albino mice as recipients,
lymphopenia was induced by administering a nonmye-
loablative dose (350 cGy) of radiation 1 day before
adoptive transfer. Tumor sizes were monitored by mea-
suring the perpendicular diameters of the tumors. All
experiments were carried out in a blinded, randomized
fashion.

In vivo bioluminescence imaging
Mice were intraperitoneally injected with 100 mL of 20

mg/mL D-luciferin (Xenogen). Eight minutes later, mice
anesthetized with isoflurane were imaged using an IVIS
200 system (Xenogen), according to the manufacturer’s
manual. Living Image software (Xenogen) was used to
analyze data. Regions of interest (ROI) were manually
selected and quantification is reported as the average of
photon flux within ROI. The bioluminescence signal is
represented as photons/s/cm2/sr.

IFN-g secretion assay
Melanoma cells were pretreated with various concentra-

tions of PLX4720 for 48 hours, then were washed 3 times
with culture medium. After counting, tumor cells were
coincubated with DMF5 or pmel-1 T cells at 5 � 104 per
well (1:1 ratio) as triplicates for 24 hours, with or without
adding back PLX4720. IFN-g productionwas determined in
culture supernatants using an ELISA kit (BioLegend).

Cytotoxicity assay
Melanoma cells were pretreated with PLX4720 or vehicle

(DMSO) for 48 hours. After washing and counting, mela-
noma cells were labeled with 51Cr, and then coincubated
with activated pmel-1 T cells at different effector-to-target
(E:T) ratios. Four hours later, 51Cr release was determined
against target cells. Specific 51Cr releasewas calculated using
the standard formula: [(sample release � spontaneous
release)/(total release � spontaneous release)] � 100%.

hVEGF secretion assay
Melanoma cells were treated with various concentrations

of PLX4720 for 24 hours, with DMSO added as a vehicle
control. The supernatants were then harvested for ELISA
assay (R&D System), and the cells were harvested and
counted.

Proliferation assay
DMF5 cells (5 � 104/well) were cultured with IL-2 (300

IU/mL) at various concentrationswithPLX4720 in anOKT3
precoated (1 mg/mL, 100 mL/well, 4�C for overnight) 96-
well plate for 56 hours. [3H]Thymidine (5 mCi/mL) was
then added for a further 16 hours, and [3H]Thymidine
incorporation was quantified in a liquid scintillation
counter.

Cell viability assay
Melanoma cells were seeded in flat-bottom96-well plates

and treated with various concentration of PLX4720 for 72
hours, with DMSO added as a vehicle control. Cell viability
was determined using CellTiter-Blue Cell Viability assay
(Promega).

Protein arrays
A375 tumor-bearingmice were sacrificed 3 days after oral

gavage of PLX4720, and tumors were resected and weighed.
Tumors were homogenized and sonicated in lysis buffer
containing protease inhibitors. Cleared tumor lysates after
centrifugation were tested using the Searchlight protein
array, according to the manufacturer’s protocol (Aushon
Biosystems).

ChIP arrays
A375 cells were treated with PLX4720 (1 mmol/L) or

DMSO for 2 hours, followed by a chromatin immunopre-
cipitation (ChIP) assay, conducted according to the manu-
facturer’s instructions (Millipore). Briefly, the protein–DNA
complexes were cross-linked and immunoprecipitated with
anti-c-myc, anti-p300, and anti-E2F1 antibodies or rabbit
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control IgG. After reversing the cross-linking, real-time PCR
was used to amplify sequences corresponding to the pro-
moter regions of human VEGF or control gene GAPDH.

Flow-cytometric analysis
Peripheral blood or tumors were harvested at the

indicated time points. Tumor tissues were weighed and
dissociated. After depletion of erythrocytes using ammoni-
um-chloride-potassium lysing buffer (Invitrogen), the
remaining lymphocytes were treated with Fc blocking
monoclonal antibodies (mAbs; anti-CD16/32 2.4G2) and
then stained with mAbs against Thy1.1 and CD45 (BD
Biosciences). Samples were analyzed using a FACSCalibur
or FACSCanto II (BD Biosciences).

Immunohistochemistry
Immunohistochemical staining was carried out using the

Avidin–Biotin Complex Kit (Vector Laboratories). Nine
tumor samples of patient with melanoma before and fol-
lowing treatment with BRAF inhibitor were stained for
VEGF (1:100, Abcam) andmouse xenograft tumor samples
were stained for CD3 (1:100, Abcam). Samples were appro-
priately optimized in our laboratory, and external controls
were systemically used to avoid false-negative or false-pos-
itive staining. Percentages of VEGF-stained tumor cells were
quantitated usingmicroscopy and pathologic examination.
CD3þ T cell counts were conducted on slides in 10 adjacent
high-power fields (HPF, �400) based on lymphocyte
morphology.

Quantitative PCR
Differential expression of VEGF in patient samples was

assayed using TaqMan Gene Expression Assays (Applied

Biosystems) with actin as control. mRNA was reverse tran-
scribed to cDNA using SuperScript VILO (Invitrogen)

Statistical analysis
Comparisons of differences in continuous variables

between 2 groups were done using Student t test. Differ-
ences in tumor size and T-cell numbers among different
treatments were evaluated by ANOVA repeated-measures
function. The statistical analysis to compare survival was
determined using Kaplan–Meier test. P values are based on
2-tailed tests, with P < 0.05 considered statistically
significant.

Results
A human melanoma xenograft model to assess MDA-
independent enhancement of immune responses by
PLX4720

To investigate the effects of BRAF inhibition on tumor cell
recognition by T cells, 3 HLA-A2þmelanoma cell lines were
pretreated for 48 hours with titrated doses of the selective
BRAF inhibitor PLX4720, and then cocultured with HLA-
A2–restricted MART-1–specific T cells. T-cell recognition, as
measuredby IFN-g secretion, increased in a dose-dependent
fashion in the 2 melanoma cell lines expressing BRAF
(V600E) but not in the cell line expressing wild-type (WT)
BRAF (Supplementary Fig. S1A–S1C). These results imply
that PLX4720 can enhance MART-1–specific T-cell recogni-
tion of melanoma cells, consistent with the findings of a
previous study showing upregulation of MDA by PLX4720
(23). Furthermore, when PLX4720was added to the culture
system, neither T-cell cytokine secretion function nor TCR
mAb-induced proliferation was inhibited at concentrations
as high as 1 mmol/L (Supplementary Fig. S1A–S1D). Thus,
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Figure 1. Overexpression of gp
100 abrogates enhanced
melanoma T-cell recognition
induced by PLX4720. A, schematic
representation of 2 lentiviral
vectors containing full-length
human gp100 and mIL-4R, or H-
2Db and EGFP. B, IFN-g secretion
by pmel-1 T cells cocultured with
the indicated transduced tumor cell
lines (before cell sorting) for 24
hours, as determined by ELISA.
Untransduced MC38 murine colon
adenocarcinoma cells or those
transduced with gp100 were used
as negative and positive controls,
respectively. C–E, IFN-g secretion
by pmel-1 T cells cocultured with
transduced melanoma cells (after
cell sorting) that had been
pretreated with the indicated
concentrations of PLX4720, as
determined by ELISA (�, P < 0.05;
��, P < 0.01). Data are
representative of 3 independent
experiments. IRES, internal
ribosome entry site.
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selective BRAF(V600E) inhibition does not significantly
inhibit T-cell proliferation, similar to results we have pre-
viously reported that analyzed circulating immune cells
from patients with melanoma before and following treat-
ment with a selective BRAF inhibitor (25).
Although upregulation of MDA is one mechanism by

whichBRAF inhibition can enhance immune recognition of
melanoma, we hypothesized that this class of antigen
represents only a small fraction of melanoma-reactive T
cells in the tumor microenvironment, and that BRAF inhi-
bition could be having other more global influences on the
immune response. To study these potential alternative
mechanisms, we engineered the human BRAF(V600E)-pos-
itivemelanoma cell line A375 to constitutively express high
levels of the gp100melanoma tumor antigen under control
of the cytomegalovirus (CMV) promoter, thus eliminating
any influence of the BRAF inhibitor on the expression of this
MDA. The A375 cell line was also engineered to express
murine H-2Db (Fig. 1A) to enable recognition by murine
gp100-specific transgenic pmel-1 T cells.
To test the validity of this approach, a series of in vitro

experiments were carried out to confirm that gp100 over-
expression did, in fact abrogate enhanced T-cell reactivity
induced by PLX4720. As shown in Fig. 1B, pmel-1 cells
could only recognize and secrete IFN-g in response to A375
cells transduced to express both H-2Db and gp100 (A375/
H-2Db/gp100). In contrast, human WM35 melanoma cells
that naturally express gp100 were recognized when trans-
duced with only H-2Db. As a further control, the murine

colorectal carcinoma cell lineMC38 that naturally expresses
H-2Db could only be recognized by pmel-1 T cells upon
transduction with gp100. As shown in Fig. 1C and D,
PLX4720 treatment could enhance pmel-1 T-cell recogni-
tion of WM35 cells transduced with H-2Db but not when
these cells were also transduced to overexpress gp100.
Similarly, PLX4720 treatment of A375 cells transduced to
express both H-2Db and gp100 did not induce enhanced
pmel-1 T-cell recognition, asmeasuredby IFN-g secretionor
cytolysis (Fig. 1E and Supplementary Fig. S2). Therefore,
this xenogeneic tumor model was determined to be appro-
priate for evaluating the effects on immune responses in vivo
by PLX4720 that were independent of its impact on MDA
expression.

BRAF inhibition increases tumor infiltration of
adoptively transferred T cells and enhances antitumor
responses

We next sought to investigate whether PLX4720 could
enhance the efficacy of ACT in vivo. B6 nude mice were
subcutaneously implanted with A375/H-2Db/gp100 mela-
noma cells and then treated with a combination of OFL-
expressing pmel-1 T cells and peptide-pulsed dendritic cells
as previously described (30) followed by PLX4720 admin-
istration. Tumor sizes and T-cell migration were monitored
over time. As shown in Fig. 2A and B, administration of
PLX4720 led to approximately 10-fold higher luciferase
intensity at the tumor site, compared with vehicle control.
The increased T-cell infiltration was confirmed by
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Figure 2. Administration of PLX4720 in vivo increases tumor infiltration of adoptively transferred T cells and enhances antitumor responses. A, B6 nude mice
(5 mice/group) bearing A375/H-2Db/gp100 tumors were treated with OFL-expressing pmel-1 T cells, along with gp100 peptide-pulsed dendritic cells, by
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immunohistochemical staining for CD3 and flow cytome-
try for Thy1.1þ pmel-1 T cells (Supplementary Fig. S3A–
S3D). This higher level of tumor antigen-specific pmel-1 T-
cell infiltration was associated with antitumor responses
that were significantly better than those observed in mice
treated with either PLX4720 or ACT alone (Fig. 2C). As
shown in Fig. 2D, extended survivalwas also observed in the
combination therapy group. The percentage of pmel-1 T
cells in peripheral blood did not differ between the treat-
ment groups (Supplementary Fig. S4), suggesting that
administration of PLX4720 can enhance the antitumor
activity of ACT through increasing T-cellmigration to tumor
sites.

To understand if expression of tumor antigen is necessary
for T-cell accumulation in tumors treated with PLX4720, B6
nude mice were subcutaneously implanted with non-
gp100–expressing A375/H-2Db melanoma cells and then
treated with ACT in combination with PLX470 or vehicle
control. As shown in Supplementary Fig. S5A and S5B,
PLX4720 treatment cannot significantly increase T-cell infil-
tration in A375/H-2Db tumors. These results suggest that
tumor antigen expression is important for PLX4720-
induced T-cell infiltration into tumors.

PLX4720 increases infiltration of adoptively
transferred T cells only in tumors with a BRAF(V600E)
mutation

The impact of RAF inhibitors on inhibiting extracellular
signal–regulated kinase (ERK) signaling in tumor cells with

mutant BRAF has been extensively investigated (9, 20), but
recent studies have also shown that BRAF inhibitors can
enhance ERK signaling in cells with wild-type BRAF (32–
34). To exclude the possibility that PLX4720 increased
intratumoral T-cell accumulation via directly acting on the
transferred T cells, we repeated the in vivo tumor treatment
experiments using tumors with and without the BRAF
(V600E) mutation. As expected, PLX4720 was not capable
of inhibiting the in vitro growth of C918 melanoma cells,
which have a wild-type BRAF (Fig. 3A). However, transduc-
tion with H-2Db and gp100 did render C918 cells suscep-
tible to recognition by pmel-1 T cells (Fig. 3B). Comparing
antitumor responses against C918 and A375 in vivo, we
found that addition of PLX4720 to the ACT regimen led to
an increase in luciferase intensity in A375/H-2Db/gp100
but not inC918/H-2Db/gp100 tumors (Fig. 3C andD). This
result suggested that PLX4720 could only enhance infiltra-
tion of adoptively transferred T cells in tumors containing a
BRAF(V600E)mutation, a finding that was confirmed using
another BRAF(V600E) cell line WM35/H-2Db/gp100 (Sup-
plementary Fig. S6A–S6C) and another wild-type BRAF cell
line, MC38/gp100 (Supplementary Fig. S7A–S7C).

PLX4720 increases infiltration of adoptively
transferred T cells by inhibiting the production of
VEGF in tumors

Because PLX4720 augmented the infiltration of T
cells into BRAF mutant but not wild-type tumors, we
next explored potential differences in the tumor
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microenvironment that may explain the enhanced migra-
tion of adoptively transferred T cells. We thus harvested
tumors from A375/H-2Db/gp100 tumor-bearing mice
treated with PLX4720 or vehicle alone, and made a tumor
homogenate for protein array analysis. As shown in Fig.
4A, PLX4720 treatment significantly reduced the hVEGF
production in tumors. Because chemokines are known to
be essential for mediating T-cell trafficking, we also tested
the intratumoral expression of a panel of 12 chemokines
but found no significant differences between treatments.
Inhibition of VEGF production was also confirmed by
testing the supernatants from in vitro cell cultures of
A375/H-2Db/gp100 cells treated with PLX4720 (Supple-
mentary Fig. S8).
VEGF is a key angiogenic factor known to stimulate

endothelial cell growth, survival, migration, lumen forma-
tion, and vascular permeability (35). High levels of VEGF
can induce vessel abnormalities that impair drug delivery
and influx of immune cells into tumors, whereas vascular
normalization by VEGF blockade or Rgs5 tumor cell defi-
ciency can enhance the infiltration of adoptively transferred
CD8þ T cells (35–37). Therefore, we next explored the
possibility that reduced VEGF signaling in PLX4720-treated
BRAF-mutant tumors was responsible for the enhanced
infiltration by adoptively transferred T cells. As shown
in Fig. 4B and C, in vivo blockade of the VEGF/VEGFR

interaction with anti-hVEGF Ab indeed enhanced pmel-1
T-cell infiltration into A375/H-2Db/gp100 tumors. These
results support the notion that administration of PLX4720
increases infiltration of adoptively transferred T cells via the
inhibition of VEGF production by tumors.

PLX4720 treatment reduces the binding of c-myc to the
VEGF promoter

Given that PLX4720 treatment is known to reduce ERK
activation in tumor cells carrying a BRAF(V600E) mutation
(9), we hypothesized that PLX4720 may repress VEGF
transcription via inhibiting ERK-activated transcription fac-
tors involved in the direct regulation of VEGF transcription.
To test this, we first confirmed that PLX4720 treatment
inhibited the phosphorylation of ERK in A375/H-2Db/
gp100 tumor cells (Supplementary Fig. S9A). Examination
of the proximal promoter region of human VEGF with
TFSEARCH (http://www.cbrc.jp/research/db/TFSEARCH.
html) identified potential consensus sites for multiple tran-
scription factors, including c-myc, p300, and E2F1 (Sup-
plementary Fig. S9B, and data not shown). Previous studies
showed that c-myc and p300 were ERK-activated transcrip-
tion factors, and E2F1 was a phosphoinositide 3-kinase
(PI3K)-activated transcription factor (38–40). Using a ChIP
assay, we have shown that c-myc is constitutively recruited
to the VEGF promoter in A375/H-2Db/gp100 cells
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(Fig. 4D). Furthermore, c-myc promoter binding, but not
that of p300 or E2F1, was reduced approximately 5-fold
following PLX4720 treatment (Supplementary Fig. S9C).
These results strongly suggest that the spontaneous produc-
tion of VEGF in A375/H-2Db/gp100 cells is regulated by
c-myc, and that PLX4720 reduces VEGF transcription via
inhibition of c-myc binding to the VEGF promoter.

PLX4720-induced T-cell infiltration is abrogated in
tumors overexpressing VEGF

To determine whether VEGF downregulation was indeed
required for the enhanced intratumoral T-cell migration
observed in PLX4720-treated mice, we next investigated
whether this enhancement was impaired in tumors consti-
tutively overexpressing VEGF. Thus, A375/H-2Db/gp100
melanoma cells were transduced with hVEGF under the
transcriptional control of the CMV promoter (Fig. 5A).
VEGF-transduced melanoma cells maintained sensitivity to
PLX4720 (Supplementary Fig. S10), but no longer showed a
large decrease in VEGF secretion in response to PLX4720
treatment (Fig. 5B).Wenext analyzed B6 nudemice bearing
either A375/H-2Db/gp100 or A375/H-2Db/gp100/VEGF
tumors following treatment with ACT and PLX4720 by
monitoring T-cell migration. As shown in Fig. 5C and D,
augmented T-cell infiltration in response to PLX4720 treat-
ment was abrogated in the A375/H-2Db/gp100/VEGF
tumors. These results support the notion that BRAF inhi-
bition enhances T-cell migration to tumors through down-
regulation of VEGF production.

Intratumoral VEGF downregulation correlates with
increased T-cell infiltration in melanoma patients
treated with BRAF inhibitor

In light of our results in the mouse model, we next
investigated whether VEGF was also downregulated in the
tumors of patients with melanoma treated with BRAF
inhibitor. Pretreatment or on-treatment tumor biopsies
were harvested from 9 patients withmelanoma, and immu-
nohistochemical staining for VEGF was conducted. As
shown in Fig. 6A and B, BRAF inhibitor treatment signifi-
cantly downregulated VEGF expression in the majority (7/
9) of patients, results which were confirmed by quantitative
real-time PCR (qRT-PCR; Supplementary Fig. S11A and
S11B). Examination of intratumoral T-cell infiltration was
also conducted by staining the tumor samples for CD8 and
reported separately by Dr. Jennifer Wargo’s group. These
results of patient samples are consistent with the data
observed in the mouse model, and suggest that treatment
of patients with BRAF inhibitor may also increase T-cell
infiltration into tumors via inhibition of intratumoral VEGF
production.

Discussion
To date, a number of specific kinase inhibitors that target

BRAF(V600E) to treat melanoma have been generated and
applied in clinical trials (8–10), with 50% to 70% of
patients with BRAF(V600E) mutation showing objective
clinical responses to treatment. However, despite these high
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initial response rates, responses are transient and recur-
rences with treatment-resistant disease typically occur with-
in a year (12, 13, 41). Therefore, combinatorial approaches
to treat melanoma are being actively explored.
ACT therapy using tumor-infiltrating lymphocytes is

one of the most well-established immunotherapeutic
approaches for cancer treatment (42). However, one of the
important factors that limit the efficacyof this therapy is lack
of migration of T cells into the tumor site (43, 44). Using a
very sensitive bioluminescence imaging (BLI) system in
murine models (27), we have previously shown that trans-
duction of tumor-specific T cells with the CXCR2 chemo-
kine receptor can improve the intratumoral migration of
adoptively transferred T cells and enhance antitumor
responses in murine models (28). In the current study, we
tested whether the addition of a BRAF inhibitor could
similarly enhance the antitumor activity of ACT in vivo.
Using a xenograft human melanoma model, A375 trans-
duced to express hgp100 andH-2Db, we found that admin-
istration of PLX4720 could increase tumor infiltration of
adoptively transferred gp100-specific T cells and improved
antitumor responses. This effect was partially mediated by
PLX4720-induced inhibition of VEGF production in mel-
anoma cells. Analysis of tumor biopsies derived from BRAF
inhibitor-treated patients with melanoma were consistent
with the results found in the murine model, showing that
BRAF inhibition could significantly downregulate tumoral
VEGF expression, which correlated with increased tumor
infiltration by T cells. Furthermore, our findings indicated
that BRAF inhibition is capable of enhancing the antitumor
activity of ACT therapy without impairing T-cell function.
VEGF, an immunosuppressive factor secreted by many

tumors, can negatively impact the activity of tumor-infil-
trating immune cells and stimulate the growth of tumor
vasculature (45–47). RNA interference–mediated inhibi-
tion of BRAF(V600E) can decrease the production of VEGF
in melanoma cells with mutant BRAF(V600E; ref. 21);
however, it has remained unclear how constitutive activa-
tion of the BRAF-MAPK signaling pathway can influence
VEGF production. Using a ChIP assay, we have shown that
c-myc, but not p300 or E2F1, is constitutively recruited to

the VEGF promoter and that transcription and production
of VEGF is reduced by PLX4720 in melanoma cells harbor-
ing the V600E mutation. Blocking of VEGF/VEGFR-2 inter-
actions can upregulate endothelial adhesion molecules in
tumor vessels, which can in turn increase the infiltration of
leukocytes in tumors (48). Furthermore, administration of
anti-VEGF Ab can significantly increase infiltration of adop-
tively transferred CD8þ T cells into tumor sites and improve
antitumor responses (37). Using our xenogeneic mouse
tumor model, we found that PLX4720 treatment signifi-
cantly reduced the production of tumoral VEGF, and that
the increased accumulation of tumor-infiltrating T cells was
abrogated in melanoma overexpressing VEGF. Administra-
tion of anti-hVEGF Ab also increased tumor infiltration of
pmel-1 T cells by 2- to 3-fold. Because PLX4720 treatment
typically induced 5- to 10-fold higher levels of T-cell infil-
tration compared with vehicle treatment, it suggests that
reduction of VEGF/VEGFR interactions is not the only
mechanism responsible for the increased T-cell infiltration.
Using gp100-negative tumor cells, PLX4720 treatment
failed to increase T-cell trafficking to tumor sites. These
findings suggest that tumor antigen expression also plays
an important role in T-cell accumulation in tumors. These
findings are consistent with our previous report that IFN-g
produced by tumor-antigen–activated T cells can induce
CXCL10 expression in tumors, in turn resulting in more T-
cell accumulation (49). Further studies will be required to
identify additional mechanisms that may contribute to this
combinational therapy regimen.

In this study, we have shown that administration of
PLX4720 can clearly enhance the infiltration of transferred
T cells and improve the antitumor responses induced by
ACT. Our data are consistent with a recent clinical study
showing that treatment of melanoma patients with a BRAF
inhibitor leads to augmented T-cell infiltration into meta-
static sites (11). Using a BRAF(V600E)-drivenmurinemod-
el, Koya and colleagues have recently shown that BRAF
inhibition can increase MAPK signaling and intratumoral
cytokines secretion by adoptively transferred T cells, leading
to a beneficial antitumor effect (50). Collectively, the
emerging evidence strongly suggests that combinations of
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selective BRAF inhibitorswith immunotherapywill result in
enhanced benefits for patients with melanoma in the very
near future.
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