Reduced MTHFD1 Activity in Male Mice Perturbs Folate- and Choline-Dependent One-Carbon Metabolism as Well as Transsulfuration1,2

Martha S. Field,3 Kelsey S. Shields,3 Elena V. Abarinov,3 Olga V. Malysheva,3 Robert H. Allen,4 Sally P. Stabler,4 Jessica A. Ash,3 Barbara J. Strupp,3 Patrick J. Stover,3 and Marie A. Caudill3*

3Division of Nutritional Science, Cornell University, Ithaca, NY; and 4Department of Medicine and Division of Hematology, University of Colorado Health Sciences Center, Denver, CO

Abstract

Impaired utilization of folate is caused by insufficient dietary intake and/or genetic variation and has been shown to prompt changes in related pathways, including choline and methionine metabolism. These pathways have been shown to be sensitive to variation within the Mthfd1 gene, which codes for a folate-metabolizing enzyme responsible for generating 1-carbon (1-C)–substituted folate derivatives. The Mthfd1gt/+ mouse serves as a potential model of human Mthfd1 loss-of-function genetic variants that impair MTHFD1 function. This study investigated the effects of the Mthfd1gt/+ genotype and folate intake on markers of choline, folate, methionine, and transsulfuration metabolism. Male Mthfd1gt/+ and Mthfd1+/+ mice were randomly assigned at weaning (3 wk of age) to either a control (2 mg/kg folic acid) or folate-deficient (0 mg/kg folic acid) diet for 5 wk. Mice were killed at 8 wk of age following 12 h of food deprivation; blood and liver samples were analyzed for choline, methionine, and transsulfuration biomarkers. Independent of folate intake, mice with the Mthfd1gt/+ genotype had higher hepatic concentrations of choline ($P = 0.005$), betaine ($P = 0.013$), and dimethylglycine ($P = 0.004$) and lower hepatic concentrations of glycerophosphocholine ($P = 0.002$) relative to Mthfd1+/+ mice. Mthfd1gt/+ mice also had higher plasma concentrations of homocysteine ($P = 0.0016$) and cysteine ($P < 0.001$) as well as lower plasma concentrations of methionine ($P = 0.0003$) and cystathionine ($P = 0.011$). The metabolic alterations observed in Mthfd1gt/+ mice indicate perturbed choline and folate-dependent 1-C metabolism and support the future use of Mthfd1gt/+ mice as a tool to investigate the impact of impaired 1-C metabolism on disease outcomes.

Introduction

The Mthfd1 gene encodes a trifunctional folate-metabolizing enzyme, C1-tetrahydrofolate (THF)1 synthase, which plays an important role in both nucleotide synthesis and the methionine cycle. The C1THF synthase enzyme [commonly referred to as methylentetrahydrofolate dehydrogenase 1 (MTHFD1)] contains a synthetase activity that catalyzes the ATP-dependent conversion of formate and THF to 10-formylTHF, a cyclohydrolase activity that catalyzes the interconversion of 10-formylTHF and 5,10-methenylTHF, and a dehydrogenase activity that reduces 5,10-methenylTHF to 5,10-methyleneTHF (1) (Fig. 1).

A product of the C1THF synthase-catalyzed reactions, 5,10-methyleneTHF, exists at a branch point in the folate metabolic pathway. 5,10-MethyleneTHF is a 1-carbon (1-C) donor for the de novo synthesis of thymidylate or alternatively can be irreversibly reduced to 5-methylTHF by the enzyme 5,10-methylenetetrahydrofolate reductase (1). 5-MethylTHF is a key methyl donor for homocysteine remethylation to methionine, a reaction that is functionally redundant with the betaine:homocysteine methyltransfere-catalyzed conversion of homocysteine to methionine (2–4). Both folate-mediated 1-C metabolism and choline degradation can independently supply 1-C units for homocysteine remethylation and therefore these 2 pathways are highly interrelated. Consequently, changes in either folate or choline status can result in commensurate changes in the status of the other nutrient, as shown in several rodent models (5–8) and human studies (9–11).

We recently generated and characterized a mouse with a gene-trap insertion in the 10-formylTHF synthetase domain of the Mthfd1 gene (12). The Mthfd1esg genotype is embryonic lethal, but Mthfd1esg mice are viable and fertile. The C1THF synthase enzyme produced from the gene-trap allele lacks synthetase activity and tissues from Mthfd1esg mice have 50% lower total C1THF synthase protein. Mthfd1esg mice exhibited perturbed 1-C metabolism and these aberrations were exacerbated by a diet...
deficient in both folate and choline (12). As such, the \textit{Mthfd1}−/− mouse may serve as a model to investigate physiological outcomes of interactions between \textit{MTHFD1} deficiency in humans and nutrients with key roles in 1-C metabolism. The \textit{MTHFD1} G1958A single nucleotide polymorphism (SNP) (rs2236225, R63Q) results in a thermolabile protein with reduced synthetase activity (13) and is associated with increased risk for neural tube defects, fetal loss, and breast and gastric cancers (14–18). Carriers of the 1958A allele are also shown to exhibit increased circulating levels of homocysteine and impaired methionine cycle activity (13) and is associated with increased risk of neural tube defects, fetal loss, and breast and gastric cancers (14–18).

Materials and Methods

\textbf{Experimental mice and diets.} All study protocols were approved by the Institutional Animal Care and Use Committee of Cornell University and conform to the NIH Guide for the Care and Use of Laboratory Animals. Study mice were generated by crossing C57Bl/6 female mice to 129P2/OlaHsd \textit{Mthfd1}−/− male mice. C57Bl/6 \textit{Mthfd1}+/+ mice were previously described (12). At weaning, male offspring were randomly assigned to either an AIN-93G diet (22) (control diet, Dyets) that contained 2 mg/kg folic acid or to a modified AIN-93G diet lacking folic acid (FD diet, Dyets). All mice were fed the respective diets for 5 wk postweaning. Experimental mice were genotyped as described elsewhere (12).

\textbf{Tissue harvest.} Mice were killed by cervical dislocation after 12 h of food deprivation. Blood was collected via cardiac puncture into heparin-coated tubes. Plasma was separated by centrifugation and snap frozen in liquid nitrogen. Liver samples were rinsed with PBS and snap frozen in liquid nitrogen. Liver samples were rinsed with PBS and snap frozen in liquid nitrogen. Liver samples were rinsed with PBS and snap frozen in liquid nitrogen. Liver samples were rinsed with PBS and snap frozen in liquid nitrogen. Liver samples were rinsed with PBS and snap frozen in liquid nitrogen. Liver samples were rinsed with PBS and snap frozen in liquid nitrogen.

\textbf{Analysis of liver choline metabolites.} Liquid chromatography-MS was used to measure free choline, betaine, and dimethylglycine (25) as well as phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, phosphocholine, and glycerophosphocholine (26) with modifications based on our instrumentation (11).

\textbf{Statistical analysis.} Statistical analysis was conducted using a 2-way ANOVA with interactions of interest included in the initial model (JMP, SAS Institute). Effects were considered significant at \(P \leq 0.05\).

\textbf{Results}

\textit{Mthfd1}−/− genotype is associated with higher liver choline, betaine, and dimethylglycine. As shown in Table 1, the \textit{Mthfd1}−/− genotype was associated with higher concentrations of choline, betaine, and dimethylglycine in liver tissue. The livers of \textit{Mthfd1}−/− mice had 95% higher choline (\(P = 0.005\)) as well as ~50% higher dimethylglycine (\(P = 0.004\)) and betaine (\(P = 0.013\)) relative to \textit{Mthfd1}+/+ mice. \textit{Mthfd1}−/− mice also had 43% lower concentrations of liver glycero phosphocholine (\(P = 0.002\)) than \textit{Mthfd1}+/+ mice (Table 1). Notably, the FD diet did not perturb liver choline metabolites in either \textit{Mthfd1}+/+ or \textit{Mthfd1}−/− mice, nor were any gene \times\ diet interactions detected (\(P > 0.10\)) (Table 1).

\textbf{Plasma biomarkers of 1-C metabolism and transsulfuration are altered in \textit{Mthfd1}−/− mice.} Plasma concentrations of the choline metabolites, dimethylglycine (\(P = 0.004\)) and methyline (\(P < 0.001\)), were higher in \textit{Mthfd1}−/− than in \textit{Mthfd1}+/+ mice as were plasma concentrations of homocysteine (\(P = 0.002\)) and cysteine (\(P < 0.001\)), a product of the transsulfur-
Discussion

This study demonstrates that reduced expression of the Mthfd1 gene has significant metabolic consequences for folate, choline, methionine, and transsulfuration biochemistry (Fig. 1) and lends some of the metabolic consequences of Mthfd1 deficiency, thereby explaining the greater effect of the Mthfd1^{gt/+} genotype in the present study. Similarly, in our previous study (12), the diet lacked both folate and choline as opposed to folate only in the current study. The greater restriction of methyl-nutrients in our previous study (12) may have exacerbated some of the metabolic consequences of the dietary treatment, thereby explaining the smaller effect of diet in the present study.

The Mthfd1^{gt/+} mouse has been shown to exhibit a functional impairment in 1-C metabolism as liver S-adenosylmethionine (AdoMet) concentrations are reduced, presumably due to reduced AdoMet synthesis through the methionine cycle (12). Here, we observed altered methionine metabolism in the Mthfd1^{gt/+} mouse in the form of elevated circulating homocysteine and decreased circulating methionine relative to the Mthfd1^{+/+} mouse. These findings collectively indicate that disruptions in C1THF synthase activity reduce the production of 5,10-methyleneTHF and ultimately 5-methylTHF, the folate coenzyme that participates in the remethylation of homocysteine to methionine (Fig. 1) (2,19,27).

The serine hydroxymethyltransferase reaction provides an alternative route to 5,10-methyleneTHF synthesis via C1-THF synthase. Serine hydroxymethyltransferase transfers the C3 of serine to AdoMet (AdoMet) concentrations are reduced, presumably due to reduced AdoMet synthase activity reduce the production of 5,10-methyleneTHF and ultimately 5-methylTHF, the folate coenzyme that participates in the remethylation of homocysteine to methionine (Fig. 1) (2,19,27).

In the present study, Mthfd1^{gt/+} mice had lower concentrations of circulating serine relative to Mthfd1^{+/+} mice, suggesting increased use of serine as source of 1-Cs for the methionine cycle and/or nuclear thymidylate biosynthesis (12) (Fig. 1).

Table 1

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Mthfd1<sup>+/+</sup></th>
<th>Mthfd1<sup>gt/+</sup></th>
<th>P value of effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>FD</td>
<td>All</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Choline, nmol/g</td>
<td>346 ± 273</td>
<td>248 ± 189</td>
<td>299 ± 236</td>
</tr>
<tr>
<td>Betaine, nmol/g</td>
<td>418 ± 202</td>
<td>331 ± 180</td>
<td>376 ± 192</td>
</tr>
<tr>
<td>Dimethylglycine, nmol/g</td>
<td>38 ± 13</td>
<td>38 ± 12</td>
<td>38 ± 13</td>
</tr>
<tr>
<td>Glyeroxyphosphocholine, nmol/g</td>
<td>173 ± 77</td>
<td>225 ± 137</td>
<td>198 ± 110</td>
</tr>
<tr>
<td>Phosphocholine, nmol/g</td>
<td>409 ± 215</td>
<td>425 ± 287</td>
<td>417 ± 245</td>
</tr>
<tr>
<td>Phosphatidylcholine, μmol/L</td>
<td>17.2 ± 2.75</td>
<td>17.1 ± 2.22</td>
<td>17.1 ± 2.44</td>
</tr>
<tr>
<td>Sphingomyelin, nmol/g</td>
<td>567 ± 178</td>
<td>626 ± 151</td>
<td>595 ± 164</td>
</tr>
<tr>
<td>Lysophosphatidylcholine, nmol/g</td>
<td>506 ± 152</td>
<td>498 ± 142</td>
<td>502 ± 144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Data are mean ± SD. Data were analyzed using a 2-way ANOVA. P ≤ 0.05 was considered significant; ns, not significant, P > 0.10. No significant genotype × diet interactions were detected. P < 0.10. FD, folate deficient.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AdoMet is required to activate CBS (31,32), diminished taurine enzyme in the transsulfuration pathway (30,31). Because Mthfd1gt/+ MTHFD1 line, among phosphocholine, a degradative productive of phosphatidylcholine and methylglycine and lower concentrations of hepatic glycerophosphocholine relative to Mthfd1+/+ mice. These alterations in choline metabolism suggest increased catabolism of glycerophosphocholine, a degradative productive of phosphatidylcholine, among Mthfd1gt+/+ mice to meet the greater demand for choline-derived 1-C groups: glycerophosphocholine → choline → betaine → dimethylglycine → methyglycine. Betaine is an alternative to S-methylTHF for the remethylation of homocysteine to methionine and previous studies in mice (8) and humans (9–11) have demonstrated the increased use of choline as a methyl donor under conditions of folate insufficiency. Notably, the decrease in liver glycerophosphocholine induced by the Mthfd1gt+/+ genotype was of nearly the same magnitude as that observed in a study in which mice were fed a folate-deficient diet for 12 mo (6), providing additional evidence of the adverse effects of impaired MTHFD1 activity on choline status. The purported increased use of choline-derived methyl groups under conditions of Mthfd1 deficiency is also consistent with data from human studies (19,20), which collectively indicate a higher dietary requirement for choline among individuals with deleterious MTHFD1 SNPs.

Disturbances in the methionine cycle due to the Mthfd1gt+/+ genotype appear to have important implications for transsulfuration biochemistry (Fig. 1). Mthfd1gt+/+ mice had decreased plasma concentrations of cystathionine, which is produced from homocysteine by cystathionine β-synthase (CBS), the regulatory enzyme in the transsulfuration pathway (30,31). Because AdoMet is required to activate CBS (31,32), diminished AdoMet, as seen in the livers of Mthfd1gt+/+ mice (12), would be expected to result in concurrent decreases in the specific activity of CBS, thereby attenuating the conversion of homocysteine to cystathionine and conserving homocysteine for the production of AdoMet. As the precursor to cysteine, which is the end product of the transsulfuration pathway, diminished availability of cystathionine might predict diminished levels of cysteine (33). Nonetheless, circulating cysteine was higher in Mthfd1gt+/+ mice than in Mthfd1+/+ mice. We suggest that, similar to what is observed with other nutrients (34), extrahepatic organs are acting to supply the Mthfd1gt+/+ liver with cysteine, which can be further metabolized to glutathione, a major reductive agent within the body that is used to combat oxidative stress (35,36).

In this study, decreased MTHFD1 activity had a greater impact on 1-C metabolism compared with the FD diet and there was no interaction between the Mthfd1 genotype and reduced dietary folate. Our findings that the FD diet did not further exacerbate the negative effects of the Mthfd1gt+/+ genotype on choline and 1-C metabolic markers indicate that the 3 enzymatic activities associated with MTHFD1 are not highly dependent on intracellular folate concentrations as has been observed for other folate-dependent enzymes (37).

The comprehensive pathway alterations to choline, folate, and methionine metabolism observed in Mthfd1gt+/+ mice are notably similar to alterations associated with the MTHFD1 G1958A polymorphism and lend further support to the use of Mthfd1gt+/+ mice as a model of perturbed folate- and choline-dependent 1-C metabolism and of heritable human MTHFD1 deficiencies. Overall, the results of this study provide important insights into the metabolic changes that would be expected to arise from human MTHFD1 insufficiency, such as in the G1958A and other recently identified MTHFD1 SNPs (21). The study results may also inform dietary treatment approaches as the need for a higher choline intake among individuals with deleterious MTHFD1 SNPs.

Acknowledgments

M.S.F., E.V.A., J.A.A., B.J.S., P.J.S., and M.A.C. designed the study; E.V.A. coordinated the study and collected tissues; O.V.M., R.H.A., and S.P.S. performed analytical analysis; M.S.F. and J.A.A. analyzed data and performed statistical analysis; M.S.F., K.S.S., M.A.C., and P.J.S. prepared the manuscript; and M.A.C. has primary responsibility for the final content. All authors read and approved the final manuscript.

Literature Cited

