Phylogenetic Evidence from the IRBP Gene for the Paraphyly of Toothed Whales, with Mixed Support for Cetacea as a Suborder of Artiodactyla

Marta R. Smith,* Mahmood S. Shivji,* Victor G. Waddell,† and Michael J. Stanhope†

*Oceanographic Center, Nova Southeastern University; and †Biology and Biochemistry, Queen’s University, Belfast

Introduction

Recent molecular phylogenetic analyses of Cetacea and of their affinities with Artiodactyla have suggested two surprising possibilities: (1) sperm whales are more closely related with baleen whales (suborder Mysticeti) than with the other toothed whales (suborder Odontoceti; Milinkovitch, Orti, and Meyer 1993; Milinkovitch, Meyer, and Powell 1994) and (2) Cetacea may represent a suborder of Artiodactyla (Graur and Higgins 1994). The first of these phylogenetic hypotheses was based initially on an analysis of portions of mitochondrial 12S and 16S genes (Milinkovitch, Orti, and Meyer 1993) and subsequently on a tandem alignment of portions of the 12S, 16S, and cytochrome 저 loci from 21 species of Cetacea, and several artiodactyl outgroups (Milinkovitch, Meyer, and Powell 1994). In a separate analysis involving the complete cytochrome 저 locus, Arnason and Gullberg (1994) presented data suggesting a further possibility, which was that toothed whales might be closer relatives of baleen whales than of sperm whales. Adachi and Hasegawa (1995) have since reanalyzed the cytochrome 저 data using maximum likelihood and showed that the conclusion is highly sensitive to choice of outgroup taxa, with the majority of situations supporting the baleen/sperm whale clade. Most recently, Arnason and Gullberg (1996), in a further analysis of the complete cytochrome 저 gene, including representatives of all currently recognized cetacean families, present evidence for a monophyletic Odontoceti; however, this conclusion was not strongly supported. There is at present no published account of this issue from the perspective of a nucleotide sequence analysis of a single-copy nuclear gene.

The Graur and Higgins hypothesis suggests that cows are more closely related to cetaceans than to pigs, which disrupts the monophyly of Artiodactyla, resulting in either the interpretation of a paraphyletic Artiodactyla or an Artiodactyla that includes Cetacea as a suborder. This hypothesis was based on the analysis of 11 nuclear encoded protein sequences and five mitochondrial genes from two artiodactyl suborders, one species of cetacean, and either mouse, seal, or mouse and seal as outgroup. We are aware of no published account that addresses this issue from the perspective of a single-copy nuclear gene at the DNA sequence level.

Earlier papers of ours have demonstrated the utility of exon 1 sequences from the gene encoding interpheroreceptor retinoid binding protein (IRBP) for addressing higher level systematics in mammals (Stanhope et al. 1992, 1993, 1996). The purpose of this article is to present information that addresses both these phylogenetic hypotheses regarding Cetacea and their affinities with Artiodactyla, with sequences derived from this same 1.2-kb 5' region of exon 1 of the IRBP gene between 261 and 15 15 of the published human sequence (Fong et al. 1990).

Materials and Methods

The common and scientific names of the species included in the analyses, the order within which they are classified, and number of base pairs of nucleotide sequence represented for each are as follows: rough-toothed dolphin, Steno bredanensis (Cetacea; 1,158); pilot whale, Globicephala macrocephalus (Cetacea; 630); gray whale, Eschrichtius robustus (Cetacea; 1,028); minke whale, Balaenoptera acutorostrata (Cetacea; 1,073); pygmy sperm whale, Kogia breviceps (Cetacea; 1,241); giant sperm whale, Physeter catodon (Cetacea; 1,241); cow, Bos taurus (Artiodactyla; 1,241); pig, Sus scrofa (Artiodactyla; 1,241); horse, Equus caballus (Perissodactyla; 1,177); cat, Felis catus (Carnivora; 1,150); mouse, Mus domesticus (Rodentia; 1,241); dugong, Dugong dugon (Sirenia; 1,046); hyrax, Procavia capensis (Hyracoidea; 1,014); African elephant, Loxodonta africana (Proboscidea; 1,087); and three-toed sloth, Bradypus tridactylus (Edentata; 1,011). Horse, cat, mouse, the paenungulates (dugong, hyrax, elephant), and sloth served as outgroups, utilized in various combinations (described below). With this choice of cetacean taxa we have represented two species of each suborder of Cetacea (pilot whale and rough-toothed dolphin, family Delphinidae, suborder Odontoceti; gray whale, family Eschrichtiidae, suborder Mysticeti; minke whale, family Balaenopteridae, suborder Mysticeti), as well as a representative of each of the two families of sperm whales (Kogiidae and Physeteridae). DNA sequences were determined for giant sperm whale, pygmy sperm whale, minke whale, gray whale, and pilot whale by direct sequencing of PCR amplified fragments. Primers for amplification of this region were the same 1.2-kb 5' region of exon 1 of the IRBP gene between 261 and 15 of the published human sequence (Fong et al. 1990).

Key words: mammalian phylogenetics, paraphyly of Odontoceti, Cetacea, Artiodactyla, IRBP

Address for correspondence and reprints: Michael J. Stanhope, Biology and Biochemistry, Queen’s University, 97 Lisburn Road, Belfast, U.K. BT9 07BL. E-mail: m.stanhope@qub.ac.uk.

© 1996 by the Society for Molecular Biology and Evolution. ISSN: 0737-4038
mouse and cat come from our earlier analysis of this gene (Stanhope et al. 1992).

Relationships within Cetacea were first examined with the tree rooted at pig, cow, and pig/cow together. The artiodactyl–cetacean relationship was then examined using the six species of cetaceans and two artiodactyls, concomitant with one of the following taxa or combinations of taxa as outgroups: (1) horse; (2) cat; (3) mouse; (4) horse, cat, tree rooted at sloth; (5) paenungulates (African elephant, hyrax, dugong), tree rooted at sloth. These various choices of outgroups for the artiodactyl/cetacean relationship also provide a further perspective on the relationships within Cetacea since they provide additional character polarization possibilities. Our recent analysis of IRBP sequences from 25 taxa encompassing all eutherian orders (Stanhope et al. 1996) excepting Pholidota (pangolin) provide convincing evidence for a monophyletic grouping of Cetacea and Artiodactyla, in agreement with a wide range of other sources of data (see, e.g., Gingerich, Smith, and Simons 1990; Novacek 1992; Milinkovitch, Orti, and Meyer 1993). They also strongly support the monophyly of the Paenungulata, again in agreement with a wide range of other sources of data (see, e.g., Novacek 1992; Honeycutt and Adkins 1993; Springer and Kirsch 1993; Porter, Goodman, and Stanhope 1996), suggesting the possibility that choice of this superorder as a sister group to the Artiodactyla/Cetacea clade may facilitate the breaking up of this long branch, allowing better character polarization. Rooting of the tree at sloth in two of the outgroup comparisons is based on the widely held belief that edentates are the most primitive eutherian (Novacek 1992).

The maximum-parsimony (MP), neighbor-joining (NJ; Saitou and Nei 1987), and maximum-likelihood (DNAML; Felsenstein 1981) programs within PHYLIP (Felsenstein 1993) were used for analysis. Kimura two-parameter distances (Kimura 1980) with a transition/transversion ratio of 2.0 were used as input for the NJ analyses. Jukes-Cantor distances yielded very similar results. The DNAML analyses used a transition/transversion ratio of 2.0; varying this parameter to 3.0 resulted in no significant influence on the outcome, but that this was most evident with regard to the artiodactyl/cetacean affinity (table 1). All of the MP and NJ analyses preferentially supported a baleen whale/sperm whale clade, with bootstrap support ranging from 51%–95%. Ten of the 16 analyses supported this clade in excess of 80%, with multiple outgroup taxa generally resulting in higher bootstrap support. The DNAML analyses, however, did not agree with this assessment, with the majority of tests split approximately evenly between baleen/sperm whale and baleen/toothed whale. In contrast to the Adachi and Hasegawa analysis of the cytochrome b data, the traditional hypothesis of toothed/sperm whale received very little support in any of our IRBP tests. All tests supported a monophyletic Cetacea, and Artiodactyla/Cetacea at 100%; the monophyly of baleen whales, sperm whales, and toothed whales (Delphinidae), respectively, received bootstrap support of 97%–100%.

Less of a consensus was evident regarding the precise nature of an artiodactyl/cetacean affinity. A pig/cetacean clade was the favored grouping in 7 of the 15 analyses, the only convincing bootstrap support arising when rodents were used as outgroup (bootstrap support of 75%–91%). A cow/cetacean clade was the favored option in the remaining eight analyses, generally with relatively high bootstrap support. The monophyly of Artiodactyla was never the favored grouping.

These results provide further support for the hypothesis of a paraphyletic Odontoceti, with the highest bootstrap support for monophyly falling at only 20%, and most analyses generally below 10%. We also feel, however, that because of the limited representation of taxa this should remain a tentative hypothesis. These IRBP sequences suggest that the paraphyly of Odontoceti is due to a common ancestry of baleen whales and sperm whales; however, since the maximum-likelihood

Results and Discussion

The results, in agreement with Adachi and Hasegawa’s analysis, indicate that choice of outgroup had a significant influence on the outcome, but that this was most evident with regard to the artiodactyl/cetacean affinity (table 1). All of the MP and NJ analyses preferentially supported a baleen whale/sperm whale clade, with bootstrap support ranging from 51%–95%. Ten of the 16 analyses supported this clade in excess of 80%, with multiple outgroup taxa generally resulting in higher bootstrap support. The DNAML analyses, however, did not agree with this assessment, with the majority of tests split approximately evenly between baleen/sperm whale and baleen/toothed whale. In contrast to the Adachi and Hasegawa analysis of the cytochrome b data, the traditional hypothesis of toothed/sperm whale received very little support in any of our IRBP tests. All tests supported a monophyletic Cetacea, and Artiodactyla/Cetacea at 100%; the monophyly of baleen whales, sperm whales, and toothed whales (Delphinidae), respectively, received bootstrap support of 97%–100%.

Less of a consensus was evident regarding the precise nature of an artiodactyl/cetacean affinity. A pig/cetacean clade was the favored grouping in 7 of the 15 analyses, the only convincing bootstrap support arising when rodents were used as outgroup (bootstrap support of 75%–91%). A cow/cetacean clade was the favored option in the remaining eight analyses, generally with relatively high bootstrap support. The monophyly of Artiodactyla was never the favored grouping.

These results provide further support for the hypothesis of a paraphyletic Odontoceti, with the highest bootstrap support for monophyly falling at only 20%, and most analyses generally below 10%. We also feel, however, that because of the limited representation of taxa this should remain a tentative hypothesis. These IRBP sequences suggest that the paraphyly of Odontoceti is due to a common ancestry of baleen whales and sperm whales; however, since the maximum-likelihood
results do not resoundingly corroborate this view we would also regard this more specific conclusion as one in need of further examination. Evidence for convincing phylogenetic associations must come from a consensus of different data sets and methods of analysis. At present there is no such convincing consensus. Two of the disconcerting factors in regarding any of these three possible clades with confidence are that the proposed groupings can be easily disrupted in any of these data sets or analyses (including this one) with only a few substitutions to the most parsimonious tree, and that the maximum-likelihood bootstrap figures reported here and in the Adachi and Hasegawa study for the favored associations are often near the 50% range.

An additional area of recent discussion regarding cetacean evolution concerns attempts at dating the cetacean radiation. Milinkovitch, Orti, and Meyer (1993) originally estimated that the common ancestor of sperm and baleen whales may have existed 10-15 MYA. They subsequently modified this estimate to approximately 25 MYA (Milinkovitch, Meyer, and Powell 1994). The available fossil evidence suggests a rapid diversification into the principal lineages of cetaceans some 30-34 MYA (Fordyce and Barnes 1994; Arnason and Gullberg 1996). The discovery of Eocene whales with vestigial limbs resembling those of the even-toed artiodactyls, places a common ancestry of Cetacea and Artiodactyla at about 60 MYA (Gingerich, Smith, and Simons 1990). The IRBP gene in all of the cetaceans represented in this analysis appears to be evolving at approximately the adaptive radiation of Cetacea. This figure would result in a date of 32 MYA for the diversification of baleen and sperm whales. This rate estimate, however, of 0.12%/Myr, based on the 34 MYA calibration point, is at odds with other means of estimating evolutionary rates in Cetacea. For example, it has been suggested that about 11 MYA, the Delphinoidae diversified into the various lineages that we see today as porpoises, dolphins, and beluga (Barnes, Domning, and Ray 1985; Milinkovitch, Meyer, and Powell 1994). We only have members of one of these families included in this analysis (pilot whale and rough-toothed dolphin), but they show about 1.6% sequence divergence, yielding a highly conservative rate of at least 0.15%/Myr. This figure is more in line with rates estimated on the basis of a com-

<table>
<thead>
<tr>
<th>Table 1</th>
<th>IRBP Bootstrap Support for Various Cetacean and Artiodactyl/Cetacean Clades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgroup(s)</td>
<td>Test</td>
</tr>
<tr>
<td>Cow</td>
<td>M</td>
</tr>
<tr>
<td>Pig</td>
<td>M</td>
</tr>
<tr>
<td>Cow/pig</td>
<td>M</td>
</tr>
<tr>
<td>Horse</td>
<td>M</td>
</tr>
<tr>
<td>Cat</td>
<td>M</td>
</tr>
<tr>
<td>Mouse</td>
<td>MP</td>
</tr>
<tr>
<td>Horse, cat, root at sloth</td>
<td>MP</td>
</tr>
<tr>
<td>Paenungulates, root at sloth</td>
<td>MP</td>
</tr>
</tbody>
</table>

Non-Bootstrap support is expressed as a percentage. MP: maximum parsimony; DNAML: maximum likelihood; NJ: neighbor joining; NA: not applicable. The favored option in each case is indicated with bold type.
parison involving the outgroup taxa included in this analysis, which suggests that the cetaceans as a group are evolving anywhere from 7%-27% slower than the other orders of mammals. This in turn would yield rate figures of 0.15-0.19%/Myr. This suggests that the more reasonable figure for Cetacea is about 0.17%/Myr, dating the split between baleen and sperm whales at about 22 MYA, and for the cetacean radiation at about 25 MYA. This latter estimate is in approximate agreement with that suggested by Milinkovitch, Meyer, and Powell (1994) and Schlötzer, Amos, and Tautz (1991), and remains curiously at odds with the paleontological view of 30-34 MYA. Elsewhere Milinkovitch (1995) has argued that some of the 34-Myr-old fragmentary fossils are questionable representatives of early mysticetes. Whatever the precise dates, all of the fossil data, as well as the short internodes typical of the molecular analyses, do seem to point to a diversification into the various principal lineages over a surprisingly short period of time.

In regard to the artiodactyl-cetacean affinities, the main consensus emerging from this analysis is that the present IRBP data do not support a monophyletic Artiodactyla. It is not clear, however, whether this is due to a paraphyletic Artiodactyla that has cow more closely related to cetaceans or pig more closely related to cetaceans. The principal set of analyses supporting pig/Cetacea with any degree of bootstrap support comes with rodents as outgroup, which are not as appropriate a choice of sister group to an Artiodactyla/Cetacea clade as are horse or cat (see, e.g., Li et al. 1990; Arnason and Johnson 1992; Honeycutt and Adkins 1993; Stanhope et al. 1993, 1996; Honeycutt et al. 1995), suggesting that the more reliable conclusion may be cow/Cetacea.

In our opinion, both these phylogenetic issues remain far from settled. From the perspective of IRBP, a more rigorous test of a paraphyletic Odontoceti, of the main far from settled. From the perspective of IRBP, a more rigorous test of a paraphyletic Odontoceti, of the principal lineages over a surprisingly short period of time.

Acknowledgments

This work was supported by grants from the Nuffield Foundation and the Royal Society to M.J.S. V.G.W. was supported by a Musgrave studentship from Queen’s University. We thank Dr. Go, for acting as reviewing editor, and two anonymous referees. Dr. Michel Milinkovitch provided helpful comments on an earlier draft of this manuscript. Dr. Scott Wright of the Florida Marine Research Institute and Drs. R. Blaylock and B. Mase of the National Marine Fisheries Service kindly provided cetacean tissues.

LITERATURE CITED

HARADA, M. L., H. SCHNEIDER, M. P. SCHNEIDER, I. SAMPAIO, J. CZELUSNIK, and M. GOODMAN. 1995. DNA evidence on the phylogenetic systematics of New World monkeys: support for the sister grouping of *Cebus* and *Saimiri*.

Mitiko Go, reviewing editor

Accepted April 23, 1996