Amino acid modifications on tRNA†

Jing Yuan1#, Kelly Sheppard1#, and Dieter Söll1,2*

1Department of Molecular Biophysics and Biochemistry and 2Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA

The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation. Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa-tRNA synthetases. However, in the case of four amino acids (Gln, Asn, Cys and Sec), aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life. The process begins with the charging of noncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNA Cys formation or by synthetases with relaxed specificity, such as the non-discriminating glutamyl-tRNA, non-discriminating aspartyl-tRNA and seryl-tRNA synthetases. The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA, which is catalyzed by a group of tRNA-dependent modifying enzymes, such as tRNA-dependent amidotransferases, Sep-tRNA:Cys-tRNA synthase, O-phosphoseryl-tRNA kinase and Sep-tRNA:Sec-tRNA synthase. The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.

Keywords aminoacyl-tRNA; indirect pathways; tRNA-dependent amidotransferase; tRNA-dependent cysteine biosynthesis; selenocysteine biosynthesis

In translation, aminoacyl-transfer RNAs (aa-tRNAs) are employed to convert genetic information stored in messenger RNA sequences to the three-dimensional information manifested in the resulting proteins. Aminoacyl-tRNA synthetases (aaRSs) play a crucial role in maintaining the fidelity of translation by matching each standard amino acid found in proteins to the corresponding tRNA isoacceptors and forming a cognate aa-tRNA pair. The aminoacylation reaction is carried out as a two-step process [1]:

1. $\text{ATP} + \text{aa} + \text{aaRS} \rightarrow \text{aaRS:aa\text{-AMP} + PP}_i$

2. $\text{tRNA} + \text{aaRS:aa\text{-AMP}} \rightarrow \text{aaRS + aa\text{-tRNA + AMP}}$

The first step is the activation of an amino acid with ATP. The aaRSs produce an aminoacyl adenylate by attaching the carboxyl group in the amino acid to the phosphoryl group of AMP. In the second step, the activated amino acid is transferred to the 2’ or 3’ hydroxyl group of the 3’ terminal ribose moiety of tRNA and followed by release of the final product, aa-tRNA. In the classical view, 20 aaRSs catalyze the formation of 20 different aa-tRNA pairs. Each synthetase specifically recognizes a set of tRNA isoacceptors and charges them with the correct amino acid that corresponds to the anticodons of the tRNA molecules.

The first exception to this one synthetase/one set of tRNAs/one amino acid rule was discovered 40 years ago [2], when it was shown that *Bacillus* Gln-tRNA Gln is synthesized from Glu-tRNA Gln rather than from direct acceptance of Gln on tRNAGln. Thirty years later, the nature of the enzymes catalyzing such tRNA-dependent amino acid transformations was uncovered [3]. With advances in functional genomics as well as in biochemical and genetic analyses, the indirect pathways for Gln-tRNA Gln, Asn-tRNA Asn, Cys-tRNA Cys and Sec-tRNA Sec formation have been characterized [4–7]. They all require two types of enzymes: aaRSs, which can form misacylated intermediates, and tRNA-dependent amino acid-modifying enzymes, which convert tRNA-bound amino acid to form the cognate aa-tRNA pair. Organisms that possess one or more of these indirect pathways do not have to encode the full set of 20 aaRSs [5,8–13], once thought to be essential for all living species.

The occurrence of tRNA-dependent amino acid transformations is surprisingly widespread throughout all three domains of life (Table 1). All known archaea [5],...
Amino acid modifications on tRNA

most bacteria [8], and chloroplasts [14,15] encode the indirect pathway for Gln-tRNAGln formation. A non-discriminating GluRS (ND-GluRS) aminoacylates tRNAGln with Glu [16,17]. A Glu-tRNAGln amidotransferase (Glu-AdT) then recognizes the mischarged species and transforms it to Gln-tRNAGln in the presence of ATP and an amide donor [Fig. 1(A)] [5]. Likewise, for Asn formation, Asp is first ligated to tRNAAsn by a ND-AspRS [17,18] and then converted to Asn on the tRNA by an Asp-tRNAAsn amidotransferase (Asp-AdT) [Fig. 1(B)] [18,19]. The ND-AspRS/Asp-AdT pathway is present in most bacteria and archaea [5,8,9]. In a large subset of euryarchaeota, a Cys-tRNACys is formed via an O-phosphoseryl-tRNACys (Sep-tRNACys) intermediate catalyzed by a noncanonical synthetase, SepRS. The tRNA bound O-phosphoserine (Sep) is then converted to Cys by SepCysS in the presence of a sulfur donor (Fig. 2) [6]. Selenocysteine formation pathways are exclusively tRNA-dependent and found in all Sec-decoding organisms [13]. In archaea and eukaryotes, it is a multistep process involving SerRS, PSTK and SepSecS (Fig. 3) [7,20]. Ser is esterified onto tRNASec by SerRS and then phosphorylated by PSTK on the tRNA forming Sep, which is further converted to Sec by SepSecS. The archaeal and eukaryotic pathway is different from the bacterial one, where the mischarged Ser-tRNASec is directly converted to Sec-tRNASec by selenocysteine synthase (SelA) [13]. In this review, we summarize the latest progress in characterizing the enzymes involved in tRNA-dependent amino acid transformations and the current evolutionary views of these pathways.

Bacterial tRNA-dependent Amidotransferase and tRNA Recognition

In bacteria, the tRNA-dependent amidation of Glu and Asp to form Gln-tRNAGln and Asn-tRNAAsn is catalyzed by the same enzyme: the heterotrimeric GatCAB [3]. The exact functional role of bacterial GatCAB in vivo is determined by the availability of its misacylated substrates Glu-tRNAGln and Asp-tRNAAsn [3,4,21]. In bacteria that only have a ND-GluRS (e.g. *Bacillus subtilis*) [16], Glu-tRNAGln is generated and GatCAB is exclusively used as a

<table>
<thead>
<tr>
<th>aa-tRNA</th>
<th>Prevalence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln-tRNAGln</td>
<td>All known archaea, most bacteria, and chloroplasts</td>
<td>[5,8,14,15]</td>
</tr>
<tr>
<td>Asn-tRNAAsn</td>
<td>Most bacteria and archaea</td>
<td>[5,8,9,24]</td>
</tr>
<tr>
<td>Cys-tRNACys</td>
<td>Methanogenic archaea (except M. smithii and M. stadtmanae) and A. fulgidus</td>
<td>[6,10–12,67–69]</td>
</tr>
<tr>
<td>Sec-tRNASec</td>
<td>All known Sec-decoding eukaryotes, archaea and bacteria</td>
<td>[99–101,111]</td>
</tr>
</tbody>
</table>

Adapted from Sheppard *et al* [132], with permission from Oxford University Press.
Amino acid modifications on tRNA

Glu-AdT to transform Glu-tRNAGlu to Gln-tRNAGlu [3]. In bacteria that only encode a ND-AspRS [e.g. Deinococcus radiodurans, Neisseria meningitides, Pseudomonas aeruginosa and Thermus thermophilus (T. thermophilus)], GatCAB functions as an Asp-AdT, synthesizing Asn on tRNAAsn [4,18,21−26]. However, in bacteria possessing both a ND-GluRS and a ND-AspRS (e.g. Chlamydia trachomatis [27] and Helicobacter pylori [28−30]), GatCAB catalyzes both tRNA-dependent transamidation reactions in vivo [8,27,31].

In general, the anticodon regions of the tRNAGlu and the tRNAAsn, respectively, are not the major identifying elements for recognition by tRNA-dependent amidotransferases [26,32−34]. In order to discriminate against tRNAAsp and tRNAGlu, bacterial GatCAB recognizes the first base pair in the tRNA acceptor stem, which is U1-A72 in tRNAGlu [32] and tRNAAsn [26] and G1-C72 in tRNAAsp and tRNAGlu. Additionally, the supernumerary nucleotide U20\textsubscript{a} in the D-loop of tRNAAsp and tRNAGlu excludes them as substrates for GatCAB [32]. In N. meningitides, the mutation of U1-A72 to G1-C72 in tRNAAsn leads to a 100-fold decrease in transamidation activity, while the transplantation of the U1-A72 into tRNAGlu, together with the deletion of the U20\textsubscript{a}, converts tRNAAsp into a substrate that behaves as substrates for GatCAB [32]. In N. meningitides, the mutation of U1-A72 to G1-C72 in tRNAAsn leads to a 100-fold decrease in transamidation activity, while the transplantation of the U1-A72 into tRNAGlu, together with the deletion of the U20\textsubscript{a}, converts tRNAAsp into a substrate that behaves similarly to the wild-type tRNAAsn for bacterial GatCAB [26]. Sequence comparisons of bacterial tRNAGlu, tRNAGlu, tRNAAsp and tRNAGlu have shown that the first base pair of tRNAAsn and tRNAGlu is conserved as U1-A72 in all bacteria encoding tRNA-dependent pathways for Gln and Asn biosynthesis, suggesting that GatCAB utilizes one general mechanism to maintain its substrate specificity [26,32].

Archaeal tRNA-dependent amidotransferases and tRNA recognition

Two types of tRNA-dependent amidotransferases (AdTs) are found in archaea: the heterodimeric GatDE and the archaeal GatCAB [5]. GatDE is the archaeal Glu-AdT [5]. It exclusively recognizes archaeal tRNAGlu and synthesizes glutamine on the tRNA. The archaeal GatCAB only exists in archaea lacking an asparaginyl-tRNA synthetase (AsnRS) [5,9]. In vitro the Methanothermobacter thermotrophicus (M. thermotrophicus) GatCAB only acts on Asp-tRNAAsp but not on homologous Glu-tRNAGlu, suggesting that the archaeal GatCAB has lost its dual function and acts strictly as an Asp-AdT [35]. The advantage of a more specialized archaeal GatCAB compared to its bacterial homolog awaits further investigation.

The tRNA recognition mode of archaeal GatCAB diverges from the bacterial enzyme. The archaeal GatCAB does not recognize the first base pair of the tRNA substrate; instead, in the case of M. thermotrophicus GatCAB, it discriminates against tRNAAsp by recognizing U49 and the D-loop as major anti-determinant elements [33]. A mutation of A49 to U49 in the wild-type tRNAAsn leads to loss of more than 99.5% of activity in the archaeal GatCAB catalyzed transamidation reaction. Additionally, the length of the variable loop acts as an identity element in tRNAAsn recognition as demonstrated by the M. thermotrophicus and Methanosarcina barkeri enzymes [26,33]. While the recognition of tRNAGlu by GatDE, the archaeal Glu-AdT, relies on the same regions (i.e. the first base pair and the
D-loop) as the bacterial GatCAB, the bases recognized are different. GatDE recognizes the first base pair of archaeal tRNA-Gln, conserved as A1-U72, whereas bacterial GatCAB recognizes the U1-A72 base pair of bacterial tRNA-Gln or tRNA-Asn [34]. Mutation of U19 or A20 in the D-loop of *M. thermautotrophicus* tRNA-Gln significantly decreases transamidation catalyzed by GatDE [34].

The catalytic mechanism of tRNA-dependent amidotransferases

Transamidation is an ATP-dependent, multistep reaction requiring the presence of an amide donor such as glutamine or asparagine. Despite the difference in tRNA specificity and natural distribution, GatCAB and GatDE use the same mechanism to catalyze tRNA-dependent transamidation (Fig. 4). It consists of three sub-reactions: (a) the activation of the amide acceptor (tRNA-bound Glu or Asp) at the expense of ATP hydrolysis, forming γ-phosphoryl-Glu-tRNA-Gln or possibly β-phophoryl-Asp-tRNA-Asn as reaction intermediates [15,36–38]; (b) the hydrolysis of an amide donor Gln or Asn to form enzyme captivated ammonia; and (c) the transfer of sequestered ammonia to the activated intermediate to form the final product Gln-tRNA-Gln or Asn-tRNA-Asn [38–41]. The kinase (a) and the glutaminase activity (b) of AdTs are tightly coupled upon binding of the misacylated tRNA substrate [8,38,40,42].

GatDE forms an α2β2 tetramer in solution and crystalline conditions [Fig. 5(A)] [34,42]. The functional role of each subunit in GatDE is well elucidated. The D subunit carries out the glutaminase activity [5,38,42], which releases ammonia from Gln as well as Asn [8,35]. It consists of three domains: AnsA-like domain 1, AnsA-like domain 2 and the N-terminal domain. The AnsA-like domains connect through a long linker loop to the N-terminal domain, which is involved in the binding of the E subunit [34,42]. The D subunit forms a tightly packed dimer with a large surface contact area located at the AnsA-like domains between the two protomers. In the dimer interface, two amidase catalytic centers are formed by AnsA-like domains 1 and 2 from the other subunit [42], where two highly conserved threonine residues, an aspartic acid and a lysine, are crucial for the GatD-catalyzed glutaminase activity [38]. GatD only hydrolyzes Gln in the presence of the E subunit and Glu-tRNA-Gln, which couples the hydrolysis of Gln with the activation of tRNA-bound Glu, thus preventing an otherwise futile deamination of Gln and the accumulation of free ammonia [38].

GatE interacts with the misacylated tRNA substrate [34,38]. In the presence of ATP, the E subunit alone is able to activate Glu-tRNA-Gln, forming a γ-phosphoryl-Glu-tRNA-Gln intermediate [38]. Its unique structure consists of a cradle domain, an AspRS-like insertion domain, a helical domain and a C-terminal domain homologous to the YqeY protein family, and it may enhance protein affinity towards its tRNA substrate [34,42]. A similar C-terminal YqeY domain appended to the *D. radiodurans* Gln-tRNA synthetase (GlnRS) enables the enzyme to bind productively to tRNA-Gln [43]. The helical domain and the C-terminal domain change their orientation upon tRNA binding and form a concave surface to accommodate the elbow region of the tRNA substrate [34,42]. A similar C-terminal YqeY domain appended to the *D. radiodurans* Gln-tRNA synthetase (GlnRS) enables the enzyme to bind productively to tRNA-Gln [43]. The helical domain and the C-terminal domain change their orientation upon tRNA binding and form a concave surface to accommodate the elbow region of the tRNA substrate [34,42]. The lack of tRNA-Gln-specific and base-specific interactions in this region of the tRNA indicates that a shape-complementary mechanism as the indirect readout of tRNA-Gln is the main factor that allows GatE to differentiate tRNA-Gln from tRNA-Glu and tRNA-Asn [34]. The cradle domain interacts with the ACCA-terminus of tRNA-Gln and guides the attached Glu to the catalytic center for phosphorylation and the subsequent transamidation reaction [34]. The kinase activity requires

Fig. 4 Transamidation reactions to form Gln-tRNA-Gln (A) and Asn-tRNA-Asn (B) GatCAB and GatDE use the same mechanism to catalyze the tRNA-dependent transamidation. It consists of three sub-reactions: (a) the activation of the amide acceptor (tRNA bound Glu or Asp) at the expense of ATP hydrolysis, forming γ-phosphoryl-Glu-tRNA-Gln or possibly β-phosphoryl-Asp-tRNA-Asn as reaction intermediate. (b) The hydrolysis of an amide donor Gln or Asn to form enzyme captivated ammonia. (c) The transfer of sequestered ammonia to the activated intermediate to form the final product Gln-tRNA-Gln or Asn-tRNA-Asn.
Amino acid modifications on tRNA

the presence of Mg2+ ions. Mutations of Mg2+ binding residues in the *M. thermautotrophicus* GatE subunit drastically affect the enzyme affinity to Mg2+ and abolish the kinase and transamidase activities *in vitro* [34].

GatCAB and GatDE are evolutionarily related through their kinase domains (GatB and GatE) [5,44]. The GatB subunit, which contains the catalytic pocket of the kinase and transamidase activities, is also involved in tRNA binding [32]. Structurally, bacterial GatB is made of three domains: the cradle domain, the helical domain and the C-terminal YqeY domain, which has been shown to participate in tRNA substrate binding [43]. Archaeal GatB is expected to have different tRNA recognition elements compared to its bacterial homolog, as the archaeal GatCAB is a strict Asp-AdT. The detailed interaction map between GatCAB and substrate tRNA is still unknown.

The bacterial GatCAB alone has basal glutaminase activity [32,40], which is enhanced significantly in the presence of its mischarged tRNA substrate and ATP [8,40]. GatA belongs to the amidase family. Functionally similar to GatD, it generates active ammonia from an amide donor. The A subunit is a single domain protein possessing Sercis-Ser-Lys as the catalytic triad. In the *Staphylococcus aureus* GatCAB crystal structure, a Gln molecule located in close proximity to the catalytic triad further proves that subunit A’s function is to liberate ammonia from the amide donor glutamine. Unlike GatD, bacterial GatA prefers Gln as the amide donor to Asn [8,15,45,46]. The shorter side chain in Asn prevents the β-carboxyl carbon from interacting with the active site Ser and forming a tetrahedral intermediate, and thus reduces the deamination efficiency [8,32,46]. In contrast, the archaeal GatA does not seem to have a preference regarding the amide donor, as the *M. thermautotrophicus* enzyme can use either Gln or Asn with almost equal efficiency [35], which suggests a possible different arrangement of the active site in

Fig. 5 The crystal structure of GatDE from *Pyrococcus abyssi* (A) and *Methanothermobacter thermautotrophicus* GatDE complexed to tRNAGln (B) (A) The ribbon diagram shows GatDE αβ dimer with GatD consisting of N-terminal domain (navy), AsnA-like domain 1 (cyan) and AsnA-like domain 2 (royal blue). (B) GatE, from (A), interacts with tRNA and contains the cradle domain (brown), AspRS-like insertion domain (yellow) and helical domain (copper). The YqeY C-terminal domain in GatE is disordered and, therefore, not shown in either structure.

Fig. 6 The crystal structure of *Staphylococcus aureus* (S. aureus) GatCAB A ribbon presentation of *S. aureus* GatCAB structure with GatA (copper), GatB (yellow) and GatC (blue). The YqeY C-terminal domain in GatB is disordered and not shown in the structure.
archaeal GatC.

GatC is a 10 kDa small protein responsible for stabilizing the GatCAB trimeric protein complex. In the crystal structure of S. aureus GatCAB (Fig. 6), the C subunit is shaped as an extended loop with two α helices at its N-terminus and two β strands at its C-terminus [32]. GatC stabilizes the GatAB complex by extensively interacting with both subunits at the GatA/GatB interface [32]. The proper folding of the GatA subunit also requires the presence of GatC [3].

Gated Ammonia Channel in tRNA-dependent Amidotransferases

A most notable feature in the crystal structures of S. aureus GatCAB and M. thermautotrophicus GatDE is a long protein tunnel (30 Å and 40 Å, respectively) connecting the glutaminase activity center in the GatA or GatD subunit to the kinase/transamidase active site in the GatB or GatE subunit [32,34]. The molecular tunnel is made of continuous hydrophilic residues with highly conserved positive and negative residues alternating on the inner surface, and it is surrounded by hydrophobic residues on the outside [32,34]. Ammonia generated in the deaminase center is expected to travel to the transamidase center for the transamidation reaction to occur [32,33,42]. The hydrophilic property of the ammonia tunnel in AdTs suggests that ammonium (NH$_4^+$) instead of ammonia (NH$_3$) is transported. It has been suggested that the transport is carried out through alternating protonation and deprotonation of the ammonium ion [32]. A continuous desolvation of ammonium ions, followed by passage into the tunnel, may push ammonium ions towards the subsequent reaction center, mimicking the mechanism of K$^+$ transport in the potassium channel [34,47].

The coupling of glutaminase and kinase/transamidase activities has been observed in both GatCAB and GatDE [8,38,40,42]. Regarding GatDE, only in the presence of misacylated tRNA substrate does the hydrolysis of Gln or Asn amide donor occur [38,42]. The binding of the tRNA substrate induces a significant conformational change in the D subunit where a catalytic threonine, 7 Å away from the active site in the apo enzyme, moves to the active position [42]. The ammonia tunnel also undergoes conformational changes and it is proposed to switch from a closed to an open state upon binding of the misacylated tRNA [32,34,42]. Unlike GatDE, GatCAB has a less tight coupling between these two subreactions as mentioned earlier [8,32,40]. The lack of a complex structure of GatCAB and tRNA leaves many questions open in this area.

Complexes between tRNA, Non-discriminating-aaRS and tRNA-dependent Amidotransferase

Several mechanisms have been proposed to maintain the fidelity of translation and to prevent the misacylated tRNAs generated during the described tRNA-dependent amino acid transformations from participating in decoding, such as EF-Tu discriminating against misacylated tRNAs [48] and substrate channeling [14,49]. The first mechanism is based on the diverse binding affinity of EF-Tu towards different tRNA species and their attached amino acids [50]. The cognate aa-tRNAs bind EF-Tu with similar affinity by thermodynamic compensation, whereas the matching amino acid of a strong binding tRNA weakly binds to EF-Tu and vice versa [48]. The tRNAGlu and tRNAAsp have weaker affinity toward EF-Tu than tRNAGln and tRNAAsp [48]. Therefore, Glu-tRNAGlu and Asp-tRNAAsp, as weak/weak combinations, are expected to have considerably less affinity for EF-Tu than cognate aa-tRNAs and are less likely to be involved in translation.

Some recently reported evidence supports a substrate channeling mechanism. Structurally, GluRS from T. thermophilus can be docked easily onto M. thermautotrophicus GatDE:tRNAGlu, forming a ternary complex [34]. The CCA end of the tRNAGlu in the active center of ND-GluRS can move to the kinase/transamidase center in GatE via a simple flip motion resembling the movement of tRNA and its aaRS with an editing domain [34]. A similar complex of ND-AspRS, GatDE and tRNA cannot be constructed due to large steric clashes. Biochemically, a stable complex of T. thermophilus ND-AspRS, GatCAB and tRNAAsp has been observed in vitro and in vivo [51]. The presence of a ND-aaS reduces the K_m of GatCAB for Asp-tRNAAsp and stabilizes Asp-tRNAAsp as well as the final product Asn-tRNAAsp [51,52]. Compared to the free enzymes, complex formation also increases the k_{cat} of ND-AspRS. Substrate channeling couples aminoclaytion with transamidation, thus increasing the overall reaction efficiency and preventing the incorporation of misacylated tRNA species in translation.

tRNA-dependent Amidotransferase in Mitochondria

A number of eukaryotes, including Saccharomyces cerevisiae [53] and Homo sapiens [44] encode homologs of AdT subunits in their nuclear genomes. Several lines of
evidence suggest that the indirect pathway for Gln-tRNA\(^{\text{Gln}}\) formation may also be used in the mitochondria of these eukaryotes. For example, in yeast mitochondria, the activity of Glu-AdT is present and was first detected nearly three decades ago [54]. Recently, the AdT activity was also found in mammalian (T. Suzuki, unpublished data) and plant mitochondria [55]. Furthermore, the yeast AdT homologs (Pet112 and YMR293C) are essential for mitochondrial function [56,57], and Glu-tRNA\(^{\text{Glu}}\), the substrate of Glu-AdT, was found to be located in the mitochondria of \textit{S. cerevisiae} [58]. The formation of Glu-tRNA\(^{\text{Glu}}\) is intriguing, however, as the reaction cannot be catalyzed by the yeast mitochondrial GluRS in vitro [59]. Additionally, cytoplasmic tRNA\(^{\text{Glu}}\) and GlnRS were shown to be imported to the yeast mitochondria as well [59]. The import of tRNA\(^{\text{Glu}}\) was also shown for \textit{H. sapiens} (J. Alfonzo, unpublished data). It is unclear what may be the reasons (e.g. additional coding functionality) for the presence of dual pathways for Gln-tRNA\(^{\text{Glu}}\) formation in mitochondria.

The Evolutionary View of the tRNA-dependent Gln and Asn Formation Pathways

The indirect pathways for Gln and Asn formation are thought to be ancient and existed in the last universal communal ancestor (LUCA), while the corresponding GlnRS and AsnRS in the direct pathways are later additions during evolution [9,60–63]. The indirect pathway couples amino acid biosynthesis with translation, and the direct pathway requires a de novo synthesis of Gln and Asn independent of tRNA. The indirect pathway for the Asn-tRNA formation can serve as the sole pathway for free Asn formation. In fact, for many organisms encoding the ND-AspRS/Asp-AdT pathway, the enzymes for Asn biosynthesis (AsnA and AsnB) are found to be absent suggesting that the presence of the indirect pathway for Asn formation is essential [8,24]. On the other hand, organisms possessing AsnA, the ammonia-dependent asparagine synthetase, Asn-tRNA\(^{\text{Asn}}\) is always made using AsnRS through the direct pathway [8,9]. In the case of Gln, bacterial Glu-AdT prefers Gln as the amide donor [8,15,45,46]; thus both direct and indirect pathways rely on the de novo biosynthesis of Gln. Archaeal Glu-AdT can use both Gln and Asn as the amide donor [5,35]. Therefore, in archaea possessing AsnA, GatDE could use Asn as the amide donor for Gln-tRNA\(^{\text{Glu}}\) formation catalyzed by the Glu-AdT, adding an additional pathway for Gln biosynthesis.

The retention of the indirect pathway for Gln formation in Archaea may be due to the unique archaeal tRNA\(^{\text{Gln}}\) [44], which cannot be recognized and aminoacylated by GlnRS from \textit{Escherichia coli} or \textit{S. cerevisiae} [5]. On the other hand, bacterial tRNA\(^{\text{Glu}}\) from \textit{B. subtilis}, an organism that encodes the indirect pathway, is a good substrate for \textit{E. coli} GlnRS [16]. In all free-living organisms, ammonium is fixed mainly through the conversion of Glu to Gln by glutamine synthetase. The free amino acid Gln also serves as an amide donor for several other biosynthetic pathways as well as a signaling molecule for the nitrogen metabolism [64,65]. A number of bacteria encoding a Glu-AdT have increased amounts of free Glu in their cells, which favors the indirect pathway for Gln-tRNA\(^{\text{Glu}}\) formation suggesting another possible reason to maintain the ancient indirect pathway. The reason why the indirect pathways have not been replaced by the direct pathways in these bacteria may include nitrogen, carbon regulation and translation fidelity. The details await further investigation.

tRNA-dependent Cys Synthesis in Archaea

In a large subset of \textit{Euryarchaeota} [66], Cys is synthesized in a tRNA-dependent manner (Table 1) [6]. This indirect pathway for Cys-tRNA\(^{\text{Cys}}\) formation utilizes two enzymes, SepRS and SepCysS (Fig. 2) [6]. SepRS aminoacylates tRNA\(^{\text{Cys}}\) with Sep [6]. The Sep moiety is then converted to Cys by SepCysS in the presence of an unknown sulfur donor to form Cys-tRNA\(^{\text{Cys}}\) [6].

Genomic analyses revealed that SepRS and SepCysS are both encoded in the sulfate reducing archaeon \textit{Archaeoglobus fulgidus} [67] and all known methanogenic archaea [66] except \textit{Methanosphaera stadtmannae} [68] and \textit{Methanobrevibacter smithii} [69]. In most of these archaea, CysRS is also coded for though it may not be essential [66,70]; for example, in \textit{Methanococcus maripaludis} CysRS is dispensable [71].

In many of these euryarchaeal genomes the enzymes required for the formation of free Cys (i.e. tRNA-independent) biosynthesis are not encoded [6,66]. The indirect route for Cys-tRNA\(^{\text{Cys}}\) formation using SepRS and SepCysS is likely the sole means for Cys biosynthesis in these organisms [6]. This is consistent with an earlier report demonstrating that Sep is a precursor for Cys biosynthesis in \textit{M. fannamchii} [72]. Further studies have shown that an archaean Sep biosynthetic pathway can provide sufficient Sep levels for Ser, cystathionine and tRNA-dependent Cys production [73]. Furthermore, knocking out \textit{sepS} in \textit{M. maripaludis} resulted in a Cys auxotroph [6]. Therefore, the use of SepRS and SepCysS
for the tRNA-dependent Cys synthesis in these organisms likely enables coupling of protein synthesis with Cys production.

SepRS Directly Aminoacylates tRNA\(^{\text{Cys}}\) with O-phosphoserine

SepRS is a subclass IIc aaRS like PheRS and PylRS [6, 74], sharing a common ancestor with the \(\alpha\)-subunit of PheRS [66,74]. Both biophysical and structural analyses demonstrate that SepRS is a homotetramer [75,76]. The core of this \(\alpha_4\) assembly resembles that of PheRS and consists mostly of the four catalytic domains [75].

While the active site of SepRS is structurally similar to that of PheRS, SepRS uniquely recognizes its amino acid substrate, Sep [76]. The phosphate group of the latter is highly recognized by SepRS with each of the three non-bridging oxygen atoms forming two hydrogen bonds to residues in the enzyme’s binding pocket. Mutation of these residues in the *M. maripaludis* SepRS resulted in inactive mutant enzymes [75]. The recognition of the phosphate moiety includes hydrogen bonding between two non-bridging oxygens and the \(\alpha\)-amino group of active site residues, which is unique amongst aaRSs to SepRS. Structural results suggest that dipole interactions between Sep and a central \(\alpha\)-helix in the active site of SepRS stabilize the polar side chain of the substrate, another feature not observed in other aaRSs [76].

Each monomer of SepRS can recognize and aminoacylate tRNA\(^{\text{Cys}}\) in cis [76], in contrast to PheRS where the tRNA anticodon recognition site and aminoacylation active site are found on different subunits. However, in the co-crystal structure of the *A. fulgidus* SepRS with tRNA\(^{\text{Cys}}\) only two tRNA molecules bound to the tetramer [76]. Computer modeling though does suggest that four tRNAs could be accommodated by the complex [76]. The stoichiometry in solution of SepRS to tRNA\(^{\text{Cys}}\) is not clear and awaits further investigation.

Biochemical studies revealed that *M. maripaludis* SepRS recognizes the same major identity elements in tRNA\(^{\text{Cys}}\) (G34, C35, and A36) as the homologous CysRS [77]. Both aaRSs also use G15 and A47 in tRNA\(^{\text{Cys}}\) as minor identity elements. However the base pairs G1:C72 and G10:C25, and nucleotides G37 and A59 serve as minor identity elements for only SepRS [77]. The use of similar identity elements in tRNA\(^{\text{Cys}}\) recognition by both SepRS and CysRS, both of which were present in LUCA [66, 74], suggests that the genetic code predates the modern aminoacylation machinery [77]. Given that SepRS, like other class II aaRSs, approaches the tRNA from the major groove side while CysRS, a class I aaRS, approaches it from the minor groove side has lead to speculation that a complex between SepRS, tRNA\(^{\text{Cys}}\) and CysRS is possible [76], though the *in vivo* role of such a complex is currently not clear.

SepCysS Catalyzed Formation of Cys-tRNA\(^{\text{Cys}}\)

The pyridoxal phosphate (PLP)-dependent enzyme SepCysS modifies the Sep bound to tRNA\(^{\text{Cys}}\) to form Cys-tRNA\(^{\text{Cys}}\) [6]. The sulfur donor for this enzyme is unknown though *in vitro* sulfide is sufficient [6]. The *A. fulgidus* SepCysS crystal structure (2.4 Å resolution) [78] revealed that it belongs to the fold type I family [79] with its large N-terminal domain being comprised of a characteristic seven stranded \(\beta\)-sheet which typifies this family of enzymes. In addition, the structure showed that the enzyme forms a homodimer [78]. The active site of the enzyme is formed in a large basic cleft in the dimer interface and is comprised of conserved residues from both monomers [78]. Modeling a SepCysS-Sep-tRNA\(^{\text{Cys}}\) complex suggests that a conserved Arg79, His 103, and Tyr 104 (*A. fulgidus* numbering) recognize the phosphate group of the Sep moiety of the tRNA substrate [78]. The same work implicates one of the three conserved Cys residues (39, 42 or 247) in the SepCysS active site as the persulfide sulfur carrier essential for catalysis (Fig. 7) [78] though this awaits further study.

The crystal structure of SepCysS with PLP alone revealed that the co-factor formed a Schiff-base linkage with the conserved Lys209 in the active site of SepCysS [78]. A hydrogen bond between SepCysS and the nitrogen atom of the Schiff base is observed. The crystal structure of SepCysS with PLP and Sep-tRNA\(^{\text{Cys}}\) reveals a similar arrangement of the co-factor with Sep-tRNA\(^{\text{Cys}}\) in the active site, suggesting that SepCysS forms a complex with Sep-tRNA\(^{\text{Cys}}\) before catalyzing the reaction.

Fig. 7 The crystal structure of the active sites in *A. fulgidus* SepCysS and *M. maripaludis* SepSecS The protein active sites are presented as ribbon diagrams with essential residues highlighted as stick models. Monomers in each protein are colored pink and blue. Adapted from Sheppard et al [133], with permission from Oxford University Press. PLP, pyridoxal phosphate.
atom of the ring structure of PLP is achieved through the side chain of a conserved Asn and not an Asp as is found in most PLP-dependent enzymes [78]. Nevertheless, like in other PLP-dependent enzymes, the co-factor in SepCysS is thought to stabilize the negatively charged transition state formed during catalysis of the β-replacement reaction [80].

M. maripaludis encodes both the direct and indirect pathways for Cys-tRNA_{Cys} synthesis. As noted above, the sole route for Cys formation is tRNA_{Cys} dependent. Intriguingly while _sepS_ (encoding SepRS) can be deleted when the organism is grown in the presence of Cys, _pscS_ (encoding SepCysS) cannot (T. Major, M. Hohn, D. Su, W.B. Whitman, unpublished data), raising the question whether SepCysS possesses an additional function in _M. maripaludis_ that is essential.

Cys Synthesis in Archaea

Four different routes for Cys formation have been discovered in archaea: the eukaryotic pathway in which the precursor is cystathionine [81], the bacterial pathway where O-acetylserine serves as the precursor [82–84], a modified bacterial pathway with free Sep as the precursor [84,85], and the tRNA-dependent route with Sep-tRNA_{Cys} as the precursor [6]. Cys is implicated as the major sulfur source for a variety of biosynthetic pathways including Fe-S cluster formation, tRNA modification, and biosynthesis of co-factors in bacteria (reviewed in [87]). Fe-S cluster proteins are highly encoded in the genomes of methanogenic archaea [88]. Whether Cys generated through the tRNA-dependent pathway is used as the sulfur source is an open area of investigation. It is thought that these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea must balance the need for Cys in protein synthesis and other biosynthetic pathways by controlling these euryarchaea必须平衡的需要。Cys-tRNA_{Cys} formation were present in LUCA. The phylogenetic data suggest that only early bacteria retained CysRS while the ancestral archaea possessed SepRS and that CysRS was later horizontally transferred to archaea. In some archaeal lineages the bacterial CysRS replaced the indirect pathway for Cys-tRNA_{Cys} synthesis while in many euryarchaea CysRS either coexisted with SepRS/SepCysS or was not retained [66]. Why the indirect pathway for Cys-tRNA_{Cys} formation has been retained in these euryarchaea remains an open question. It is speculated that a link between Cys formation, sulfur metabolism and methanogenesis may exist that would favor retention of the tRNA-dependent route for Cys biosynthesis [66,90] though this awaits further experimental inquiry.

tRNA-dependent Sec Formation

Sec is the major biological form of selenium, an excellent dietary trace element in humans implicated in cancer prevention [91,92]. Sec is coded as the 21st amino acid in a number of species across all three domains of life (reviewed in [13,93]). Under physiological conditions (pH 7), Sec is more stable in its ionized form than Cys due to the lower redox potential which thus lowers the pKa of the selenol group of Sec compared to the thiol group of Cys (5.2 and 8.5, respectively) [94]. Sec thus serves as an excellent nucleophile in the active sites of proteins involved in oxidation-reduction reactions.

Selenoprotein synthesis requires the formation of selenocysteinyl-tRNA_{Sec} (Sec-tRNA_{Sec}). No aaRS, [i.e. a selenocysteinyl-tRNA synthetase (SecRS)], has been identified in Sec-decoding organisms that can carry out the task (Table 1) and instead Sec is synthesized on tRNA_{Sec} (Fig. 3). Why Sec-tRNA is only formed via indirect paths remains unknown but it may be due to selective pressures to maintain translational fidelity. SecRSs from _E. coli_ [95] and _Phaseolus aureus_ [96] have the ability to aminoacylate tRNA_{Cys} with Sec. Therefore, given the fact that misincorporation of Sec in place of Cys can be detrimental to protein function [97], the levels of free Sec are likely well regulated and kept low to prevent misacylation of tRNA_{Cys} with Sec. It is also worth noting that Sec to Cys mutations lead to mutant enzymes with significantly reduced activities [98]. Synthesizing Sec on tRNA_{Sec} enables formation of Sec-tRNA_{Sec} while potentially minimizing the free Sec levels in vivo, preventing misacylation of tRNA_{Cys} with Sec; thus the retention of the tRNA-dependent Sec pathway may be a mechanism of ensuring the accurate decoding of Cys and Sec [99]. In all known Sec-decoding organisms [100–102],...
tRNA^{Sec} is first serylated by SerRS to form Ser-tRNA^{Sec} [103–105]. Work in the 1990s revealed in bacteria that selenocysteine synthase (SelA) transforms Ser bound to tRNA^{Sec} to Sec (Fig. 3) [13]. The Sec-tRNA^{Sec} formed is then used in protein synthesis to decode UGA (usually a stop codon) when an RNA element, the selenocysteine insertion sequence element, is present in the mRNA [13]. A unique elongation factor, SelB, brings the Sec-tRNA^{Sec} to the ribosome [13]. The mischarged species, Ser-tRNA^{Sec}, in Sec-decoding archaea and eukaryote (Fig. 7) is not directly modified to Sec-tRNA^{Sec}, but rather the Ser moiety on the tRNA is phosphorylated by PSTK to form Sep-tRNA^{Sec} (Fig. 3) [106,107]. The tRNA-bound Sep is then converted to Sec by the PLP-dependent enzyme Sep-tRNA^{Sec}:tRNA synthase (SepSecS) [7,20].

Like SelA, SepSecS uses selenophosphate as the selenium donor to produce Sec-tRNA^{Sec} in vitro and in vivo [7,20,108–110]. SepSecS is unable to use Ser-tRNA^{Sec} as a substrate, recognizing only Sep-tRNA^{Sec} [7,20]. However, in vitro bacterial SelA in addition to Ser-tRNA^{Sec}, can convert Sep-tRNA^{Sec} to Sec-tRNA^{Sec} [20], though the biological relevance of this is not clear as PSTK is not encoded in bacterial genomes [7]. In all known Sec-decoding archaean and eukaryotic genomes, PSTK and SepSecS are always both encoded [111].

It is unknown why archaea and eukaryotes use Sep-tRNA^{Sec} as an intermediate in tRNA^{Sec}-dependent Sec biosynthesis. The carboxyl ester bond between Sep and tRNA^{Sec} is more stable than Ser and the tRNA^{Sec} [106]. In addition, the phosphate moiety of Sep is likely a better leaving group than the hydroxyl moiety of Ser. Thus, Sep-tRNA^{Sec} may serve as a better precursor for Sec-tRNA^{Sec} formation than Ser-tRNA^{Sec} [7].

tRNA^{Sec}-dependent Ser Phosphorylation

Work with extracts from rat and rooster liver and lactating bovine mammary gland in the 1970s first demonstrated that Ser-tRNA could be phosphorylated [112,113]. While it was later shown with partially purified enzyme from bovine liver that the enzyme had a high affinity for tRNA^{Sec}, it was only in 2004 that the protein (PSTK) was identified from mouse [106], and soon after the archaean homolog [107].

PSTK phosphorylates Ser-tRNA^{Sec} by transferring the γ-phosphate of ATP onto the Ser moiety in an Mg^{2+}-dependent manner [106,111]. The enzyme belongs to the P-loop kinase superfamily [114], possessing a phosphate-binding loop (P-loop), a Walker B motif, and an RxxxR motif in its N-terminal domain [111]. Mutation of conserved residues in these motifs in the M. jannaschii PSTK resulted in mutant enzymes with significantly reduced activity [111]. While PSTK prefers ATP, in vitro the enzyme is able to use other NTPs (GTP, CTP, UTP and dATP) as substrates, like T4 polynucleotide kinase [111]. Similar to other members of the kinase superfamily [114], the ATPase activity of PSTK is activated in the presence of its other substrate Ser-tRNA^{Sec} [111]. Interestingly, the activity is also enhanced when unacylated tRNA^{Sec} is provided [111].

PSTK Recognition of Sep-tRNA^{Sec}

It does not appear that PSTK uses the Sep moiety of tRNA^{Sec} as a major recognition element as the enzyme has a similar K\textsubscript{i} for unacylated tRNA^{Sec} as Ser-tRNA^{Sec} (39 nM and 53 nM, respectively) [111]. In vivo, the concentration of tRNA^{Sec} is approximately 10% of that of tRNA^{Ser} [115,116], the other tRNA substrate of SerRS. It may well be that PSTK serves as a tRNA^{Sec} scavenger for SerRS [111]. PSTK may also assist in maintaining translation fidelity by preventing the misacylated tRNA^{Sec} intermediates from being used in protein synthesis and channelling Sep-tRNA^{Sec} to SepSecS [111].

Surprisingly, it appears that archaean and eukaryotic PSTK enzymes recognize different elements in Ser-tRNA^{Sec}. While tRNA^{Sec} possesses an extended variable loop like tRNA^{Sec}, a major identity element for SerRS recognition of tRNA [117], it is distinct from other tRNA isoacceptors by possessing an elongated acceptor stem and D-stem [118,119]. For tRNA^{Sec} recognition by eukaryotic PSTK, the major element is the length and conformation of the elongated D-stem [120]. For archaean PSTK, the D-stem is a minor identity element and the G2-C71 and C3-G70 base pairs in the acceptor stem of archaean tRNA^{Sec} serve as the major recognition elements in the tRNA [121]. Given the deep phylogenetic divide between archaean and eukaryotic PSTK [111], this may be a strong indication of co-evolution of PSTK and tRNA^{Sec} [121].

Interestingly, while bacterial tRNA^{Sec} has an 8 bp acceptor stem and a 5 bp T-stem, and archaean and eukaryotic tRNA^{Sec} have a 9 bp acceptor stem and 4 bp T-stem arrangement [118,122–124], PSTK and SepSecS can use E. coli tRNA^{Sec} in vivo [7]. In turn, E. coli can use the human tRNA^{Sec} in place of its own tRNA^{Sec} both in vivo and in vitro [125]. It may well be that tRNA^{Sec} is functionally conserved between the different domains of life despite bacteria using a different tRNA-dependent route for Sec formation than Sec-decoding archaea and
eukaryotes.

Sep-tRNA: Sec-tRNA Synthase SepSecS Catalyzed Sec-tRNA^Sec Formation

While SepSecS catalyzes a similar reaction as SepCysS, a tRNA-dependent β-replacement of Sep, a structural phylogeny revealed that SepSecS is not closely related to SepCysS nor other PLP-dependent enzymes [126]. The recently completed crystal structures of the SepSecS from *M. maripaludis* [126] and mouse [127] to high resolution have enabled insight into how the enzyme catalyzes the tRNA-dependent formation of Sec. SepSecS forms an (α_2)_2 homotetramer, mediated by an N-terminal extension in SepSecS. Each dimer has two active sites, each formed by conserved residues from both subunits in the dimer interface (Fig. 7) [126,127]. Interestingly deleting the N-terminal extension, thus apparently disrupting dimerization, gives rise to inactive SepSecS [126]. Tetramerization is speculated to also enable formation of large patches of positive electric potential on the surface of the tetramer, which are predicted to be tRNA^sec binding sites [127].

As in the SepCysS active site, a conserved Asn in the SepSecS (247, *M. maripaludis* numbering) active site binds to the nitrogen of the ring structure of the PLP and similar to other PLP-dependent enzymes a conserved Lys (278, *M. maripaludis* numbering) forms a Schiff base linkage with the co-factor [126]. The phosphate group(s) of Sep-tRNA^sec and/or selenophosphate are proposed to interact with conserved Arg, Gln, and Ser in the active site of SepSecS [126]. Mutations to those residues results in mutant enzymes with significantly reduced activities in vitro [126−128]. SepSecS may exclude free amino acids including Sep from its active site by using a conserved Glu, which could repel the carboxyl group of free amino acids [127]. Unlike SepCysS, a conserved Cys residue is not found in the active site of SepSecS, suggesting that the formation of a perselenide intermediate is unlikely [126].

Relationship between tRNA-dependent Cys and Sec biosynthesis

The tRNA-dependent route for Cys biosynthesis is similar to that for Sec-tRNA^sec formation in archaea and eukaryotes, since Sep-tRNA serves as the final precursor prior to product formation in both of them. Both pathways were present in LUCA [7,66]. Interestingly, SepSecS can use thiophosphate in vitro to form Cys-tRNA^Sec [126] instead of selenophosphate to synthesize Sec-tRNA^Sec.

Numerous homologs of selenoproteins are found in nature, which possess Cys in place of Sec. Given that and the similarity between Sec and Cys codons (UGA and UGY, respectively), it is interesting to speculate that a dynamic relationship has existed between the two amino acids over the course of evolution [128].

Outlook

The tRNA-dependent pathways forming Gln-tRNA^Gln and Asn-tRNA^Asn through amino acid transformations are thought to have evolved earlier than the direct aminoaacetylation of the tRNAs with their cognate amino acids [9,60−63]. In the case of Cys-tRNA^Cys formation, both the direct and the indirect pathways have been shown to be present in the time of LUCA [66,75,77]. Regarding Sec, Sec-tRNA^Sec is formed in all domains of life only through the indirect tRNA-dependent amino acid transformations [100−102]. Even though it cannot be generalized that indirect pathways are ancient pathways, it does appear that indirect pathways have unique features that have been retained throughout evolution. For example, tRNA-dependent Sec-tRNA^Sec formation may provide a solution to discriminate against Cys, an extremely similar amino acid, and maintain a faithful translation.

A common feature among these indirect pathways is the existence of misacylated intermediates, which would drastically decrease the fidelity of translation if they participated in decoding. Even though elongation factors bind misacylated intermediates with too low or too high affinity *in vitro* [21,48,50,129−131], it is still ambiguous whether the discrimination by the elongation factor alone could ensure the accuracy of translation *in vivo* [51,132]. Substrate channeling provides an additional mechanism to prevent misincorporation. Interestingly, complexes consist of enzymes in the same tRNA-dependent pathway, and the corresponding tRNA molecules have either been observed or proposed based on computer modeling [34, 51,78]. Furthermore, complex formation may increase the overall reaction efficiency as well as the stability of the end product [51,52]. The tRNA-dependent amino acid transformations couple translation with the biosynthesis of amino acids, which may be involved in other biological pathways [64]. To better understand the connection and regulation among different biological processes, systems biology is likely to be a very useful approach, and it may also lead to discovery of other exciting aspects of tRNA-dependent amino acid transformation pathways.

Acknowledgements

We would like to thank all the current members of Dr. Dieter Söll’s laboratory for discussing the manuscript and assisting with its revision. We would also like to thank Drs. T. Suzuki, J. Alfonzo and W.B. Whitman for providing some of their unpublished results.

References

28. Skouloubris S, Rivas de Pouplana L, De Reuse H, Hendrickson TL. A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution. Proc Natl Acad Sci USA 2003, 100: 11297–11302

55 Pujol C, Bailly M, Kern D, Marechal-Drouard L, Becker H and Duchene AM. Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNA\textsubscript{Gln} synthesis in plants. Proc Natl Acad Sci USA 2008, 105: 6481–6485

60 Lamour V, Quevillon S, Diriong S, N’Guyen VC, Lipinski M, Miranda M. Evolution of the Glx-tRNA\textsubscript{Gln} synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc Natl Acad Sci USA 1994, 91: 8670–8674

64 Forchhammer K. Glutamine signalling in bacteria. Front Biosci 2007, 12: 358–370

68 Fricke WF, Seedorf H, Henne A, Krueer M, Liesegang H, Hedderich R, Gottschalk G et al. The genome sequence of Methanosphaera...
Amino acid modifications on tRNA

White RH. The biosynthesis of cysteine and homocysteine in...

117 Wu XQ, Gross HJ. The long extra arms of human tRNA^{Sec_{Sec}} and tRNA^{Sec_S} function as major identity elements for serylation in an orientation-dependent, but not sequence-specific manner. Nucleic Acids Res 1993, 21: 5589–5594

120 Wu XQ, Gross HJ. The length and the secondary structure of the D-stem of human selenocysteine tRNA are the major identity determinants for serine phosphorylation. EMBO J 1994, 13: 241–248

