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There is ample evidence that oxidized lipoproteins
exist in vivo, not only in atherosclerotic lesions, but
also associated with some experimental models of
diabetes. Whether the lipoprotein oxidation is an
epiphenomenon of other atherogenlc or diabetogenlc
agents or processes or whether it Is causally related to
lesion formation In atherosclerosis or other forms of
tissue damage In people with diabetes Is unresolved.
Intense Interest in testing these Ideas derives from in
vitro observations of the ways In which oxidized
lipoproteins Interact with cells that are unlike the
Interactions with native lipoproteins. Many of these
altered Interactions suggest known features of
atherosclerotic lesions, and recent data show that
antloxidant treatment reduces the progression of
vascular lesions. There are reasons to believe that
hyperglycemla may worsen lipld and lipoprotein
oxidation. If this observation Is the case in vivo, and If
It Is ultimately proved that lipoprotein oxidation
facilitates lesion development, these events may help
explain the accelerated atherosclerosis suffered by
diabetic patients. The multiple pathways for which
there Is evidence that hyperglycemia may contribute to
oxldative events—for example, by enhancing free
radical production in stimulated inflammatory cells or
by forming glycatlon products that can propagate free
radical events—suggest avenues for further research
and may ultimately Indicate points for intervention in
the various manifestations of the disease. Diabetes 41
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In recent years, the study of atherosclerosis has been
influenced by the hypothesis that lipoproteins can
become modified in vivo by free radical-mediated
oxidation and may initiate atherosclerotic lesion de-

velopment or worsen its course. In part, this notion
emanated from observations that human LDLs could be
cytotoxic to vascular endothelial cells and vascular
smooth muscle cells grown in culture (1), and that this
cytotoxicity followed the formation of potent cell-injuring
agents during free radical-mediated oxidation of the
lipoprotein (2,3). Related ideas developed in parallel with
studies by Henriksen et al. (4-6) showing that LDL could
be modified by cultured endothelial cells in such a way
that the lipoprotein became a ligand for macrophage
scavenger receptors, thus suggesting a mechanism for
the formation of macrophage-derived foam cells, an
early cellular component of atherosclerotic lesions. This
modification by vascular endothelial cells was later
shown to be caused by free radicals produced by the
endothelial cells (7,8), and LDL oxidation was thus
readily demonstrable both in cell culture and in cell-free
systems that supported lipid peroxidation. Collectively,
these investigators proposed that oxidized forms of LDL
could injure vascular cells, perhaps accounting for early
endothelial injury that putatively accompanies athero-
sclerosis and the appearance of dead cell debris in later
lesions, and that oxidized LDL could be the in vivo
counterpart of chemically modified forms of LDL (for
example, malondialdehyde-treated LDL and acetylated
LDL), previously shown to be taken up in vitro by mac-
rophages in unregulated fashion.

OXIDIZED LIPOPROTEINS AND ATHEROSCLEROSIS
Since 1984, additional tenets of a hypothesis for athero-
sclerosis involving oxidation-mediated lipoprotein alter-
ations have fluorished as experimental support for
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numerous cell function changes mediated by oxidized
lipoproteins has been obtained in vitro. The possible
cellular interactions of oxidized LDL now go far beyond
the early observations above (9-13).

Oxidized LDL alters the gene expression for and
secretion of several growth factors and cytokines by
macrophages and endothelial cells grown in culture.
Treatment of macrophages with oxidized LDL inhibits the
gene expression of tumor-necrosis factor-<x, interleukin
1a, and interleukin ip that otherwise follows stimulation
(14,15). After incubation with oxidized LDL, endothelial
cell production of colony-stimulating factors is enhanced
(16), yet platelet-derived growth factor activity from both
endothelial cells and macrophages is reduced (17,18).
Oxidized LDL is a chemoattractant to monocytes (19,20)
and, at moderate levels of oxidation, induces the expres-
sion on endothelial cell surfaces of a specific monocyte-
binding protein (21). The oxidatively modified lipoprotein
also stimulates production of monocyte chemotactic pro-
tein-1 by endothelial cells (22). Oxidized LDL also inter-
feres with endothelial cell-induced relaxation of vascular
tissue (23-26).

These actions are only a sampling of the reported
influences of oxidized lipoproteins on cultured vascular
cells; however, the extent to which any of these effects
have pathophysiological counterparts in vivo is unknown
and will depend, of course, on the focal presence of
oxidized LDL in vivo and the local concentration. At least
as important, however, is the similarity of the in vivo form
of the modified lipoprotein to the forms resulting from
experimental LDL oxidation in vitro, which includes the
use of metal ions, cultured cells, and ultraviolet irradiation
as mediators of the free radical oxidation. There is ample
evidence supporting the existence in vivo of oxidized
forms of VLDL and LDL. Antibodies that recognize oxi-
dized LDL, but not native LDL, including those that
recognize certain lipid peroxidation products linked to
polypeptides, were used to demonstrate these epitopes
in the vascular lesions of experimental animals and
humans (27-31). Lipoprotein fractions extracted from
lesions have properties similar to those of oxidized LDL
(32,33) and react with these antibodies (33). Antibodies
recognizing oxidized but not native LDL were reported
circulating in human plasma (33), and a subfraction of
human LDL was isolated that has properties similar to
those of LDL after oxidation (34). Finally, lipoprotein
fractions with elevated levels of thiobarbituric acid reac-
tivity, an indirect indication of lipid peroxidation, were
demonstrated in diabetic animals and humans (35-38).
Collectively, the above evidence suggests strongly that
oxidized lipoproteins occur in vivo.

Various hypotheses can be proposed to explain the
initiation and further development of vascular lesions
based on lipoprotein oxidation, and what follows is an
example of such a hypothesis. The first step could be
elevated levels of VLDL or LDL in plasma, which are
known to enhance the levels of these lipoproteins in the
interstitial space of the arterial intima (39). The increased
concentration and resulting increase in lipoprotein resi-
dence time (40) increases the probability of opportunistic
oxidation by the adjacent endothelial or smooth muscle

cells (7,8,41). This moderately oxidized LDL may injure
proliferating endothelium (1,42), increasing the perme-
ability to large molecules (43-45). The oxidized LDL may
also promote monocyte recruitment to the lesion site by
causing endothelial cells to produce MCP-1 and express
monocyte-binding molecules on their luminal surface
(21,22). Phagocytic action of the invading monocyte-
derived macrophages could worsen lipoprotein oxidation
in the interstitum by promoting free radical mechanisms
(46-49). Once oxidized further, the lipoprotein could
recruit more monocytes due to its inherent chemoattrac-
tant activity (19,20). The altered lipoprotein can then be
taken up by these resident macrophages: by scavenger
receptors that recognize highly oxidized LDL (50-52), by
nonspecific phagocytosis after oxidation-induced aggre-
gation of the lipoprotein (53), or by Fc-receptor-medi-
ated uptake of complexes of oxidized LDL and anti-
bodies that recognize it (54). Oxidized LDL may also
recruit smooth muscle cells from the media to the intima
(55) and injure the proliferating cells (1,42), leading to the
accumulation of dead cell debris.

Although evidence supporting the existence of oxi-
dized LDL in vivo is strong, the evidence that lipoprotein
oxidation may be involved in lesion development is only
indirect. It consists of data indicating that certain antiox-
idants impede the progression of arterial lesions. Probu-
col reduced fatty streak lesion development in the
Watanabe heritable hyperlipemic rabbit (56,57) and the
cholesterol-fed rabbit (58), separate from its lipid-lower-
ing effects (57,58). Butylated hydroxytoluene inhibited
atherosclerosis in cholesterol-fed rabbits, despite ele-
vated lipids in the drug-treated animals (59). Three years
of vitamin E supplementation to an atherogenic diet led to
diminished arterial lesions in primates with diet-induced
atherosclerosis compared with untreated control animals
(60). p-Carotene supplements to humans reduced car-
diovascular disease events significantly (61). However,
the above studies need to be interpreted cautiously
because each of these antioxidants has numerous cellu-
lar actions.

LIPID AND LIPOPROTEIN OXIDATION IN DIABETES
Diabetes is a strong risk factor for atherosclerosis. There-
fore, it is logical to consider ways in which diabetes may
complicate or accelerate lipoprotein oxidation (62,63).
There is evidence that diabetes is accompanied by
enhanced lipid peroxidation or lipoprotein oxidation and
that hyperglycemia and accelerated oxidation may be
related.

The possible role for oxidized lipids in the pathogene-
sis of diabetes is supported by the findings that the
oxidation of LDL in vitro is enhanced in the presence of
glucose. Hunt et al. (64) demonstrated that human LDL
incubated with high glucose and cupric ion yielded
higher levels of TBA reactivity and lipid peroxide forma-
tion than LDL exposed to copper without glucose. Saku-
rai et al. (65) found similar results with glycated LDL and
iron. They also showed that antioxidants such as a-toco-
pheral and probucol were able to suppress the iron-
mediated production of TBA reactivity in the glycated
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LDL (65). Cutler (66) demonstrated increased iron stor-
age in people with poorly controlled diabetes, whereas
Howard et al. (67) showed increased urinary excretion of
iron in people with diabetic nephropathy. This difference
invites the speculation that iron-dependent oxidative
reactions may be one mechanism for enhanced oxidation
of lipids in the plasma and tissue of diabetic subjects.
Kawamura et al. (68) found increased conjugated
dienes, lipid peroxides, and TBA reactivity in LDL incu-
bated with glucose compared with the control case;
these effects were inhibited by superoxide dismutase.

Although LDL incubated with glucose was shown to
increase lipid peroxide production, there are other fac-
tors related to diabetes that could further increase lipid
peroxidation, such as hypertriglyceridemia. Hiramatsu
and Arimori (69) demonstrated significant increases in
stimulated superoxide production in mononuclear cells
obtained from diabetic patients with hypertriglyceridemia
and nondiabetic hypertriglyceridemic patients compared
with control groups. This production significantly corre-
lated with plasma triglyceride levels.

The observation that increased concentrations of glu-
cose result in an increased likelihood of oxidation of LDL
leads one to conclude that there should be an increased
likelihood of finding oxidized lipids circulating in the
plasma and deposited in the tissues in diabetic animal
models. Lipid oxidation products were reported in the
plasma, in particular in the lipoprotein fractions, of rats
made diabetic with injections of streptozocin. The levels
of TBA reactivity can be reduced by treatment with the
antioxidants vitamin E or probucol (35,36,38). For exam-
ple, using the STZ rat model, we found increased TBA
reactivity in the VLDL + LDL fractions of plasma for 2 mo
after STZ injection (35). Treatment with vitamin E, probu-
col, or insulin resulted in decreased TBA reactivity. The
two antioxidants were administered after the hyperglyce-
mia had developed, and neither caused a decrease in
plasma glucose. Somova et al. (70) also measured lipid
peroxide levels in the lipoprotein fractions of rats 2.5 mo
after treatment with STZ. They also found a significant
increase in lipid peroxide levels in the STZ rats compared
with controls. Furthermore, they found that the measured
lipid peroxide levels correlated with triglyceride content
of LDL. Jain et al. (71) quantified TBA reactivity in
diabetic erythrocyte membranes 2 and 4 mo after STZ
injection. They found increases in the TBA reactivity of
membranes from STZ-treated animals that did not re-
ceive insulin compared with nondiabetic controls,
whereas measurements made from erythrocytes ob-
tained from STZ-treated animals that received insulin
were not significantly different from the controls. Yeh and
Ashton (72) found increased TBA reactivity in the lenses
from rats 2 wk after STZ treatment; however, the in-
creases were not found in diabetic animals treated with
insulin or sorbinil.

Findings of increased levels of oxidized lipids circulat-
ing in the plasma as well as deposited in the tissue of
diabetic humans were also reported. Plasma lipid perox-
ides were reported in human subjects with diabetes
(37,73), and were found to be particularly elevated in
patients with poorly controlled diabetes and with angiop-

athy (73). Mooradian (74) quantified conjugated dienes
in the serum of 45 male diabetic patients >60 yr of age
(22 with complications, 23 without complications) and 24
healthy control subjects and found increased conjugated
dienes in the diabetic subjects with complications com-
pared with the healthy control subjects. They found the
conjugated dienes to be significantly correlated with
plasma triglyceride levels. No increase above control
levels was noted in the diabetic patients without compli-
cations. Similarly, Jennings et al. (75) found that in
diabetic people with microangiopathy, serum diene con-
jugates were double the levels found in people with
uncomplicated diabetes and control subjects. Jain et al.
(76) found an increase in TBA reactivity in the mem-
branes of erythrocytes from diabetic subjects compared
with nondiabetic control subjects. This increase corre-
lated with the levels of glycosylated hemoglobin found in
the erythrocytes. Simonelli et al. (77) compared the TBA
reactivity measured in the lenses from 15 diabetic pa-
tients with cataracts with that in nondiabetic patients with
cataracts and clear-lens patients and found a significant
increase in tissue from the diabetic patients.

Both the animal and human studies outlined above are
consistent with increased oxidized lipids and lipoproteins
in the plasma and tissues of certain categories of dia-
betic subjects. The in vitro studies discussed above
suggested that these increased levels may occur be-
cause lipids are more readily oxidized in the presence of
increased glucose concentrations. This hypothesis is
supported by the continued observations, in both animal
models and humans, that in subjects with well-controlled
diabetes (for example, in animals that receive insulin),
lower levels of circulating lipid peroxides are found. The
association between elevated lipid peroxidation and di-
abetes is likely to be a complex one, and not all instances
of diabetes result in elevated oxidation. For example,
Parinandi et al. (78) found lower TBA reactivity and
elevated glutathione levels in the hearts and kidneys of
rats with alloxan-induced diabetes.

OXIDIZED LIPOPROTEINS AND CELL INJURY
The reported incidence of increased lipid peroxidation
with diabetes invited the speculation that certain patho-
logical manifestations of diabetes may be initiated or
worsened by the participation in cell and tissue damage
of the elevated levels of free radicals or lipid peroxides.
As indicated earlier, lipoproteins oxidized in vitro are
potent toxins to cultured cells. Because diabetic lipopro-
teins appear to be oxidized in certain experimental
models and human patient populations, it is reasonable
to examine whether diabetic lipoproteins carry cell-injur-
ing moieties. The lipoproteins of the streptozocin diabetic
rat appear to be cytotoxic. Arbogast et al. (79) showed
that the VLDL fraction from these animals, unlike that from
control rats, injured cultures of endothelial cells. In a later
study, we were able to correlate the in vitro toxicity of a
VLDL + LDL fraction from STZ rats with the level of lipid
peroxidation products (35). That this correlation implied
cause and effect was supported by the decrease in
oxidation levels and in toxicity of the lipoprotein fraction
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after treatment of the animals with lipophilic antioxidants.
The HDL fractions in these animals were not significantly
oxidized, nor were they cytotoxic. The in vivo oxidized
lipoproteins appeared analogous to the toxic human LDL
oxidized in vitro by various free radical-mediated mech-
anisms.

We and others characterized the way in which oxidized
LDL injures cells with the hope of ultimately identifying
the mechanism of cell injury. The toxic activity appears to
be nonspecific; a variety of cells are vulnerable to oxi-
dized LDL-mediated cell injury (1,3). LDL-receptor rec-
ognition is not required for cells to be vulnerable to the
toxicity (80,81), although there is evidence that if LDL is
oxidized only moderately, such that it is still recognized
by the LDL receptor, the toxic effect is enhanced in cells
expressing this receptor (82). If LDL is oxidized exten-
sively, such that it is no longer recognized by the LDL
receptor, but becomes a ligand for the scavenger recep-
tor (4,52), its toxicity to cells expressing scavenger
receptors (52) may also be enhanced by receptor up-
take, although this hypothesis has not been rigorously
tested.

The toxic activity of oxidized LDL resides in the lipid
phase; organic solvent extracts of oxidized, but not
native, LDL will kill fibroblasts grown in culture (2). The
characteristics of the principal toxic activity are consis-
tent with those of an oxysterol (unpublished observa-
tions), but numerous toxic lipid oxidation products
produced on oxidation of LDL (for example, 4-hydroxy-
nonenal) are also cytotoxic. The mechanism by which
oxidized LDL kills cells can be examined by studying the
inhibition of its injurious effects. Cell death is inhibited by
forcing target cells to arrest their progression through the
cell cycle (1,42). Fibroblasts in the DNA-synthesis phase
of the cell cycle appear most vulnerable (42). In addition,
native HDL reduces the toxic effect (1,2,83).

With LDL oxidized in vitro with metal ions, but from
which the bound metal has been removed after oxidation,
we demonstrated that certain antioxidants (vitamin E,
probucol) inhibit the toxic effects (unpublished observa-
tions). This result suggests that cellular oxidation reac-
tions facilitate cellular injury. Analogous inhibition was
observed for cellular injury caused by LDL oxidized by
ultraviolet irradiation (84) and by the potent toxic form of
oxidized LDL containing bound metal ions (85-87). The
pattern of antioxidants that inhibit LDL-induced cell injury
suggests that lipid hydroperoxides may be responsible
for the injury through a mechanism analogous to that
suggested for tertiary butylhydroperoxide injury to hepa-
tocytes (88). Finally, although lipoproteins from diabetic
rats appear to be oxidized (35,36) and toxic to cells in
culture (35,79), their injurious actions in vivo have yet to
be demonstrated.
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