L. Tokgözoğlu¹, F. Özmene¹, S. Kes¹. ¹Hacettepe University, Medical School, Cardiology Dept., Ankara, Turkey; ²Hacettepe University, Neurology, Ankara, Turkey

The left atrial appendage (LAA) is an important source of systemic embolic events. The purpose of this study was to evaluate the LAA function with tissue Doppler echocardiography and compare them with the classical LAA function parameters especially in patients with spontaneous echo contrast.

To assess left atrial appendage (LAA) wall velocities, 115 stroke patients underwent tissue Doppler echocardiography during a clinically indicated transesophageal echocardiography procedure. The LAA flow volume, LAA minimum and maximum areas, LAA orifice size, LAA flow propagation velocity and mitral flow propagation velocity (MFPV) were also evaluated.

Results: Patients with spontaneous echo contrast (37 patients) have higher LAA minimum (3.3±1.0 vs 1.8±0.9, p=0.001) and max areas (5.7±2.3 vs 3.7±1.2, p=0.0001) and lower left atrial appendage flow velocity just before the onset of QRS complex (LAAa) is lower in patients with SEC (4.2±2.2 vs 9.3±3.6, p=0.001) but the negative wave just after the onset of QRS complex (LAAs) and the positive wave before the electrocardiographic P wave (LAAp) are not significantly different between patients with and without SEC, p=0.05). LAAa is correlated with LAA flow velocities but the LAAa and LAAp does not correlate. Patients with lower LAAa have larger LAA areas (For LAA min: p=0.001, n=4, for LAA max: p=0.006, n=38) and lower LAA flow velocity (p=0.004, n=34), MFPV is only correlated LAAs (n=32, p=0.005).

Conclusions: 1) The left atrial appendage wall velocities the outflow positive wave just before the onset of QRS complex (LAAa) is useful clinical parameter for the evaluation of patients with spontaneous echo contrast 2) Patients with spontaneous echo contrast have lower LAA wall velocity 3) Left atrial appendage wall velocity is correlated with LAA flow velocity. 4) The positive wave before the electrocardiographic P wave may be related with the left ventricular diastolic functions.

Thus, conventional TEE examination with the integration of tissue Doppler analysis can be useful for a comprehensive assessment of left atrial appendage function.

871
Left ventricular hypertrophy/noncompaction is not associated with stroke or peripheral embolism.

C. Stoelberger¹, J. Finsterer². ¹ Vienna, Austria; ²KA Rudolfstiftung, Vienna, Austria

Since its first description left ventricular hypertrophy/noncompaction (LVHT) is reported to be associated with embolism. Aim of the study was to assess the number of stroke or embolism in LVHT patients and in control patients matched with regard to age, sex and left ventricular systolic function.

Design, Setting, Patients and Results: Included in this retrospective study were patients in whom LVHT was diagnosed echocardiographically between 1995-2002. The control group comprised age-, sex-, and left ventricular fractional shortening matched patients who had undergone echocardiography between July and September 2002. Both groups of patients were contacted by telephone between October and December 2002 and were asked if they have ever suffered from stroke or peripheral embolism. Among the 62 patients with LVHT (14 female, 48 male, mean age 53 years, left ventricular fractional shortening 6–53%) 5 patients had suffered from stroke and 1 patient from peripheral embolism during their lifetime. Among the 62 control patients (14 female, 48 male, mean age 54 years, left ventricular fractional shortening 6–48%) 9 patients had suffered from stroke during their lifetime.

Conclusions: This study shows that strokes or peripheral embolic events are not increased in patients with LVHT when compared with age-, sex-, and left ventricular fractional shortening-matched controls. LVHT by itself does not seem to be a risk factor for stroke or embolism and thus, not an indication for oral anticoagulation.

872
Importance of transesophageal echocardiography for detection of cardiac source of embolism according to age groups.

A. Timilcoe, M. Li, B. Manco, J. Abreu, A. Abreu, L. Sousa, N. Pelciano, A. Fariasco, J. Feliciano, C. S. Salomão, J. Quinina. Santa Marta Hospital, Cardiology department, Lisbon, Portugal

Background: Transesophageal echocardiography (TEE) is a very useful diagnostic tool to identify cardiac source of systemic embolism. Is the diagnostic capacity and the identified anomalies detected the same for different age groups?

Objectives: We sought to evaluate the diagnostic capacity and the findings detected by TEE in the search for a cardiac source of systemic embolism according to age.

Population and Methods: Retrospective analysis of 771 consecutive patients submitted to TEE from 1994 to 2003 to exclude cardiac embolic source. Patients were divided into 3 groups: Group I: <50 years (n=324, 39%8 years, 46% males); Group II: 50-74 years (n=392, 61±7 years, 55% males); Group III: >75 years (n=54, 78±13 years, 33% males). We evaluated the type of embolic phenomenon, the presence of spontaneous echo contrast (SC) or thrombi in left atrial appendage and/or left atrium, atrial septal defect (ASD), atrial septum aneurysm (ASA), patent foramen oval (PFO), prominent plaques in the thoracic aorta, mitral valve disease, valvular endocarditis and intra-cardiac tumours.

Results: There were strokes in 2% of patients (p=NS), transient ischaemic attacks in 22, 15 and 11% (p=0.03 for Group I vs. II) and peripheral embolism in 6, 8 and 15% of patients (p=0.04 for Group I vs. III), respectively. The findings are reported in the table (*p<0.05, GI vs GII, GII vs GI).

<table>
<thead>
<tr>
<th></th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>3 (0.9)</td>
<td>4 (1)</td>
<td>0</td>
</tr>
<tr>
<td>PFO</td>
<td>23 (7)</td>
<td>20 (6)</td>
<td>3 (8)</td>
</tr>
<tr>
<td>ASA</td>
<td>19 (6)</td>
<td>27 (7)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Thrombi</td>
<td>13 (4)</td>
<td>44 (11)</td>
<td>4 (7)</td>
</tr>
<tr>
<td>SC</td>
<td>(3)</td>
<td>66 (17)</td>
<td>14 (26)</td>
</tr>
<tr>
<td>Aortic plaques*</td>
<td>13 (4)</td>
<td>74 (19)</td>
<td>24 (44)</td>
</tr>
<tr>
<td>Positive*</td>
<td>85 (26)</td>
<td>155 (50)</td>
<td>35 (65)</td>
</tr>
<tr>
<td>≥2 embolic sources*</td>
<td>1 (0.3)</td>
<td>18 (5)</td>
<td>9 (17)</td>
</tr>
</tbody>
</table>

Conclusions: There was a better diagnostic capacity of TEE in elderly patients, where there was frequently an association between several potentially embolic sources. Spontaneous echo contrast and prominent aortic plaques were the predominant findings in patients above 50 years of age.

VALVULAR HEART DISEASE
874
Prevalence of diastolic dysfunction in patients with aortic stenosis and preserved left ventricular systolic function.

L.A. Smith¹, G.S. Hillis², S.J. Cowell², A.C. White³, D.E. Newby³, N.A. Boon³, D.B. Northridge³. ¹University of Edinburgh, Cardiovascular Research, Edinburgh, United Kingdom; ²Aberdeen Royal Infirmary, Cardiology, Aberdeen, United Kingdom; ³Western General Hospital, Cardiology, Edinburgh, United Kingdom

Purpose: Historical data suggest that approximately 50% of patients with aortic stenosis (AS) and normal systolic function have evidence of diastolic dysfunction. These data predetermine the identification of several novel echocardiographic indicators of impaired left ventricular (LV) relaxation and increased LV filling pressures. These include early mitral annulus velocity (e‘), ratio of early diastolic filling velocity to early mitral annulus velocity (E/e‘) and left atrial volume indexed for body surface area (LAVI). We hypothesised that the combination of these parameters and traditional methods would identify a higher prevalence of diastolic dysfunction than previously reported.

Methods: Transthoracic Doppler echocardiography was performed in 63 patients (age 65±12 years with AS (mean gradient 27±12 mmHg; aortic valve area (AVA) 1.1±0.4 cm²). Patients with atrial fibrillation, greater than mild mitral regurgitation or LV systolic dysfunction were excluded. Diastolic function was assessed by measurement of transmural E- and A-wave velocity, E-deceleration time (DT), isovolumic relaxation time (IVRT), Doppler tissue imaging of the early septal mitral annulus velocity (e‘) and LAVI. Mean and peak aortic valve gradients, AVA and LV mass indexed for body surface area (LVMi) were recorded. E/A ratio > 2, DT < 150ms, E‘ ratio > 15 or LAVI > 32mL/m² were considered indicative of increased LV filling pressures. E/A ratio <0.7 and/or DT > 240ms and/or IVRT > 90ms and/or e‘ < 5cm/s were considered indicative of impaired relaxation.

Results: 30 patients (48%) had evidence of elevated LV filling pressures: E/A ratio < 2 in 1%, DT > 120ms in 1%, E‘ ratio > 15 in 20% (32%), and LAVI > 32mL/m² in 11% (17%). An additional 19 patients had evidence of impaired relaxation. In total, therefore, 49 patients (78%) had evidence of diastolic dysfunction. There were no significant univariate correlations between severity of AS and E/A ratio, DT, IVRT and LAVI. There were, however, weak correlations between peak and mean aortic valve gradients and e‘ (r=0.26, p=0.05 and n=0.29, p=0.02) and E‘ ratio (r=0.31, n=0.02 and n=0.32, p=0.01). LVMi did not correlate significantly with e‘ (r=0.32, p=0.01), E‘ ratio (r=0.32, p=0.02) and LAVI (r=0.49, p=0.001).

Conclusions: At least 78% of patients with AS and preserved LV systolic function have some evidence of diastolic dysfunction and almost 50% have evidence of elevated LV filling pressures. LVMi is inversely correlated with e‘ velocity and directly with E/e‘ ratio and LAVI.