Approximate Methods for Estimating the Pattern of Nucleotide Substitution and the Variation of Substitution Rates Among Sites

Ziheng Yang and Sudhir Kumar

Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University

We propose two approximate methods (one based on parsimony and one on pairwise sequence comparison) for estimating the pattern of nucleotide substitution and a parsimony-based method for estimating the gamma parameter for variable substitution rates among sites. The matrix of substitution rates that represents the substitution pattern can be recovered through its relationship with the observable matrix of site pattern frequencies in pairwise sequence comparisons. In the parsimony approach, the ancestral sequences reconstructed by the parsimony algorithm were used, and the two sequences compared are those at the ends of a branch in the phylogenetic tree. For instance, a gamma distribution can be assumed for estimating the substitution pattern (Yang 1994a). Reliable estimation of the shape parameter can not only reveal characteristics of the gene but also improves the accuracy of phylogenetic tree reconstruction (e.g., Kuhner and Felsenstein 1994; Tateno et al. 1994).

Both parsimony and likelihood methods have been employed to estimate the pattern of nucleotide substitution and the shape parameter of the gamma distribution for rates among sites. In a likelihood analysis, a substitution model is constructed and relevant parameters are estimated by maximizing the likelihood function. For instance, a gamma distribution can be assumed for rates among sites to estimate the shape parameter of the distribution (Yang 1993, 1994b) and a general Markov-process model of nucleotide substitution can be assumed for estimating the substitution pattern (Yang 1994a). In a parsimony analysis, the nucleotides in ancestral sequences are inferred by minimizing the number of changes (differences) for each site along the tree (Fitch 1971; Hartigan 1973). Then the counted (minimum) numbers of changes at sites are used to estimate the shape parameter of the gamma distribution for rates among sites (e.g., Uzzell and Corbin 1971; Holmquist et al. 1983; Larson and Wilson 1989; Kocher and Wilson 1991; Tamura and Nei 1993; Wakeley 1993). The inferred ancestral sequences are also used to calculate a matrix of frequencies of changes between nucleotides; this matrix is often interpreted as an estimation of the substitution pattern. This approach was previously used to construct the empirical matrix of amino acid substitution probabilities by Dayhoff et al. (1978; see also Jones et al. 1992) and was later used to compare nucleotide sequences for estimating the pattern of nucleotide substitution (Gojobori et al. 1982; Li et al. 1984; Go-
However, the parsimony analysis generally fails to account for nucleotide-frequency bias, transition/transversion rate bias, rate variation across sites, and unequal branch lengths in the tree, so that the reliability of estimates obtained from such analyses may be questionable. For instance, Wakeley (1994) pointed out that if variation of substitution rates among sites is ignored, the transition/transversion rate bias will be underestimated (see also Yang et al. 1994). Nucleotide-frequency biases were also found to mislead parsimony reconstructions of ancestral sequences and lead to biased estimation of the substitution pattern by parsimony (Collins et al. 1994; Perna and Kocher 1995). However, not much is known about the reliability of the parsimony analysis or about the differences between the likelihood and parsimony analyses of the two problems.

The original purpose of this paper was to analyze several real data sets by the likelihood and parsimony methods in order to characterize their differences and to examine the direction and magnitude of systematic errors involved in the parsimony analysis. In our attempts to obtain comparable results, we derived approximate methods for estimating the substitution pattern and the gamma parameter for variable rates across sites. The new methods are described below and are compared with the likelihood methods developed previously.

Data and Methods

Data

We analyzed two data sets of nucleotide sequences and one data set of protein sequences. All three data sets were used for estimating the gamma parameter for rates at sites, while the two data sets of nucleotide sequences were used for estimating the pattern of nucleotide substitution. Whenever the well-established phylogeny was available, it was assumed in the analysis; the effects of the tree topology on the estimations were examined.

Human DNA Sequences of the Control Region of the Mitochondrial Genome

Twenty-five sequences were extracted from the data of 136 different sequences published by Vigilant et al. (1991) for the control region of the human mitochondrial genome. Only sites 1–358 and 604–937 were used (see Hedges et al. 1992), and sites involving gaps were removed. There are 601 sites in each sequence, out of which 510 are constant sites, occupied by identical nucleotides across species. The maximum-likelihood tree for the 25 sequences, obtained by using a divisive algorithm to perform a heuristic tree-search, has many multifurcations, and the data appear to contain little information about the phylogenetic relationship among the sequences (e.g., Hedges et al. 1992). This maximum-likelihood tree (not shown) will be assumed in later analyses.

Small-subunit rRNAs

The 16S-like rRNAs of 10 animals (Placopecten magellanicus, Herdmania momus, Xenopus laevis, Artemia salina, Tripedalia cystophora, Anemonia sulcata, Trichoplax adhaerens, Mnemiopsis leidyi, Microciona prolifera, Scypha lingua), four fungi (Aureobasidium pullulans, Saccharomyces cerevisiae, Athelia bombacina, Blastocladiella emersonii), and three plants (Zea mays, Zamia pumila, Chlamydomonas reinhardtii) in the data of Wainright et al. (1993) were analyzed. After exclusion of gaps from the alignment of those authors, 1,477 nucleotides are left in each sequence. The relevant part of the phylogenetic tree of the authors was used.

Mitochondrial Cytochrome b Sequences

A set of mitochondrial cytochrome b sequences extracted from GenBank, were used to estimate the rate variation among amino acid sites. The species include two whales (Balaenoptera physalus and B. musculus), cow (Bos taurus), rat (Rattus norvegicus), mouse (Mus musculus), opossum (Didelphis virginiana), chicken (Gallus gallus), African clawed frog (Xenopus laevis), carp (Cyprinus carpio), loach (Crossostoma lacustris), trout (Oncorhynchus mykiss), smalltall shark (Carcharhinus porosus), horn shark (Heterodontus francisci), ray (Urolophus concentricus), sea lamprey (Petromyzon marinus), and sea urchin (Paracentrotus lividus). Each sequence has 375 amino acids after exclusion of sites involving gaps. The phylogenetic relationship of the species is well established from morphological and fossil evidences, and the “correct” tree topology (not shown) was assumed.

Methods

Estimation of the Pattern of Nucleotide Substitution

Nucleotide substitution is described by a continuous-time stationary Markov process. The pattern of nucleotide substitution is represented by the “rate matrix” of the process, \(Q = \{ Q_{ij} \} \), where \(Q_{ij} (j \neq i) \) is the rate of substitution from nucleotide \(i \) to \(j \). The row sums of this matrix are zero, and \(-Q_{ii} = \sum_{j \neq i} Q_{ij} \) is the substitution rate of nucleotide \(i \). The matrix of transition probabilities over time \(t \), which is needed in the likelihood calculation (e.g., Felsenstein 1981), can be generated for any \(t \) by

\[
P(t) = \{ P_{ij}(t) \} = e^{tQ},
\]

where \(P_{ij}(t) \) is the probability that a given nucleotide \(i \) will become \(j \) after time \(t \). Because \(t \) and \(Q \) appear in the form \(tQ \) only, \(Q \) is multiplied by a constant so that the average rate of substitution is 1:

\[
- \sum_{i} \pi_{i} Q_{ii} = 1,
\]

while time \(t \) is measured by the average number of substitutions per site. Depending on the context, we use \(t \) to mean time, the distance between two extant sequences, or the branch length in a phylogenetic tree.

Maximum-likelihood estimation of the substitution pattern was performed using the method of Yang.
(1994a), with the general reversible Markov-process model of nucleotide substitution assumed. This model makes a mild restriction about the structure of Q, that is,

$$\pi_iQ_{ij} = \pi_jQ_{ji}, \text{ for any } i, j.$$

(3)

This reversibility restriction, together with equation (2), reduces the number of free parameters in the rate matrix from 11 to 8. The rate matrix Q, as well as branch lengths in the tree, was estimated by maximum likelihood. Estimation of the substitution pattern under the gamma model of variable rates among sites was performed using the discrete-gamma model of Yang (1994b), with eight rate categories used.

Consider two sequences separated by time (distance) t. Let $F_{ij}(t)$ be the probability of observing a site with nucleotides i and j in the two sequences. $F_{ij}(t)$ is equal to the probability of observing nucleotide i in sequence 1, which is the equilibrium frequency (π_i) of nucleotide i, times the transition probability from nucleotide i to j in the time interval t. In other words,

$$F_{ij}(t) = \pi_iP_{ij}(t)$$

(4)

where $F(t) = \{F_{ij}(t)\}$ and $\Pi = \text{diag}\{\pi_1, \pi_2, \pi_3, \pi_4\}$. Equations (1) and (4) can then be used to obtain estimates of t and Q:

$$tQ = \log\{P(t)\} = \log\{\Pi^{-1}F(t)\}.$$

(5)

Because of the requirement of equation (2), both Q and t can be uniquely estimated. The reversibility of the process, which we assume here, implies that $F_{ij}(t) = F_{ji}(t)$, and so the observed $F(t)$ matrix is made symmetrical before equation (5) is applied. The calculation can be carried out by the spectral decomposition (diagonalization) of $P(t)$. Let

$$P(t) = \Pi^{-1}F(t) = U\text{diag}\{\delta_1, \delta_2, \delta_3, \delta_4\}U^{-1},$$

(6)

where the δs are the eigenvalues of $P(t)$ and the columns of U are the corresponding (right) eigenvectors. Then, substituting (6) in (5), we get

$$tQ = U\text{diag}\{\log(\delta_1), \log(\delta_2), \log(\delta_3), \log(\delta_4)\}U^{-1}.\,$$

(7)

When substitution rates among sites are assumed to follow a gamma distribution with shape parameter α, equations 5 and 7 do not hold anymore. The eigenvalues (δs) of $\Pi^{-1}F(t)$ (or $P(t)$) and those (λs) of Q are then related by $\delta_i = (\alpha(\alpha - \lambda_i))^{\alpha}$. Thus the transformation to be used will be

$$tQ = U\text{diag}\{\alpha(1 - \delta_1^{-1/\alpha}), \alpha(1 - \delta_2^{-1/\alpha}), \alpha(1 - \delta_3^{-1/\alpha}), \alpha(1 - \delta_4^{-1/\alpha})\}U^{-1},$$

(8)

with columns of U (the right) eigenvectors of $\Pi^{-1}F(t)$ (e.g., Yang 1994b). Note that $\alpha(1 - \delta_k^{-1/\alpha}) \rightarrow \log(\delta_k)$ when $\alpha \rightarrow \infty$.

We estimate $F_{ij}(t)$ by $(N_{ij} + N_{ji})/N$, where N_i is the number of sites occupied by nucleotides i and j in the two sequences respectively and $N = \sum_i N_i$ is the total number of sites in the sequence. $F(t)$ constructed this way is symmetrical with $\sum_i F_{ij}(t) = 1$. Two possibilities were considered: one is to take the average of the $F(t)$s over all the pairwise comparisons, and the other is to take the average of the Qs calculated from each pairwise comparison.

In a parsimony analysis, the ancestral sequences inferred by parsimony (Hartigan 1973) were used, so one of the two sequences in comparison is ancestral and the other is descendent. All sites including the invariant sites were used in the analysis. When many equally best pathways were possible at a site, an equal weight was assigned to each of them; if there existed 100 equally best pathways, each was given a weight of 1/100. The average of $F(t)$ taken over all branches of the tree was used to estimate t and Q by equation (5). The estimate of t may be considered an average of branch lengths in the phylogenetic tree.

Estimation of the α Parameter of the Gamma Distribution

The gamma distribution has been used to describe variable substitution rates across sites. The distribution with its mean fixed to be one (Yang 1993) has density

$$f(r) = \frac{\alpha^\alpha}{\Gamma(\alpha)} r^{\alpha-1} e^{-\alpha r}, \quad \alpha > 0, \quad r > 0.$$

(9)

The shape parameter α is inversely related to the extent of rate variation at sites (fig. 1). The distribution with $\alpha > 1$ is bell-shaped (Γ), which means that most sites have intermediate rates, while few sites have very low or very high rates. An infinitely large α means a constant rate for all sites (Yang 1993). The distribution with $\alpha \leq 1$ is highly skewed, has an L shape, and means that most sites have very low rates or are almost “invariable,” while mutational “hot spots” exist in the sequence that change at very high rates. So the α parameter, when estimated from the sequence data, reflects characteristics of the gene.

Estimation of the α parameter by the likelihood method was described by Yang (1993, 1994b). The discrete-gamma model of Yang (1994b) was used in this
paper to achieve computational efficiency, with eight categories of rates used to approximate the continuous gamma. Different substitution models were assumed in combination with the gamma model of rates among sites.

In a parsimony analysis, the (minimum) numbers of changes at sites were inferred by the algorithm of Hartigan (1973). Such numbers (if we ignore possible errors in the inference) will follow a Poisson distribution if the rate is constant at sites, or a negative-binomial distribution if the rate is gamma-distributed across sites. This observation has been employed to estimate \(\alpha \) and to test for rate constancy across sites. The method is described below. By the negative-binomial distribution, the probability that \(k \) changes occur at a site is

\[
\text{prob}(k) = \frac{(k + \alpha - 1) \left(\frac{1}{1 + \mu/\alpha} \right)^{\mu/\alpha}}{\alpha - 1},
\]

where \(\alpha \) is the shape parameter of the gamma distribution, and \(\mu \) is the average number of substitutions per site. Let \(N_k \) be the number of sites at which \(k \) changes are inferred to have occurred along the tree. The sample mean and variance of the number of changes at sites can be equated to the mean and variance of the negative-binomial distribution to give

\[
\mu = \bar{x} = \frac{\sum_k k N_k}{\sum N_k},
\]

\[
\alpha = \frac{s^2}{(x^2 - \bar{x})},
\]

where \(s^2 \) is the sample variance. Parameter \(\alpha \) cannot be estimated if \(s^2 < \bar{x} \). This method, commonly used, is known as "the method of moments," and tends to overestimate \(\alpha \) when \(\alpha \) is small even if the numbers of changes at sites inferred by parsimony were accurate (Sullivan et al. 1995; see also Johnson et al. 1992:214–220). A maximum-likelihood method for fitting the negative-binomial distribution was suggested by Sullivan et al. (1995), in which \(\alpha \) and \(\mu \) were estimated by numerical maximization of the log-likelihood function:

\[
\log(L) = \sum_k N_k \log\{\text{prob}(k)\}
\]

\[
= \sum_k N_k \left\{ \log(k + \alpha - 1) - \frac{\alpha}{\alpha - 1} \log(1 + \mu/\alpha) + k \log\left(\frac{\mu/\alpha}{1 + \mu/\alpha} \right) \right\}.
\]

The estimate of \(\mu \) from equation (12) is identical to \(\bar{x} \) (equation 11).

Nevertheless, we suggest that, given the ancestral sequences inferred by parsimony, the number of "changes" at a site should better be interpreted as the number of "differences" between the compared sequences at the ends of branches along the tree. Unlike the number of substitutions, the number of differences does not follow a negative-binomial distribution when rates at sites are gamma-distributed. In the following, we derive its correct distribution, and thus a new parsimony-based method for estimating \(\alpha \). Assuming a Poisson-process model of substitution, we obtain the probability that a nucleotide (or amino acid) \(i \) will become \(j \) after time \(t \) as

\[
P_{ij}(t) = \begin{cases} \frac{1 + c - 1}{c} \exp\left(-\frac{c}{c - 1} t\right), & \text{if } i = j, \\ \frac{1}{c - 1} \exp\left(-\frac{c}{c - 1} t\right), & \text{if } i \neq j, \end{cases}
\]

where the number of character states \(c \) is 4 for nucleotide sequences or 20 for amino acid sequences. The conditional probability of observing a site with a specific character pattern with \(k \) differences along all the branches of the tree, given that the substitution rate for the site is \(r \) (which is a gamma variable), is

\[
\text{prob}(k|r) = (P_{ii}(rt))^{k-1} (P_{ij}(rt))^k.
\]

The unconditional probability is then

\[
\text{prob}(k) = \int_0^\infty \text{prob}(k|r) f(r) \, dr,
\]

where \(f(r) \) is given in equation (9). When we use the discrete-gamma model (Yang 1994b), with several categories used to approximate the continuous gamma, we have

\[
\text{prob}(k) = \sum_i f(r_i) \times \text{prob}(k|r_i),
\]

where \(f(r_i) = 1/8 \) is the frequency of the category with rate \(r_i \). The rate \(r_i \) for category \(i \) is a function of \(\alpha \) and can be calculated by the method of Yang (1994b). The log-likelihood function is then

\[
\log(L) = \sum_k N_k \log\{\text{prob}(k)\}
\]

\[
= \sum_k N_k \left\{ \log\left(\frac{1 + c - 1}{c} \exp\left(-\frac{c}{c - 1} t\right)\right) \sum_i f(r_i) \left(\frac{1 - c}{c - 1} \exp\left(-\frac{c}{c - 1} r_i t\right) \right)^{k-1} \left(\frac{1}{c - 1} \exp\left(-\frac{c}{c - 1} r_i t\right) \right)^k \right\}.
\]

Note that the summation over \(k \) is equivalent to summing over sites in the sequence or over all the possible site patterns. Parameter \(\alpha \) can be estimated by numerical maximization of (17). Time \(t \) needed in equation (17) can be calculated as \(\bar{t} / b \) (equation 11), where \(b \) is the number of branches in the tree. Although this is clearly an underestimate of the average branch length in the tree, using a larger value does not seem to improve the estimation of \(\alpha \). In this paper, this estimate of \(t \) was used.

Results

Estimation of the Pattern of Nucleotide Substitution

Human Mitochondrial DNAs

The estimated rate matrices by the likelihood methods are given in table 1. The sequences are very similar,
and most changes are transitions; the transition/transversion rate ratio, averaged over nucleotide frequencies, is 15.08. Without any substitution-rate bias, the diagonal elements of \(Q \) would be close to −1, the off-diagonal elements close to 1/3, and the transition/transversion rate ratio would be close to 0.5. Substitution rates in the mitochondrial control region are thus highly biased. As noted by Yang (1994a), estimation of the substitution pattern does not seem to be sensitive to the assumed tree topology; use of the star phylogeny (table 1b) is seen to produce very similar results. Substitution rates are highly variable among sites in these sequences (\(\alpha = 0.172 \pm 0.037 \)). Compared with the substitution pattern estimated under the gamma model of rates among sites (table 1c), ignoring the rate variation among sites (table 1a) leads to more similar substitution rates and to underestimated transition/transversion rate ratio. Nevertheless, the estimated rate matrices are quite similar to each other whether or not the rate variation among sites is taken into account in the model. This similarity appears to be partly due to the similarity of the sequences.

Estimation of the substitution pattern by the parsimony method (equation 5 or 7) is explained in table 2. Counting the site patterns at each site in all pairs of sequences along branches in the tree produces the matrix of counts shown in table 2a. The sum of elements of this matrix is the number of sites (601) times the number of branches in the (multifurcating) tree (39). Dividing this matrix by 23,439 (= 601 \(\times 39 \)) produces the matrix \(F(t) \). The row sums of \(F(t) \) give estimates of the nucleotide frequencies, that is, 0.23615 (T), 0.29651 (C), 0.33067 (A), and 0.13665 (G). Equation (5) was then used to calculate \(P(t) \) and \(Q \). The estimated rate matrix \(Q \) (table 2c) is similar to that obtained by the likelihood analysis (table 1a). The average transition/transversion rate ratio estimated by parsimony (14.98) is also close to that obtained from the likelihood analysis (15.08) (table 1a).

Results obtained from pairwise comparisons of sequences are given in table 3. The matrix in table 3a was obtained by averaging \(F(t) \) over all pairwise comparisons before equation (5) was applied, while that in table 3b is an average of the estimated \(Qs \) for each pairwise comparison. The latter approach was not used in the parsimony analysis because the estimated \(Qs \) for short
Branches were unreliable. Table 3c was obtained from the average F(t) over branches by equation (8) with α fixed at 0.17. The pairwise comparison produced results similar to the likelihood results, although for this data set, the parsimony results appear to be better.

Small-subunit rRNAs

Results obtained from the analysis of the 16S-like rRNAs are presented in table 4. Substitution rates between different pairs of nucleotides are much more similar to one another than those in human mtDNAs (see tables 1, 2, and 3), and the average transition/transversion rate ratio is estimated to be 1.59. Allowing for rate variation at sites by assuming the gamma model of rates among sites gives quite reliable estimates of the substitution pattern for this data set.

Table 4
Estimates of the Pattern of Nucleotide Substitution for the 16S-like rRNAs

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Likelihood, constant rate at sites:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-1.0952</td>
<td>0.6778</td>
<td>0.2143</td>
<td>0.2031</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.8655</td>
<td>-1.2876</td>
<td>0.2235</td>
<td>0.1985</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.2020</td>
<td>0.1650</td>
<td>-0.8460</td>
<td>0.4790</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.1984</td>
<td>0.1519</td>
<td>0.4964</td>
<td>-0.8466</td>
<td></td>
</tr>
<tr>
<td>(b) Likelihood, gamma rates at sites:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-1.0997</td>
<td>0.7364</td>
<td>0.7160</td>
<td>0.1873</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.9404</td>
<td>-1.3435</td>
<td>0.2141</td>
<td>0.1809</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.1659</td>
<td>0.1580</td>
<td>-0.8127</td>
<td>0.4887</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.1830</td>
<td>0.1446</td>
<td>0.5064</td>
<td>-0.8340</td>
<td></td>
</tr>
<tr>
<td>(c) Parsimony:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>-1.0757</td>
<td>0.6453</td>
<td>0.2185</td>
<td>0.2119</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.8468</td>
<td>-1.2916</td>
<td>0.2345</td>
<td>0.2104</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.2166</td>
<td>0.1689</td>
<td>-0.8452</td>
<td>0.4697</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.2112</td>
<td>0.1398</td>
<td>0.4952</td>
<td>-0.8662</td>
<td></td>
</tr>
<tr>
<td>(d) Pairwise, constant rate for sites:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-1.0979</td>
<td>0.6693</td>
<td>0.2067</td>
<td>0.2219</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.8547</td>
<td>-1.2937</td>
<td>0.2308</td>
<td>0.2082</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.1948</td>
<td>0.1704</td>
<td>-0.8291</td>
<td>0.4639</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.2168</td>
<td>0.1593</td>
<td>0.4807</td>
<td>-0.8568</td>
<td></td>
</tr>
<tr>
<td>(e) Pairwise, gamma rates for sites with α = 0.3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-1.1590</td>
<td>0.8060</td>
<td>0.1639</td>
<td>0.1892</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.1029</td>
<td>-1.3061</td>
<td>0.1988</td>
<td>0.1681</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.1545</td>
<td>0.1468</td>
<td>-0.7607</td>
<td>0.4595</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.1848</td>
<td>0.1286</td>
<td>0.4761</td>
<td>-0.7896</td>
<td></td>
</tr>
</tbody>
</table>

Note.—The average transition/transversion rate ratios are 1.59, 1.85, 1.48, 1.30, and 2.02 for (a), (b), (c), (d), and (e), respectively. See Note to table 1.

Estimation of the Rate Variation Across Sites

Human Mitochondrial DNAs

The human control-region DNA sequences were analyzed using the likelihood and parsimony methods to estimate the gamma parameter for variable substitution rates among sites. The results are shown in table 5a. The parsimony algorithm (Hartigan 1973) suggests no change at 510 invariant sites in the data, and one, two, three, and four changes (differences) at 62, 13, 9, and 7 sites, respectively. The mean and variance of the number of changes at a site are μ = 0.238 and σ² = 0.455, from which the α parameter can be estimated by the method of moments (equation 11) as α = 0.261 (table 5a). The maximum-likelihood method of Sullivan et al. (1995) (equation 12) applied to these numbers of changes inferred by parsimony gave an estimate α = 0.234, and the new method of this paper (equation 17) produced the estimate α = 0.179.

The maximum-likelihood method applied to the original sequence data (Yang 1994b) produced estimates 0.172 and 0.269 for α and μ, respectively, when the general reversible-process model of nucleotide substitution (Yang 1994a) was assumed, μ being calculated as the sum of branch lengths along the tree. For these data, parsimony (the method of moments) overestimates α by 52% and underestimates the amount of evolution (μ) by 12%, while the new method proposed in this paper is very effective in reducing the bias in the parsimony estimate of α. The similarity of the sequences appears to be the major reason for the similarity of the α estimates obtained by the likelihood method when different models were assumed. In these data, the nucleotide frequencies are biased, and the transition/transversion rate ratio is very high, so that the substitution model of Jukes and Cantor (1969) is quite unrealistic (see the log-likelihood values of different models in table 5a). Yet, this simple model produced an estimate of α that is quite close to that obtained under more realistic models.

Small-subunit rRNAs

Much greater differences were found between likelihood and parsimony methods when the sequences are more different. Table 5b lists estimates of μ and α by the two methods for the rRNA sequences. Reconstruction of ancestral sequences by parsimony suggests 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 changes at 888, 256, 105, 84, 59, 43, 26, 9, 4, 2, and 1 site(s), respectively. By a similar analysis, we obtained the following estimates...
Table 5
Estimates of the α Parameter of the Gamma Distribution and the Average Number of Substitutions per Site Along the Tree (μ) by Different Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>α</th>
<th>μ</th>
<th>ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) For the control region of mtDNA of 25 humans:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP (method of moments)</td>
<td>0.261</td>
<td>0.238</td>
<td></td>
</tr>
<tr>
<td>MP (Sullivan et al. 1995)</td>
<td>0.234</td>
<td>0.378</td>
<td></td>
</tr>
<tr>
<td>MP (equation 17)</td>
<td>0.179</td>
<td>0.238</td>
<td></td>
</tr>
<tr>
<td>ML (Jukes and Cantor 1969)</td>
<td>0.173 ± 0.038</td>
<td>0.254</td>
<td>0.553</td>
</tr>
<tr>
<td>ML (Kimura 1980)</td>
<td>0.165 ± 0.036</td>
<td>0.262</td>
<td>0.928</td>
</tr>
<tr>
<td>ML (Yang 1994a)</td>
<td>0.172 ± 0.037</td>
<td>0.269</td>
<td>1.891</td>
</tr>
</tbody>
</table>

(b) For the 16S-like rRNAs of 17 species:

<table>
<thead>
<tr>
<th>Method</th>
<th>α</th>
<th>μ</th>
<th>ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP (method of moments)</td>
<td>0.572</td>
<td>0.980</td>
<td></td>
</tr>
<tr>
<td>MP (Sullivan et al. 1995)</td>
<td>0.446</td>
<td>0.980</td>
<td></td>
</tr>
<tr>
<td>MP (equation 17)</td>
<td>0.373</td>
<td>0.980</td>
<td></td>
</tr>
<tr>
<td>ML (Jukes and Cantor 1969)</td>
<td>0.326 ± 0.021</td>
<td>1.199</td>
<td>0.312</td>
</tr>
<tr>
<td>ML (Kimura 1980)</td>
<td>0.311 ± 0.020</td>
<td>1.270</td>
<td>0.373</td>
</tr>
<tr>
<td>ML (Yang 1994a)</td>
<td>0.312 ± 0.020</td>
<td>1.295</td>
<td>0.446</td>
</tr>
</tbody>
</table>

(c) For the cytochrome b of 16 species:

<table>
<thead>
<tr>
<th>Method</th>
<th>α</th>
<th>μ</th>
<th>ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP (method of moments)</td>
<td>0.928</td>
<td>1.891</td>
<td></td>
</tr>
<tr>
<td>MP (Sullivan et al. 1995)</td>
<td>0.606</td>
<td>1.891</td>
<td></td>
</tr>
<tr>
<td>MP (equation 17)</td>
<td>0.553</td>
<td>1.891</td>
<td></td>
</tr>
<tr>
<td>ML (Poisson)</td>
<td>0.455 ± 0.048</td>
<td>2.256</td>
<td>0.435</td>
</tr>
<tr>
<td>ML (equal-input)</td>
<td>0.401 ± 0.042</td>
<td>2.612</td>
<td>0.435</td>
</tr>
<tr>
<td>ML (Jones et al. 1992)</td>
<td>0.435 ± 0.045</td>
<td>2.726</td>
<td>0.455</td>
</tr>
</tbody>
</table>

Note.—The parsimony analysis (MP) infers the numbers of changes (differences) at sites and uses the method of moments (equation 11), the likelihood method of Sullivan et al. (1995) (equation 12), or the new method of this paper (equation 17) to estimate α and μ. In the likelihood analysis (ML), a (discrete-) gamma model of rates across sites was assumed (Yang 1994b), in combination with a Markov-process model of nucleotide or amino acid substitution. Substitution models assumed for the two data sets of nucleotide sequences are those of Jukes and Cantor (1969), Kimura (1980), and the general reversible-process model (Yang 1994a), while those for the mitochondrial cytochrome b (375 amino acids) are the Poisson-process model, the equal-input (or proportional) model, and the empirical model of Jones et al. (1992). ℓ is the log-likelihood value under the model, calculated from the original sequence data.

Based on these numbers of changes inferred by parsimony: μ = 0.980, and α = 0.572 by the method of moments (equation 11), α = 0.446 by the method of Sullivan et al. (1995) (equation 12), and α = 0.373 by the new method of this paper (equation 17).

The maximum-likelihood method applied to the original sequence data produces estimates μ = 1.295 and α = 0.312 under the general reversible-process model (Yang 1994a) (table 5b). Parsimony (method of moments) is seen to underestimate μ by 24% and to overestimate α by 83%. In these data, the transition/transversion rate ratio is not very high, and the nucleotide-frequency bias does not seem to have a large effect on the estimation of α, as estimates obtained from the simple models of Jukes and Cantor (1969) and Kimura (1980) are quite similar to that obtained under the general reversible-process model.

Mitochondrial Cytochrome b Sequences

Results obtained from analyzing the mitochondrial cytochrome b sequences are presented in table 5c. The parsimony algorithm suggests 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 amino acid changes at 169, 52, 39, 30, 20, 23, 19, 12, 5, 4, and 2 sites, respectively. These numbers of changes at sites give μ = 1.891, and α = 0.928 by the method of moments (equation 11), α = 0.606 by the method of Sullivan et al. (1995) (equation 12), and α = 0.553 by the new method of this paper (equation 17).

In the likelihood analysis of the original sequence data (Yang 1994b), three models of amino acid substitution were assumed: the Poisson-process model, which assumes equal substitution rate between any amino acids; the “equal-input” model, by which the rate of substitution is proportional to the frequency of the target amino acid (i.e., Q_i = π_i); and the empirical model of amino acid substitution derived by Jones et al. (1992) from the SwissProt data bank Release 22. The likelihood values under the three substitution models are drastically different, and the empirical model of Jones et al. (1992) fits the data much better than the other two models, while the fit of the Poisson-process model is the poorest (table 5c). As the estimates obtained under the empirical model of Jones et al. (1992) appear to be most reliable, the results suggest that for these data, parsimony (method of moments) overestimates α by 113% and underestimates the amount of evolution (μ) by 31%.

Substitution rates at sites “estimated” by the approach of Yang (1995a) and Yang and Wang (1995) under the model of Jones et al. (1992) were plotted along the sequence in fig. 2. Substitution rates at sites appear to be related to the functional domains of the protein; sites in the transmembrane regions tend to have higher rates than other sites in the protein.

In comparison with estimation of the substitution pattern, estimation of the α parameter appears to be more sensitive to the assumed tree topology; the use of
totally wrong trees such as the star phylogeny tends to underestimate α (Yang 1994b). The reason seems to be that a small α means more mutational “hot spots” in the sequence, the existence of which would explain some of the variable site patterns by the wrong tree, which would otherwise be incompatible with the topology. Nevertheless, it appears possible to obtain reliable estimates of α even when the true phylogeny is unknown, as estimates obtained from using more-or-less reasonable trees have been found to be very similar (Yang 1994b, 1995a; Yang et al. 1994). For example, application of various tree-reconstruction methods implemented in the MEGA program package (Kumar et al. 1993) to the cytochrome b data produced four estimated (incorrect) tree topologies; estimates of α obtained from those trees under the empirical model of Jones et al. (1992) are in the range 0.436–0.446, and these estimates are very similar to that (0.435) obtained by using the correct topology (table 5b).

Discussions

Generalized Sequence Distances

As indicated before, estimate of t from equation (5) can be considered a measure of pairwise distance under the general reversible-process model (Yang 1994a), and equation (8) is an extension of the distance formula to the case of gamma rates at sites. For the small-subunit rRNA data analyzed in this paper, estimates of pairwise distances by equation (5) are identical to those obtained under the maximum-likelihood criterion (Yang 1994a) at the seventh or eighth decimal points (results not shown), although in general the method is not a maximum-likelihood estimator. The distance measure will reduce to the appropriate distances when the true model is simpler than the general reversible model, such as those of Jukes and Cantor (1969) and Kimura (1980).

Estimation of sequence distance (d) by equation (5) appears to be first suggested by Rodriguez et al. (1990) (see also Tavaré 1986), although the method of Lanave et al. (1984) can be expected to produce similar results (Zharkikh 1994; Yang 1995b). Rodriguez and colleagues’ version of the formula is

$$t = \text{trace}(\Pi \log(\Pi^{-1}F(t))),$$

(18)

where the notation $\text{trace}(A)$ means the sum of the diagonal elements of the matrix A. Those authors, however, did not make $F(t)$ symmetrical, so their method is numerically less stable; neither does it lead to a legitimate estimate of the substitution pattern (Q).

This distance measure is also very similar to that suggested by Barry and Hartigan (1987), known more recently as the LogDet or “paralinear” distance (Lake 1994; Steel 1994; Zharkikh 1994):

$$\hat{d} = -\frac{1}{4} \log(\text{Det}(F(t))).$$

(19)

where the notation $\text{Det}(A)$ means the determinant of A, which is equal to the product of the eigenvalues of A. Consider the limiting case of infinitely long sequences, where the data matrix $F(t)$ will be the expected frequencies under the model. Since $\text{Det}(AB) = \text{Det}(A)\text{Det}(B)$, we have, in expectation,

$$\hat{d} = -\frac{1}{4} \log(\text{Det}(IIP(t)))$$

$$= -\frac{1}{4} \log(\text{Det}(IIP)(P(t)))$$

$$= -\frac{1}{4} \log \left(\prod_k \pi_k \prod_k e^{kI} \right)$$

$$= -\frac{1}{4} \sum_k \log \left(\pi_k \right) - t \left(\frac{1}{4} \sum_k \lambda_k \right),$$

(20)

where the λ_ks are the eigenvalues of Q. Equation (20) suggests that $\sum_k \log(\pi_k)/4$ should be subtracted from d. The factor $\sum_k \lambda_k/4 = \text{trace}(Q)/4 = \Sigma(1/4)$ is equal to t if the nucleotides have equal frequencies 1/4 (for example, under the models of Jukes and Cantor [1969] or Kimura [1980]) but is not in presence of nucleotide frequency bias (cf: equation 2). So although d is a linear function of t, it generally does not converge to the expected number of nucleotide substitutions per site.

Both distances (equations 18 and 19) are applicable to amino acid sequences. Both distances are, however, inapplicable when any of the eigenvalues of $\Pi^{-1}F(t)$ (for equation 5 or 8) or $F(t)$ (for equation 19) are negative. Approaches like that of Tajima (1993) may then be helpful. With protein sequences, the absence of some amino acids in the data (i.e., $\pi_i = 0$ for some i) also cause problems, and ad hoc treatment is necessary. Barry and Hartigan (1987; see also Steel 1994) argue that the LogDet formula estimates an average distance when the substitution process is nonstationary. However, such arguments can be applied to any distance measure currently used, in the sense that the estimated distance (or pattern) can be interpreted as an average of a variable substitution rate, and they do not provide evidence that the LogDet
formula is superior to other distances when nucleotide frequencies are unequal in different sequences.

Estimation of the Substitution Pattern

The parsimony method lacks a clearly specified model with well-defined parameters. This makes it difficult to interpret results and to assess biases in estimates obtained from a parsimony analysis. For example, estimates of $F(t)$ obtained from the parsimony analysis have often been inaccurately interpreted as estimates of substitution rates (Q). The failure to explicitly consider branch lengths in the parsimony analysis also poses difficulties in the interpretation of the parsimony estimates of the substitution pattern. Clearly, $F(t)$ or $P(t)$ is dependent on the amount of evolution as reflected in t. If t is close to zero, $P(t)$ will be close to the unit matrix, while if t is very large, $P(t)$ will merely reflect the equilibrium nucleotide frequencies as $P_{ij}(\infty) = \pi_j$. The biases in the estimated rate matrix Q caused by taking the average of many $P(t)$ or $F(t)$ that correspond to different branch lengths are unclear. The same problem exists with the pairwise comparison approach, although the behaviors of the two methods are different. For example, similar branch lengths in the tree are favorable to parsimony, but star-like phylogenies are favorable to the pairwise approach. It may be worthwhile to explore methods for weighting $F(t)$s according to the branch length or sequence distance (t).

Because the parsimony inference of ancestral sequences ignores reconstructions that require more changes than the most parsimonious reconstructions, the method underestimates the off-diagonal elements of $F(t)$ or $P(t)$ and thus the amount of evolution (t). However, biases in estimates of Q by equation (5) are not very clear. The parsimony reconstruction ignores the biases in substitution rates between nucleotides when the ancestral sequences are inferred, and it may be expected to give more similar estimates of elements of Q, or underestimated transition/transversion rate ratio. This seems to be the case for the two data sets analyzed in this paper, although the biases do not seem to be very large. Another difference between the two methods is that the pairwise method does not depend on the phylogeny and involves much less computation.

Estimation of the Gamma Parameter for Variable Rates Among Sites

The (minimum) numbers of changes at sites inferred by parsimony are underestimates, as the method ignores, at least, multiple substitutions within one lineage. The underestimation is obviously more serious at fast-changing sites than at slow-changing sites. Thus, the method of moments and the method of maximum likelihood of Sullivan et al. (1995) (equations 11 and 12) are expected to underestimate the extent of rate variation and to overestimate α. Wakeley (1993) pointed out that parsimony underestimates both the mean and the variance of the number of changes at sites, but the underestimation of the variance is more serious than that of the mean, so α will be overestimated by equation (11). By reinterpreting the number of “changes” inferred by parsimony as the number of “differences,” the new method of this paper (equation 17) considerably reduced the bias in parsimony estimates of α. However, the new method also overestimates α, as the number of differences is more severely underestimated in fast-changing sites than in slow-changing sites. Unequal branch lengths in the tree also causes biases in the estimate of α as an average branch length is used in equation (17). It can be expected that adding sequences to the data to break long branches in the tree and to increase occurrences of different changes will reduce the bias of parsimony estimates of the α parameter.

Program Availability and Performance

Maximum likelihood analyses of this paper were performed using the PAML program package, which is distributed by Z. Yang and can be obtained by anonymous file transfer protocol at ftp.bio.indiana.edu under the directory molbio/evolve. Two programs, baseml and aaml, are for analyzing nucleotide and amino acid sequences, respectively. Approximate methods described in this paper were implemented in a separate program (pamp) in the same package. The likelihood calculations for each of the three data sets analyzed in this paper took a few hours on a SUN Sparc Station, while the parsimony calculations took a few seconds on the same machine.

Acknowledgments

We thank Masatoshi Nei, Jack Sullivan, and the anonymous reviewers for comments on the manuscript. This study was supported by National Institutes of Health and National Science Foundation grants to M. Nei.

LITERATURE CITED

