5. Cepeda JA, Whitehouse T, Cooper B, et al. Iso-
methicillin-resistant cultures were not provided to health care
Sir
Staphylococcus aureus Has Methicillin-Resistant
/MRSA and/or vancomycin-resistant enterococci with active surveillance cultures and contact precautions [3], raising questions regarding the validity and generalizability of the results reported by Cepeda et al. [5]. Scores of studies with data supporting the SHEA guideline have been published or presented at national infection-control meetings since the SHEA guideline was published. Multiple studies also have shown impressive reductions in MRSA infection rates despite years of previously high MRSA rates [8–11].

Acknowledgments
Potential conflicts of interest. All authors: no conflicts.

Carlene A. Muto, Barry M. Farr, and William R. Jarvis

Division of Hospital Epidemiology and Infection Control, University of Pittsburgh Medical Center–Presbyterian and Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pennsylvania; University of Virginia Health System, Charlottesville; and Jason and Jarvis Associates, Hilton Head Island, South Carolina

References
3. Muto CA, Jernigan JA, Ostrowsky BE, et al. SHEA guideline for preventing nosocomial infection in National Nosocomial Infection Surveillance hospitals during the 9 years since standard precautions began to be required in US hospitals [6, 7], raising questions regarding both the validity and the generalizability of the results reported in Nijssen et al. [1]. The SHEA guideline cited 45 studies reporting significantly improved control of MRSA and/or vancomycin-resistant enterococci with active surveillance cultures and contact precautions [3], raising questions regarding the validity and generalizability of the results reported by Cepeda et al. [5].

Has Methicillin-Resistant Staphylococcus aureus Stopped Spreading in Intensive Care Units?

Sir—Nijssen et al. [1] found no spread of methicillin-resistant Staphylococcus aureus (MRSA) over a 10-week period from 9 MRSA-colonized patients admitted to their intensive care unit (ICU), but they did not specify what infection-control precautions were being followed in the ICU, making reported compliance with gloving and hand hygiene difficult to interpret. Compliance with standard precautions? Universal barrier precautions? A combination of both? Moreover, they reported such compliance for ICU nurses but not for other health care workers, whom they acknowledged to be more prone to spread MRSA because of more-frequent movement from patient to patient. Study methods specified that health care workers were not provided surveillance culture results but did not specify whether health care workers knew that a study was being conducted or were otherwise encouraged to maintain higher levels of compliance than were previously documented in the same ICU [2].

Even though the results of surveillance cultures were not provided to health care workers, data on the proportion of colonized patients who were known to health care workers and over what proportion of the relatively brief study period they were known to be positive for MRSA (because of previously positive or newly positive clinical cultures) would have been of interest, because such knowledge could have modified behavior for colonized patients (and possibly for all patients). The proportion of patients treated during the relatively brief study period with specific and/or empirical therapy (and the duration of treatment) with drugs active against the MRSA strain (e.g., trimethoprim-sulfamethoxazole, vancomycin, quinupristin-dalfopristin, and linezolid) also could be of interest, because such therapy may have suppressed colonization and thus suppressed transmission.

Nijssen et al. [1] conclude that MRSA does not spread in hospitals such as theirs despite high rates of MRSA endemia and that active surveillance cultures and contact precautions for colonized patients, as recommended by a Society for Healthcare Epidemiology of America (SHEA) guideline [3], are thus unneeded. Small studies, such as the one performed by Nijssen et al. [1], are susceptible to statistical imprecision, and all epidemiologic studies (including randomized, controlled trials) require confirmation by studies performed by other authors in other populations. A contemporaneous, larger study by Marshall et al. [4] found that a similar percentage of patients (6.8%) were colonized with MRSA at admission to the ICU, but another 11.4% acquired MRSA in the ICU, which was using only standard precautions. Many other studies support the finding of Marshall et al. [4] that MRSA spread and infection have continued in recent years, despite the use of standard precautions [3]. Another contemporaneous ICU study by Cepeda et al. [5] reported high MRSA transmission rates whether contact precautions or modified “standard precautions” (which were similar to contact precautions) were used and concluded that new infection-control measures are needed. MRSA caused steadily increasing proportions of S. aureus infection in National Nosocomial Infection Surveillance hospitals during the 9 years since standard precautions began to be required in US hospitals [6, 7], raising questions regarding both the validity and the generalizability of the results reported in Nijssen et al. [1]. The SHEA guideline cited 45 studies reporting significantly improved control of MRSA and/or vancomycin-resistant enterococci with active surveillance cultures and contact precautions [3], raising questions regarding the validity and generalizability of the results reported by Cepeda et al. [5].

S. aureus

Copyright © 2005 by the Infectious Diseases Society of America. All rights reserved. 1058-4838/2005/4102-0023$15.00

6. Working Party on Infection Prevention. A pol-
sation of patients in single rooms or cohorts to

Reply to Verbrugh and to Muto et al.

Sir—We thank Verbrugh [1] and Muto et al. [2] for their letters, in which they raise several concerns regarding our study [3]. Verbrugh [1] suggests that we might have missed a substantial portion of cases of colonization, because we did not use an enrichment broth and did not obtain culture samples from additional body sites. Naturally, use of enrichment broth might have increased the sensitivity of detection from a single specimen, but our patients had cultures performed daily—nasal swab cultures and, in addition, cultures of respiratory samples for patients who were undergoing intubation—and it is unlikely that epidemiologically important cases of colonization would have been missed with such intense sequential culturing. Moreover, the current Society for Healthcare Epidemiology of America guidelines for control of nosocomial methicillin-resistant *Staphylococcus aureus* (MRSA), which our study was assessing in part, recommend the use of agar media for active surveillance cultures, and the study from the United Kingdom [4] that Verbrugh [1] cites obtained surveillance cultures only weekly and appears to have relied primarily on culture results from agar media for infection-control decision making. In addition, in pilot studies, we found little utility in the use of surveillance cultures other than those recommended by guidelines (and we obtained those surveillance cultures recommended by guidelines).

Use of a 48-h time period to discriminate between imported and hospital-acquired colonization might be arbitrary, as stated by Verbrugh [1], but it is the generally recommended definition used by the Centers for Disease Control and Prevention and most investigators. In fact, it is a more common concern that surveillance cultures with positive results that are obtained later during an intensive care unit (ICU) stay represent underrecognized cases of postadmission colonization. Nevertheless, we analyzed our data using 12 h after admission as a cut-off point, because all patients had a positive first culture result either within 12 h or >48 h after admission (data not shown). This additional analysis did not change our results or interpretation.

Verbrugh [1] is correct that neither health care workers nor the environment were screened, but the fact that there was no clustering of similar PFGE profiles makes such common-source cross-transmission highly unlikely. Verbrugh [1] also feels that we should have given more consideration to an alternative explanation—namely, the possibility that the setting and behavior of personnel were extraordinary and that this prevented transmission. Indeed, as in many ICUs in the United States, several patients in the unit (12 of 16) were treated in single rooms. However, these rooms did not have anterooms or closed doors, as are used when placing patients in strict isolation. Moreover, culture results were not shared with the staff (that was what the study was about!) and, thus, separate rooms were not preferentially used by colonized patients. Furthermore, patients were not cared for in specific cohorts (again, that was impossible, because culture results were unknown to personnel). The cohorting level of 77% means that nurses had contact that was restricted to a single patient much—but not all—of the time. Data for comparison of this cohorting level are scarce. However, in a British ICU with high levels of MRSA endemicity and periods of MRSA transmission associated with understaffing, cohorting levels were 80% [5]. Most importantly, the United Kingdom study [4] lauded by Verbrugh concludes, “Moving MRSA-positive patients into single rooms or cohorted bays does not reduce cross-infection” (p. 303).

Regarding the hand hygiene of our personnel, a 53% rate of compliance (78% if hand hygiene and/or glove use are tallied together) is good but not great, and personnel cover gowns were not part of care. But if we have to devote our efforts either to improving hand hygiene, which benefits all patients, or to doing active surveillance cultures that look for only a single pathogen, we would favor improving hygiene, as supported by our study results.

To answer the question of Muto et al. [2] as to what infection-control measures were being followed, no measures other