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Stochastic reservoir optimization using El Niño

information: case study of Daule Peripa, Ecuador

Emiliano Gelati, Henrik Madsen and Dan Rosbjerg
ABSTRACT
Reservoir optimization requires the ability to produce inflow scenarios that are consistent with the

available climatic information. We approach stochastic inflow modelling with a Markov-switching

model where inflow anomalies are described by a mixture of autoregressive models with exogenous

input, each corresponding to a hidden climate state. Climatic information is used as exogenous input

and to condition state transitions. We apply the model to the inflow of the Daule Peripa reservoir in

western Ecuador, where El Niño events cause anomalously heavy rainfall. El Niño–Southern

Oscillation (ENSO) indices constitute the climatic input of the inflow model. The Daule Peripa

reservoir serves a hydropower plant and a downstream water supply facility. Based on ENSO

forecasts, which are available with 9 month lead time, monthly inflow scenarios are generated to

perform stochastic optimization of reservoir releases with monthly time-steps. To account for inflow

uncertainty, we generate multiple synthetic inflow time series and apply a multi-objective genetic

algorithm to evaluate the objective functions. The results highlight the advantages of using a

climate-driven stochastic model to produce inflow scenarios and forecasts for reservoir

optimization, and show significant potential improvements with respect to the current reservoir

management.
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ABBREVIATIONS
W
 arc degrees

WC
 Celsius degrees
ARX
 autoregressive model with exogenous input
BS
 dynamic programming benchmark solution
CO
 combined operation
EM
 expectation-maximization
ENSO
 El Niño–Southern Oscillation
GA
 genetic algorithm(s)
HO
 historical operation
km
 kilometers
LT
 long-term operation
m
 metres
MN
 meganewtons
MW
 megawatts
NSGA-II
 non-dominated sorting genetic algorithm-II
PNWD
 expected probability of not satisfying the down-

stream water demand
RMSD
 expected root mean square hydropower deficit
s
 seconds
SO
 simulation-optimization
SSTA
 sea surface temperature anomaly(ies)
ST
 short-term operation
TNI
 Trans-Niño Index
LIST OF SYMBOLS
0
 transpose operator
am
 observed inflow anomaly at monthm
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observed inflow anomaly time series from

month m1 to m2
bi
 auxiliary vector used in the EM algorithm to

estimate the ARX parameters for climate

state i
cm(i)
 ith ENSO-index at month m
cm
 vector of ENSO-indices at month m
Cm1:m2
 observed ENSO-indices time series from

month m1 to m2
eCm1:m2
 forecasted ENSO-indices from month m1 to

m2
dα(m)
 sample standard deviation of the generic

variable α for the calendar month corre-

sponding to m
E{ }
 expectation operator
eα(m)
 sample mean of the generic variable α for

the calendar month corresponding to m
f ðamjsm ¼ i;

am�1; cm; θÞ

conditional probability density function of

am, given cm, θ and that sm¼ i.
gt
 average hydropower [MW] during time-step t
gðrtjhðτt�1Þ; qtÞ
 function computing the hydropower gener-

ated by turbinating qt during the time-step t

given the initial water level h(τt�1)
G
 maximum hydropower capacity (MW)
GL
m1 :m2
set of L simulated hydropower time series

from month m1 to m2
h(v(x))
 reservoir water level (m) as function of reser-

voir water volume at time x
hmax
 maximum reservoir water level (m)
hmin
 minimum reservoir water level (m)
hm
 water level at the end of monthly time-stepm
h0:m
 water level time series from the beginning of

time-step 0 to the beginning of time-step m
h0:M
�
 best water level time series from time-step 0

to M, according to the dynamic program-

ming benchmark solution
k(rt)
 tailwater height (m) downstreams of the tur-

bines as function of reservoir release
lm(i)
 raw value of the ith ENSO-index at month m
oi( j)
 jth objective value of policy i
oi
 objective vector of policy i
pij
 stationary component of the transition prob-

ability from climate state i to j
/hr/article-pdf/42/5/413/372597/413.pdf
Pr{ }
 probability operator
q(x)
 reservoir inflow (m3 s�1) at time x
qt
 average reservoir inflow (m3 s�1) during

time-step t

~qm1:m2
synthetic inflow time series from month m1

to m2
eQL
m1 :m2
set of L synthetic inflow time series from

month m1 to m2
r(x)
 reservoir release (m3 s�1) at time x
rt
 average reservoir release (m3 s�1) during

time-step t
rCOm
 combined operation release during monthm
rLTm
 optimized long-term operation release

during month m
rSTm
 optimized short-term operation release

during month m
r�m:mþ8
 release time series from month m to mþ 8

that minimizes RMSD while guaranteeing

that U(eQL
m:mþ8; r

�
m:mþ8) �U, given the forecasteQL

m:mþ8, according to the short-term operation
Rmax
 maximum reservoir release (m3 s�1)
Rmin
 minimum reservoir release (m3 s�1)
RL
m1 :m2
set of L simulated release time series from

month m1 to m2
sm
 climate state at month m
S
 number of model-defined climate state
u(r)
 dowstream water demand deficit Boolean

function
U(eQL
m1 :m2

;ω)
 expected probability of not satisfying the

downstream water demand during a month

as function of eQL
m1 :m2

and ω

�U
 upper threshold for PNWD
νðxÞ
 reservoir water volume (m3) at time x
V
 scale matrix used to compute climate state

transition probabilities
½wp;wμ;wARX�
 set of auxiliary functions used in the EM

algorithm
W
 water supply facility demand (m3 s�1)
Xi
 auxiliary matrix used in the EM algorithm to

estimate the ARX parameters for climate

state i
ymðhm�1;hmÞ
 square hydropower deficit during the time-

step m as function of hm�1 and hm



415 E. Gelati et al. | Stochastic reservoir optimization using El Niño information Hydrology Research | 42.5 | 2011

Downloaded from http
by guest
on 22 October 2020
Y(eQL
m1:m2

;ω)
://iwaponline.com/hr/artic
expected root mean square hydropower def-

icit (with respect to G) as function of eQL
m1 :m2

and ω
bαðnÞ
 estimate of the generic parameter α at the

nth iteration of the EM algorithm
β
 turbine efficiency parameter
γi
 vector of ARX exogenous input parameters

for climate state i
δi
 ARX intercept parameter for climate state i
ε
 turbine efficiency parameter
ζm
 Gaussian white noise process with zero

mean and unit standard deviation
ηi(m)
 upper water level corresponding to the ith

release fraction for the calendar month cor-

responding to m
ηi
 vector of ηi(m) for all calendar months (for

m¼ 1,…,12)
θ
 parameter set of the stochastic inflow model
bθðnÞ
 set of parameter estimates at the nth iter-

ation of the EM algorithm
λi
 ARX autoregressive parameter for climate

state i
μi
 value of cm maximizing the probability of

shifting to climate state i
ν
 turbine efficiency parameter
ξ
 weight assigned to the optimized short-term

release when computing the combined oper-

ation release
ρi
 ith release fraction
σi
 ARX standard deviation parameter for cli-

mate state i
τt
 end time (s) of time-step t
φ
 specific weight of water, 9.81 × 10�3 MNm�3
χi
 ratio between ηiþ1 and ηi
ψ
 Lagrange multiplier used in the EM

algorithm
ω
 reservoir operation policy
INTRODUCTION

According to the World Commission on Dams, most current

reservoir operation policies are based on heuristic rules or
le-pdf/42/5/413/372597/413.pdf
subjective judgements of the operators. As a consequence,

many large reservoir projects are not completely fulfilling

the planning objectives (WCD ). Thus, the development

of systematic and feasible approaches for optimizing

reservoir management constitutes a priority. Moreover,

enriching the optimization framework with additional infor-

mation such as climatic forecasts would improve the

efficiency of reservoir operation.

Several traditionalmethods to optimize single- andmulti-

reservoir systems, such as linear and dynamic programming,

are reviewed by Yeh () and Labadie (). However,

these methods are affected by important drawbacks (Chen

). Linear programming requires the reservoir model to

be linearized, e.g. by using piecewise linear functions

(Loucks et al. ). The applicability of dynamic program-

ming to multi-reservoir systems is hindered by the

computational costs growing fast as the number of state vari-

ables increases. In many cases, these methods are therefore

valid only for simplified reservoir systems.

The simulation-optimization (SO) approach, which com-

bines simulation models with heuristic search procedures

such as genetic algorithms (GA), overcomes some of the

above limitations and facilitates implementation. Several

studies have proved the efficacy of the SO approach:

Oliveira& Loucks () used GA to performmulti-objective

optimization of complex reservoir systems with constraints

on releases and hydropower production; Sharif & Wardlaw

() used GA to optimize a multi-reservoir system in the

BrantasBasin in Indonesia; Chen () applied aGA in com-

bination with a simulation model to optimize the rule curves

of a major reservoir system in Taiwan; and Ngo et al. ()

used the shuffled complex evolution algorithm to optimize

the Hoa Binh reservoir in Vietnam, focusing on the trade-

off between flood control and hydropower generation.

The stochastic nature of inflow requires proper uncer-

tainty handling to derive robust reservoir operation

policies. Kelman et al. () used stochastic dynamic pro-

gramming to incorporate input uncertainty explicitly.

Alternatively, uncertainty can be included implicitly by

using sampling objective functions, which are evaluated on

multiple synthetic input realizations (Tickle & Goulter

). Several water resources system optimizations were

carried out by coupling GA with sampling objective func-

tions, in order to reduce the amount of noise by taking the



Figure 1 | Location of the Daule Peripa reservoir and areas of the Paciifc Ocean where

the ENSO-related SST are measured (Gelati et al. 2010b).
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mean of multiple noisy evaluations according to the Central

Limit Theorem (Smalley & Minsker ; Gopalakrishnan

et al. ; Kapelan et al. ; Wu et al. ).

In this study we consider the optimization of the Daule

Peripa reservoir in Ecuador. We follow the SO approach

and use the non-dominated sorting genetic algorithm-II

(NSGA-II), which is a multi-objective GA (Deb et al.

), embedding sampling objective functions that account

for the satisfaction of hydropower and downstream water

demands. The Daule Peripa reservoir is located in western

Ecuador where the occurrence of El Niño events, caused

by positive sea-surface temperature anomalies (SSTA) in

the equatorial Pacific Ocean, brings anomalously heavy

rainfall (Vuille et al. ).

To account for the influence of El Niño–Southern Oscil-

lation (ENSO), we applied the stochastic model by Gelati

et al. (b) to generate synthetic inflow scenarios and fore-

casts. It is a mixture of autoregressive models with exogenous

input (ARX), which use climatic variables as regressors. The

ARX spells shift between each other according to a first-

order Markov chain, where the transition probabilities

depend on the current climatic information. The applied

model is a Markov-switching model (Cappè et al. ) deriv-

ing from the work of Hamilton (), who modelled the

gross domestic product with an autoregressive model con-

ditioning the parameters on a hidden Markov chain that

shifted between economic growth and recession phases.

Such an approach was extended using a non-homogeneous

Markov chain (i.e. with time-variant transition probabilities),

which was previously applied in non-homogeneous hidden

Markov models for precipitation downscaling studies

(Hughes & Guttorp ; Hughes et al. ; Bellone et al.

; Robertson et al. ; Gelati et al. a). Akintuğ &

Rasmussen () used Markov-switching models to generate

annual streamflow time series, conditioning the runoff

probability distribution on a hidden climate state following a

Markov chain.

The modelling approach used in this study attempts to

account for the climatic influence on inflow, and for the

non-linearities in autocorrelation and between inflow and

climatic variables. Synthetic inflow scenarios and forecasts,

generated using ENSO information, are given as input to the

reservoir simulation model to perform long- and short-term

reservoir optimization.
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This manuscript is part of the special issue of Hydrol-

ogy Research entitled ‘Regionalization of models for

operational purposes in developing countries’. In this

study, we address the problem of developing robust reser-

voir optimization methods that can handle climatic

variability. The Daule Peripa case study in Ecuador rep-

resents a valid benchmark for testing the proposed

methods, which exploit large-scale climatic information in

a context of local data scarcity.

This paper has the following structure: we describe the

Daule Peripa reservoir system, we define the reservoir simu-

lation model and we illustrate the influence of ENSO on

inflow; we outline the stochastic inflow model, describing

parameter estimation and synthetic inflow generation; we

describe the optimization algorithm, we formulate the

sampling objective functions, we define the long-, short-

term and combined operations and we derive a dynamic

programming benchmark solution; we discuss the model-

generated inflow scenarios and forecasts, as well as the

optimization results; the achievements of the study are sum-

marized; and in the appendix we describe the expectation-

maximization algorithm, which is used for parameter

estimation of the stochastic inflow model.
THE DAULE PERIPA RESERVOIR SYSTEM

The Daule Peripa reservoir is located in western Ecuador (2WS,

80WE), 5 km downstream of the confluence of the Daule and

Peripa rivers (see Figure 1). The area of the drained catchment

is approximately 4,200 km2. Elevation is below 200 m, except

for the north-eastern part where altitudes of up to 600 m are



Table 1 | Summary of Daule Peripa reservoir characteristics

G (MW) W (m3 s�1) Rmin (m3 s�1) Rmax (m3 s�1) hmin (m) hmax (m)

213 60 0 3,600 70 86
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reached. Average precipitation is higher in the north-eastern

part (3,000 mm yr�1) than in the rest of the catchment (2,200

mm yr�1). No snowy precipitation is normally observed.

The reservoir construction was completed in 1987. The

reservoir supplies a hydropower plant and an aggregate

downstream water demand, which accounts for irrigation,

urban water supply and environmental flows. Monthly

inflow data are available from 1950 to 2008. The reservoir

active storage volume is approximately 3.534 km3, which cor-

responds to approximately 65% of average annual inflow

volume. Average monthly inflow values are shown in

Figure 2. Roughly 65% of annual inflow is concentrated in

February, March and April. No systematic reservoir oper-

ation policy is known to the authors. However, reservoir

water levels at the beginning of each month and monthly

hydropower data are available from 2000 to 2008.

The reservoir simulation model

Due to the lack of data, we made the following assumptions:

(i) all inflow is provided by the riversDaule andPeripa; (ii) the

reservoir storage is not affected by precipitation or evapor-

ation occurring at its surface (indeed, these processes

account for approximately 0.7% and 0.4% of average

inflow); (iii) storage gains and losses due to filtration are neg-

ligible; and (iv) all released water flows through the turbines

and is available to thewater supply facility. LetG be themaxi-

mum hydropower capacity, W be the demand of the water

supply facility,Rmin andRmax be theminimum andmaximum
Figure 2 | Average monthly inflow computed from 1950–2008 data.

://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
releases, and hmin and hmax be the minimum and maximum

water levels. Their values are reported in Table 1.

The reservoir system is simulated by subdividing the

total time of simulation into T discrete time-steps of variable

duration. Each time-step t is defined so that reservoir inflow

and release can be assumed constant:

qðxÞ ¼ qt; rðxÞ ¼ rt if τt�1 ≤ x ≤ τt ð1Þ

where τt is the end time of t; q(x) and r(x) are reservoir inflow

and release at time x; and rt and qt are the average values of

release and inflow during t.

According to the assumptions listed above, the reservoir

mass balance during time-step t is:

νðxÞ ¼ νðτt�1Þ þ ðx� τt�1Þðqt � rtÞ ð2Þ

where ν(x) is the reservoir water volume at time x. The level-

volume relation was estimated as:

hðxÞ ¼ hðνðxÞÞ
¼ 53:43þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:225 × 10�7νðxÞ � 2:683 × 102

q
ð3Þ

where hðνðxÞÞ transforms the reservoir water volume into

water level. Monthly reservoir releases were estimated

from the observed water level and inflow time series by sol-

ving Equation (2) with monthly time-steps.

The average generated hydropower during time step t, gt,

is computed as:

gt ¼ gðrtjhðτt�1Þ; qtÞ ¼ ϕεrβt
τt � τt�1

Z τt

τt�1

[hðxÞ � kðrtÞ]ν dx ð4Þ

where φ is the specific weight of water (9:81 × 10�3 MNm�3);

ε, β and ν parameterize the turbine efficiency as a

function of turbinated release and hydraulic head; and k(rt)

denotes the tailwater height downstream of the turbines as

function of rt.
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The turbine efficiency parameters were estimated via

least squares regression using Equation (4), given the

observed monthly release and hydropower time series.

Figure 3 compares the estimated and observed monthly

hydropower time series.
Figure 4 | Standardized annual time series of inflow, Niño 1þ 2, and TNI.
The influence of ENSO on reservoir inflow

The considered ENSO-indices are SSTA measured in sev-

eral parts of the equatorial Pacific Ocean, namely Niño

1þ 2 (0–10WS, 90–80WW), Niño 3 (5WN–5WS, 150–90WW),

Niño 3þ 4 (5WN–5WS, 170–120WW) and Niño 4 (5WN–5WS,

160WE–150WW) regions. The Trans-Niño Index (TNI),

which is the difference between SSTA of the Niño 1þ 2

and Niño 4 regions (Trenberth & Stepaniak ), was

also considered. Figure 1 shows the location of the Daule

Peripa reservoir and the regions where the ENSO-related

SSTA are measured. Monthly SST data were obtained for

1950–2008 from the NOAA Climate Prediction Center

(Camp Springs, Maryland, USA; http://www.cpc.ncep.

noaa.gov/data/indices/).

An overview of how ENSO indices correlate with inflow

is presented in Figure 4 which shows the annual anomalies

of inflow, Niño 1þ 2 SSTA and TNI. Annual anomalies

were obtained by aggregating monthly data into annual

time series, which were then standardized with respect to

sample means and standard deviations. Among the con-

sidered ENSO indices, Niño 1þ 2 and TNI proved to be
Figure 3 | Observed and estimated monthly hydropower time series.
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the best predictors for the Daule Peripa reservoir inflow

(Gelati et al. b). The annual time series indicate that

ENSO-indices are more correlated with positive than with

negative annual standardized inflow. El Niño conditions

and westward SSTA gradients across the equatorial Pacific

Ocean are well correlated with positive inflow anomalies,

while La Niña does not have a significant impact on

inflow (Gelati et al. b). El Niño and La Niña phases of

ENSO are associated with positive and negative SSTA in

the equatorial Pacific Ocean (Trenberth ), respectively.

To apply the stochastic inflow model, ENSO-indices

were de-seasonalized with respect to mean and standard

deviation, while inflows were log-transformed before being

de-seasonalized. Log-transformation was performed because

of the significant positive skewness of raw inflow data, in

order to be able to describe model noise with Gaussian dis-

tributions. The standardization methods are illustrated in

Equations (5) and (6):

cmðiÞ ¼
lmðiÞ � elðiÞðmÞ

dlðiÞðmÞ ð5Þ

am ¼ logðqmÞ � elogðqÞðmÞ
dlogðqÞðmÞ ð6Þ

where cm(i) and am are the anomalies of the ith ENSO-index

and inflow at month m, respectively; lm(i) and qm are the

raw values of the ith ENSO-index and inflow at month m,

http://www.cpc.ncep.noaa.gov/data/indices/
http://www.cpc.ncep.noaa.gov/data/indices/
http://www.cpc.ncep.noaa.gov/data/indices/
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respectively; and ez(m) and dz(m) are sample mean and stan-

dard deviation of the generic variable z for the calendar

month corresponding to m, respectively.
A STOCHASTIC MODEL FOR RESERVOIR INFLOW
CONDITIONED BY EL NIÑO INFORMATION

Model definition

The modelling approach presented by Gelati et al. (b)

mimics ENSO-induced shifts between discrete inflow

regimes and uses ENSO-indices as covariates to predict

inflow. The model assumes inflow anomalies to be driven

by a hidden climate state process. The climate state at

month m is represented by the discrete stochastic variable

sm that can take on values 1,…, S. sm follows a first-order

Markov chain, where transition probabilities depend on

the current ENSO-indices. Using the parameterization intro-

duced by Hughes & Guttorp () for non-homogeneous

hidden Markov models, state transition probabilities are

computed as:

Pr{sm ¼ jjsm�1 ¼ i; cm; θ}∝ pij

× exp

"
� 1
2
ðcm � μjÞ0 Vðcm � μjÞ

# ð7Þ

where cm is the vector of ENSO-indices at month m; θ is the

parameter set; pij is the stationary component of the tran-

sition probability from state i to j; V is a scale matrix; μi is

the value of cm that maximizes the probability of shifting

to state i; and 0 is the transpose operator. To guarantee par-

ameter identifiability, pij is subject to the constraintPS
j¼1 pij ¼ 1 (for i¼ 1,…, S). To reduce the number of free

parameters, V is set equal to the inverse of the covariance

matrix of cm (Hughes & Guttorp ; Hughes et al. ;

Bellone et al. ). State occurrence probabilities for the

first time-step are calculated as:

Prfs1 ¼ ijc1; θg∝ exp

"
� 1
2
ðc1 � μiÞ0 Vðc1 � μiÞ

#
ð8Þ

where no stationary term is included, to limit parameter

numerosity.
://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
Inflow anomalies are modelled by an ARX spell, whose

parameters are conditioned on the current climate state.

Assuming the ARX spell noise to be a stationary Gaussian

and independent process, the conditional probability density

function of the inflow anomaly at month m reads:

f ðamjsm ¼ i;am�1; cm; θÞ

¼ 1

σi
ffiffiffiffiffiffi
2π

p × exp �ðam � δi � λiam�1 � γ0icmÞ2
2σ2

i

" #
ð9Þ

where am is the inflow anomaly at month m, defining a0 to

be zero, and δi, λi, γi and σi are the ARX parameters for

state i.

The stochastic inflow model can be used for generating

(i) inflow scenarios conditioned on records of ENSO-indices

and (ii) inflow forecasts conditioned on ENSO forecasts and

past observations. A thorough description of the inflow gen-

eration methods is available in Gelati et al. (b). For the

purpose of model testing, we used observed ENSO data to

generate synthetic inflow. In a real-life application, inflow

would be forecasted using ENSO forecast data which are

currently published with a 9 month lead time by the

NOAA Climate Prediction Center.
Parameter estimation

The free parameter set is θ ¼ ½pij;μi; δi; λi; γi; σi� (for i¼ 1,…,

S and j¼ 1,…, S� 1). The model is calibrated via the expec-

tation-maximization (EM) algorithm, which is an iterative

maximum likelihood estimation method. It treats the

hidden states as missing observations and requires initializa-

tion. The method was developed for hidden Markov models

(Baum et al. ; Dempster et al. ) and later applied to

non-homogeneous hidden Markov models by Hughes et al.

(). The EM algorithm for the Markov-switching model

used in this study is derived in the appendix.
OPTIMIZATION TECHNIQUES

To optimize the Daule Peripa reservoir, we coupled the

reservoir simulation model with a heuristic search method.

The applied SO approach consists of the following
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procedure: (i) sets of reservoir operation decision variables,

referred to as policies, are randomly generated; (ii) for each

policy, the objective functions are evaluated by the reservoir

simulation model; (iii) according to such evaluations, the

optimization algorithm generates new policies; and

(iv) steps (ii) and (iii) are iterated until a termination cri-

terion is satisfied. In this section, we outline the

optimization framework by formulating the objective func-

tions; describe the optimization algorithm; and define the

long- and short-term operation policies to be optimized as

well as their combination. Finally, we derive a dynamic pro-

gramming solution to benchmark the optimized policies.

Objective functions

The main purposes of the Daule Peripa reservoir are hydro-

power production and water supply. Although the

turbinated release is available to the downstream water

supply facility, water uses are conflicting. Maximizing hydro-

power production requires high hydraulic heads at the

turbines, to maximize the specific energy yield of the turbi-

nated flow. This may result in reservoir releases not

satisfying the downstream water demand, when it is more

convenient to refill the reservoir than to turbinate.

The downstream water demand satisfaction might be

treated as a constraint, thus leading to a constrained

single-objective optimization problem. We believe that treat-

ing the downstream water demand satisfaction as an

additional objective may help the decision-making process,

since a multi-objective optimization approach reveals the

trade-off between objectives.

Objective functions are evaluated by simulating the reser-

voir with a number of synthetic inflow time series and taking

the mean of the objective values obtained for each time

series. Such objective functions are referred to as sampling

objective functions. Sampling objective functions allow a

more thorough exploration of the objective space, facilitating

the reservoir operator in choosing the best compromising

policy. As sampling objective functions help account for input

uncertainty, they are likely to yield robust operation policies.

The number of synthetic inflow time series used to com-

pute the sampling objective functions is decided according

to the following criteria: (i) if simulations are repeated on

several sets of synthetic inflow time series, the sampling
om http://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
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objective functions of a policy must take similar values (stab-

ility criterion) and (ii) the computational cost of evaluating

the sampling objective functions must be acceptable (feasi-

bility criterion). Increasing the number of time series

favours stability but penalizes feasibility; a compromise is

therefore needed.

Let eQL
m1 :m2

¼ [eqð1Þ
m1 :m2

; . . . ; eqðLÞ
m1:m2

] be a set of L synthetic

inflow time series from month m1 to m2; let ω be a generic

policy; and let RL
m1:m2

¼ [rð1Þm1 :m2 ; . . . ; r
ðLÞ
m1:m2 ] and

GL
m1 :m2

¼ [gð1Þm1:m2 ; . . . ; g
ðLÞ
m1:m2 ] be the sets of corresponding

release and hydropower time series, obtained by simulating

the reservoir implementing ω given eQL
m1 :m2

. The reservoir is

simulated with time-steps that do not exceed 1 month

duration. During simulation time-steps, inflow and release

are assumed to be constant and inflow is available at a

monthly timescale. To compute the objective functions,

simulated release and hydropower are aggregated into

monthly values.

The sampling objective function estimating the expected

probability of not satisfying the downstream water demand

W during a month (PNWD) is:

U(eQL
m1 :m2

;ω) ¼ 1
Lð1þm2 �m1Þ

XL
l¼1

Xm2

m¼m1

uðrðlÞm Þ ð10Þ

where

uðrÞ ¼ 0 if r ≥ W
1 if r <W

�
ð11Þ

The sampling objective function estimating the expected

root mean square hydropower deficit (RMSD), assuming the

maximum hydropower capacity G to be the demand, is:

Y(eQL
m1 :m2

;ω) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Lð1þm2 �m1Þ

XL
l¼1

Xm2

m¼m1

(G� gðlÞm )
2

vuut ð12Þ

Optimization algorithm

Multi-objective optimization can be approached with either

aggregation or Pareto domination methods. Aggregation

methods aggregate the objective functions into a single
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scalar value, e.g., by using weights. In Pareto domination

methods, policies are evaluated using the concept of

Pareto dominance (Burke & Silva ). In a set, a policy is

Pareto-dominated if there is at least another policy perform-

ing not worse in all objectives and better in at least one

objective.

NSGA-II (Deb et al. ) was chosen as the optimiz-

ation algorithm for this application. It is a multi-objective

genetic algorithm that uses Pareto dominance to rank pol-

icies. NSGA-II can be briefly summarized as follows: (i) an

initial set of policies is randomly generated; (ii) objective

functions are evaluated for each member of the initial set;

(iii) a new set is generated by applying the genetic operators

(selection, crossover and mutation) to the initial set;

(iv) objective functions are evaluated for each member of

the new set; (v) initial and new sets are aggregated into a

joint set; (vi) the fast non-dominated sorting algorithm

ranks the members of the joint set according to Pareto dom-

inance; (vii) the crowding distance operator selects a new

initial set; (viii) steps from (ii) to (vii) are iterated until a ter-

mination criterion is satisfied. The genetic operators, the fast

non-dominated sorting algorithm, and the crowding dis-

tance operator are described in detail by Deb et al. ().

Long-term operation

We decided to define long-term operation (LT) with a set of

rule curves that determine the release as function of storage

and calendar month. Alternatively, rule curves may guide

releases as functions of storage and inflow. The ith rule

curve ηi ¼ ½ηið1Þ; . . . ; ηið12Þ� reads, for each month, the

upper water level corresponding to the release fraction ρi.

Rule curves and release fractions are defined so that ρi< ρi�1

and ηi(z)< ηi�1(z) for z¼ 1,…, 12.

We assume that N rule curves have to be specified to

define LT. To fulfill the water level constraints (Table 1),

we need to introduce two additional rule curves and

release fractions: ρ0¼ 1 and ρNþ1¼ 0, and η0(z)¼ hmax and

ηNþ1(z)¼ hmin for z¼ 1,…, 12. To limit the number of

decision variables to be optimized, η1 is defined as a set of

independent levels while the remaining rule curves are

defined as:

ηi ¼ hmin þ χi�1ðηi�1 � hminÞ for i ¼ 2; . . . ; N : ð13Þ
://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
Thus LT is defined by 11þN independent decision vari-

ables η1; χ1; . . . ; χN�1 which have to be optimized fulfilling

the constraints:

hmin < η1ðzÞ< hmax for z ¼ 1; . . . ;12 ð14Þ

0< χi < 1 for i ¼ 1; . . . ;N � 1 : ð15Þ

To evaluate LT, the reservoir is simulated using syn-

thetic inflow scenarios eQL
1:M generated by conditioning on

the observed ENSO-indices C1:M. During time-step t falling

in month m (corresponding to the zth calendar month),

given that ηiþ1ðzÞ< hðxÞ ≤ ηiðzÞ for τt�1 ≤ x ≤ τt, the release

is computed as:

rt ¼ ρi�1g
�1(Gjhðτt�1Þ;eqm) ð16Þ

where the function g�1ðGjhðτtÞ;eqmÞ is the inverse of

Equation (4) and computes the release to be turbinated

during t to generate hydropower at the maximum capacity

G, given the initial water level h(τt�1) and the synthetic

inflow ~qm. The time-step length is variable, cannot exceed

1 month duration, and is determined so that inflow and

release can be assumed constant.
Short-term operation

The short-term operation (ST) is optimized at the beginning

of each monthly time-step. It exploits past observations and

current ENSO forecasts, which are available with a 9 month

lead time, to decide the release during the upcoming month.

At the beginning of the monthly time-step m, the reservoir

releases rm:mþ8 ¼ ½rm; . . . ; rmþ8� are the variables to be opti-

mized. The reservoir is simulated with a set of inflow

forecast time series eQL
m:mþ8, which is generated by condition-

ing of past observations (a0:m�1 and C1:m�1) and ENSO

forecasts eCm:mþ8. As the optimization returns a set of non-

dominated policies, the best series of releases r�m:mþ8 must

be chosen according to a preference criterion.

We assumed that the operator decides an upper

threshold �U for PNWD, setting the maximum acceptable

probability of downstream water deficit. Thus r�m:mþ8

is chosen as the series of releases minimizing RMSD while
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guaranteeing that

U( eQL
m:mþ8; r

�
m:mþ8) ≤ �U

During the monthly time-step m, r �m is implemented, the

inflow qm and the ENSO anomalies cm are observed and the

water level is updated. The optimization procedure is

repeated for time-step mþ 1, and so on. By optimizing 9

monthly releases and implementing only the first release at

each time-step, over- or under-exploitation of the water

resource can be partly corrected due to the update of reser-

voir level, inflow and climatic data.

Combined operation

To exploit the short-term climatic information brought

by the ENSO forecasts while preserving the long-term objec-

tives, we defined an operation scheme that combines the

results of the short- and long-term optimizations. Thus the

combined operation (CO) defines the release as a weighted

average of the optimized short- and long-term operation

releases:

rCOm ¼ ξrSTm þ ð1� ξÞrLTm ð17Þ

where rCOm , rSTm and rLTm are the releases of the combined,

short- and long-term operations and 0 ≤ ξ ≤ 1 is the

weight assigned to the optimized short-term operation.

Thus CO allows a compromise to be made between the sol-

ution optimized for the forecast horizon and the long-term

objectives (Todini ).

Dynamic programming benchmark solution

To benchmark the improvement brought by the optimized

operation policies with respect to the current management,

we applied the dynamic programming (DP) algorithm

(Bellman ; Bertsekas ). Given a discrete set of poss-

ible water levels, assuming perfect knowledge of the inflow

time series, the DP algorithm can be applied to find the

monthly time series of water levels minimizing RMSD and

meeting the downstream water demand at all time-steps.

Let us denote the water level at the end of the monthly
om http://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
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time-step m by hm. We assume that hm can take on a dis-

crete set of water levels X, so that if h∈X then hmin� h�
hmax. Given the inflow qm, release and hydropower during

m are functions of hm�1 and hm:

rm ¼ rmðhm�1;hmÞ ð18Þ

gm ¼ gmðhm�1;hmÞ ð19Þ

where rm and gm are, respectively, release and average

hydropower during m. To ensure the satisfaction of the

downstream water demand, the square hydropower deficit

for m is defined as

ymðhm�1;hmÞ ¼ ðG� gmÞ2 if W ≤ rm ≤ Rmax

∞ otherwise

�
ð20Þ

Denoting the water level time series ½h0; . . . ;hm� by h0:m,

RMSD for the time-steps up to m is evaluated as:

Yðh0:mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

yiðhi�1;hiÞ
vuut ð21Þ

The DP algorithm therefore finds h0:M
� ¼ ½h0

� ; . . . ;h
M
� �,

solving the minimization problem:

h0:M
� ¼ argmin

h0:M
Y h0:M
� �n o

ð22Þ

whereM is the last monthly time-step. In this application, h0
�

and hM
� are constrained to equal the corresponding observed

values.
RESULTS AND DISCUSSION

In this section we first give an overview of the inflow scen-

arios and forecasts generated by the stochastic inflow

model. We then illustrate the outcomes of optimizing LT

during 1950–1999, for which no information about historical

operation (HO) is available. Finally, for the period 2000–2008

we compare LT, ST, CO, HO and the dynamic programming
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benchmark solution (BS). The number of synthetic inflow

time series used for reservoir simulation was set to 100, as it

constituted the best compromise between computational

feasibility and the stability of sampling objective functions.
Generated inflow scenarios and forecasts

A 2-state model set-up using Niño 1þ 2 SSTA and TNI as

ENSO-indices was calibrated using 1950–1999 monthly

time series. Figure 5(a) illustrates the reproduction of

observed mean annual inflow by model-generated inflow

scenarios. Simulated annual inflow is obtained by
Figure 5 | Time series of (a) observed and model-generated mean annual inflow and (b) 5

month moving average of Niño 3 SST departures from monthly mean values,

where the shaded areas indicate El Niño and La Niña events.

://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
aggregating simulated monthly values. Observed annual

inflows are well approximated by the expected values esti-

mated from the generated scenarios. Exceptions are the

lowest values and those of 1983 and 1997, which are over-

estimated. However, most observed values are included by

the 10% and 90% sampling quantiles of the generated scen-

arios, thus indicating a general good reproduction of annual

inflow.

The El Niño and La Niña events that occurred in the

period 1950–2008 are reported in Figure 5(b), according

to the definition by Trenberth (). A comparison of

Figures 5(a) and (b) reveals that most observed annual

inflow peaks correspond to El Niño events. In most cases,

expected synthetic annual inflow also has a peak, reason-

ably approximating the observations (1953–1954, 1957–

1958, 1965–1968, 1972–1973, 1976–1977 and 1987

events). In few cases synthetic values significantly underesti-

mate the observations (1992 and 2002 events), while

overestimation occurs for the two major El Niño events

(1982–1983 and 1997–1998). In contrast, La Niña events

do not appear to be significantly correlated with annual

inflow. Annual inflow gives an idea of how the stochastic

model can predict inflow regime fluctuations. Details

about the reproduction of other inflow statistics can be

found in Gelati et al. (b).

Expected values of monthly inflow forecasts are com-

pared to observations in Figure 6. Although low values

tend to be overestimated, inflow is reasonably forecasted.

The accuracy slightly diminishes when increasing the fore-

cast lead time: the Nash–Sutcliffe coefficient (Nash &

Sutcliffe ) scored 0.63 and 0.61 for 1 and 9 month

lead times, respectively.

Optimized long-term operation (1950–1999)

LT was optimized using synthetic inflow scenarios that

were generated using the 1950–1999 ENSO-indices

record. To choose the best set of release fractions, a large

number of optimization trials were performed. This search

aimed at obtaining optimized rule curves that had a suffi-

cient level of resolution without overlapping. The chosen

release fractions are 0.4, 0.3, 0.25, 0.2, 0.15 and 0.125,

thus defining an optimization problem with 17 decision

variables.



Figure 6 | Observed monthly inflow versus expected values of inflow forecasts for

(a) 1 and (b) 9 month lead times.

Figure 7 | Optimized long-term operation policies: (a) objectives space representation of

the non-dominated policies and (b) rule curves defining the chosen policy.
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Figure 7(a) shows the found non-dominated policies in

the objective space. Of the non-dominated policies, we

assumed that the operator would adopt the policy minimiz-

ing RMSD while yielding PNWD smaller than 10�3. The

rule curves defining the chosen policy (LT) are plotted in

Figure 7(b).

The February–April average inflow is comparable to the

reservoir active storage volume (3.534 × 109 m3), corre-

sponding to 65% of the average annual inflow. Applying

LT during an average hydrologic year, the reservoir water

level typically reaches its maximum between April and
om http://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
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June. Between May and July LT sets higher level require-

ments for releasing water, in order not to empty the

reservoir before the following dry months. Level require-

ments for releasing water decrease between October and

March, so that the reservoir can be filled during the wet

months without any spill. During such months, high water

levels are less likely and, if occurring, lead to anomalously

large releases.

Figure 8 reports the water level, release and hydropower

time series obtained by simulating LT with observed and

synthetic inflow. When LT is simulated using inflow obser-

vations, the reservoir is never completely emptied and no



Figure 8 | Time series obtained by simulating the chosen long-term policy on inflow

observations and scenarios (1950–1999): (a) reservoir water level at the

beginning of each month, (b) average monthly hydropower and (c) average

monthly reservoir release.
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downstream water deficit occurs. Water level fluctuations

obtained with observed inflow are generally contained in

the 10–90% quantile band obtained with synthetic inflow,

except for lowest minima. Similarly, hydropower and release

values simulated with observed inflow are reasonably pre-

dicted by the simulation with synthetic inflow scenarios.

However, the lowest minima are not included by the

10–90% quantile band. The less accurate reproduction of

minima is due to the limited ability of the stochastic

inflowmodel to predict anomalously low inflow. In contrast,

at the occurrence of El Niño events when inflow is anoma-

lously large, the behaviour of the reservoir is satisfactorily

predicted by simulating LT with synthetic inflow.

Optimized short-term and combined operations

(2000–2008)

For the period 2000–2008, information about HO is avail-

able. HO was evaluated using the reservoir simulation

model. We compare the performances of ST, CO, LT,

HO and BS during 2000–2008. ST was optimized during

2000–2008 by setting �U ¼ 10�3. LT was optimized during

1950–1999 and then applied to the period 2000–2008. The

optimal value of the weight ξ, which defines CO given LT

and ST, was found to be 0.78 during 1950–1999; such a

value was then used to evaluate CO for the period 2000–

2008.

All operations were simulated using the observed 2000–

2008 monthly inflow time series (Figure 9).

Table 2 reports performance indicators of the tested

reservoir operations: all operations always meet the down-

stream water demand W while CO performs better than

ST, LT and HO if considering RMSD and average hydro-

power production. Also looking at spills, which occur

when the release exceeds the flow that needs to be turbi-

nated to produce the maximum hydropower capacity, CO

performs best.

The chosen indicators suggest that CO, ST and LT may

improve the Daule Peripa reservoir management with

respect to HO, and that CO is the best alternative. Given a

set of water level discretizations and assuming perfect

knowledge of inflow, BS minimizes RMSD while constrain-

ing PNWD to be zero. Thus BS estimates a boundary for

operational improvement in terms of RMSD, while



Table 2 | Reservoir operation performance indicators evaluated for: historical operation

(HO); long-term operation optimized during 1950–1999 (LT); short-term oper-

ation (ST); combined operation (CO); and dynamic programming benchmark

solution (BS)

Operation
RMSD
(MW)

PNWD
(–)

Average
power
(MW)

Average
spill
(m3 s�1)

HO 147.0 0 70.64 2.34

LT 144.8 0 71.36 1.48

ST 143.7 0 71.80 0

CO 143.2 0 72.80 0

BS 139.8 0 74.68 0

Figure 9 | Observed monthly inflow time series for the period 2000–2008.
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satisfying the downstream water demand. Because of water

level discretization, BS provides an estimate and not the real

boundary. However, the estimate is reliable, since a high

water level resolution (0.1 m) is used. BS estimates the

maximum possible RMSD reduction to be 4.9% of the

value computed for HO. LT, ST and CO yield 1.5, 2.2 and

2.6% RMSD reductions, respectively. Thus, CO yields

roughly half of the estimated possible improvement. More-

over, CO increases the average hydopower production by

3.1% compared to HO. Average hydopower is increased

by 5.7, 1.6 and 1.0% when applying BS, ST and LT,

respectively.

The time series of simulated water level, hydropower,

release and release fraction are illustrated in Figure 10.
om http://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
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Release fraction is the ratio between release and the flow

that needs to be turbinated to produce the maximum

hydropower capacity, which is estimated by inverting

Equation (4). According to BS water levels (Figure 10(a)),

it is optimal to fill the reservoir by the end of each wet

season (between April and June) and to lower the water

level until December–January to leave available storage

volume for the following wet season.

Such behaviour is reasonably mimicked by CO until the

end of the 2003 wet season. Due to misprediction of the

2004 anomalously low inflow (Figure 9), the CO water

level at the end of the 2004 wet season is roughly 4 m

below the crest. During the remaining years, CO water

levels oscillate between 70 and 84 m, never reaching the

crest. ST water levels follow an analogous trend. Such sub-

optimal behaviour reveals that ST is short-sighted, as it

does not account for what happens beyond the 9 month

horizon.

CO leads to some improvement, but it only preserves the

long-term objectives to a partial extent. Alternatively,

the short-sightedness may be corrected by adding a term in

the RMSD objective definition to estimate future benefits/

losses as function of water level and calendar month at

the end of the 9 month optimization period. In case of

anomalously dry conditions, the re-definition of RMSD

may reduce current releases in order to increase future

hydraulic heads, thus promoting a more energy-efficient

useof water.

Similarly to what is seen for water levels, BS release and

hydropower are oscillating significantly less than the other

operation policies (Figures 10(b) and (c)). The peaks given

by applying HO, LT, ST and CO are not obtained for BS.

Indeed, BS water levels are generally higher than for all

operation policies, thus less release is needed to produce

hydropower. The abrupt changes in release and hydropower

observed for CO and ST derive from the need to correct

the water use according to new inflow forecasts and water

level update at each monthly time-step. Release fractions

(Figure 10(d)) reveal that spills occur in 2001 for HO and

LT and in 2002 for LT, while CO and ST never waste

water. Indeed, at the beginning of both 2001 and 2002,

CO and ST water levels are significantly lowered to guaran-

tee storage capacity for the forecasted high inflows of 2001

and 2002.



Figure 10 | Time series obtained by simulating with the 2000–2008 observed inflow: (a) reservoir water level at the beginning of each month, (b) average monthly hydropower, (c) average

monthly reservoir release and (d) average monthly release fraction. HO: historical operation; LT: long-term operation optimized during 1950–1999; ST: short-term operation; CO:

combined operation; BS: dynamic programming benchmark solution; and W: downstream water demand.
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Discussion

The presented results show the potential improvement in

reservoir management that may be achieved by coupling a

GA with an effective inflow forecast technique using cli-

matic predictions. The combined operation, acounting for

short- and long-term objectives, outperforms both the

historical reservoir management and the optimized tra-

ditional long-term operation using rule curves. However,

the dynamic programming benchmark solution demon-

strates that further improvement may be achieved. We

believe that several possible directions can be investigated:

(i) accounting for future benefits/losses, by adding a penalty

term to RMSD, which may be a function of the reservoir

state variables (water level and calendar month) at the end
://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
of the 9 month optimization period; (ii) improving the sto-

chastic inflow forecasts by, for example, pursuing ENSO-

indices that better correlate with anomalously low inflow;

(iii) obtaining more detailed information about Daule

Peripa, in order to formulate a more realistic reservoir simu-

lation model; (iv) using real ENSO forecasts to account for

the uncertainty of climatic forecasts in the optimization

process.
CONCLUSIONS

The presented techniques showed that the management of

the Daule Peripa reservoir may be improved by integrating

climatic information in the reservoir operation optimization
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process. The Daule Peripa reservoir, located in western

Ecuador, serves a hydropower plant and a downstream

water supply facility. Monthly reservoir inflow observations

are available for 1950–2008, while historical releases are

available only for 2000–2008. The reservoir system

was simulated using time-steps not exceeding 1 month

duration, during which inflow and release could be assumed

constant.

Reservoir inflow is influenced by ENSO. In particular,

El Niño events were found to be strongly correlated with

anomalously high inflow observations. To account for

such influence in the optimization, synthetic inflow time

series were generated by a stochastic inflow model reprodu-

cing climate-induced inflow regime shifts and embedding

ENSO-indices as covariates. SSTA measured on the Niño

1þ 2 region and the Trans-Niño Index (representing the

SSTA gradient over the equatorial Pacific Ocean) were

used as climatic input for the stochastic inflow model. The

model performed well at predicting anomalously high

inflow during intense El Niño events, while anomalously

low inflow was predicted less accurately. Inflow forecasts

were satisfactorily performed for a lead time of 1–9

months, which is the maximum lead time of currently avail-

able ENSO forecasts.

Reservoir optimization was carried out according to the

simulation-optimization approach. We used a multi-objec-

tive genetic algorithm to simultaneously minimize the root

mean square hydropower deficit and the probability of not

satisfying the downstream water demand. The objectives

were evaluated by simulating the reservoir system using a

number of synthetic inflow time series, to account for

inflow uncertainty. Three reservoir operation types were

defined: (i) long-term operation (LT), where rule curves

guide the release as a function of water level and time of

the year; (ii) short-term operation (ST), where at the begin-

ning of each month the releases of the coming 9 months

are optimized based on current inflow forecasts and water

level; and (iii) combined operation (CO), in which the

release is a weighted average of the optimized LT and ST

releases.

The results highlight the robustness of the optimized

operations. CO outperformed both historical operation

and LT during 2000–2008, thus showing the potential

benefit of including climatic forecasts when performing
om http://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
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reservoir optimization. A dynamic programming benchmark

solution, obtained by assuming perfect knowledge of the

inflow time series, revealed that the Daule Peripa reservoir

operation can be further improved. We identified two prom-

ising research directions: (i) when evaluating objectives,

considering a penalty term estimating future benefits as a

function of the storage at the end of the optimization

period; and (ii) improving the accuracy of inflow forecasts

by, for example, pursuing ENSO-indices that better correlate

with anomalously low inflow.
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APPENDIX: THE EM ALGORITHM

At the nth iteration of the EM algorithm, the estimate of a

generic parameter z is denoted ẑðnÞ and the set of parameter

estimates is denoted bθðnÞ. Iterations are repeated until a ter-

mination criterion is satisfied. Each iteration of the EM

algorithm consists of two steps. The first step

(expectation) computes the conditional expected value of

the log-likelihood function given the previous parameter

estimates bθðn�1Þ
:

E log Lðθja1:M;C1:MÞjbθn�1

n o
¼

XS
i¼1

Pr{s1 ¼ ija1:M;C1:M;bθðn�1Þ} �1
2
ðc1 � μiÞ0Vðc1 � μiÞ

� �

þ
XM
m¼2

XS
i¼1

XS
j¼1

Pr{sm�1 ¼ i; sm ¼ jja1:M;C1:M;bθðn�1Þ}

× log pij � 1
2
ðcm � μjÞ0Vðcm � μjÞ

� �

þ
XM
m¼1

XS
i¼1

Pr{sm ¼ ija1:M;C1:M;bθðn�1Þ}

× log
1

σi
ffiffiffiffiffiffi
2π

p � ðam � δi � am�1λi � c0mγiÞ2
2σ2

i

" #
ðA1Þ

where a1:M and C1:M are the time series of am and cm,

respectively, from month 1 to M, which is the last monthly

time-step.

The second step (maximization) maximizes Equation

(A 1) with respect to the model parameters and obtains

the new estimates bθðnÞ. To perform such maximization

we need to compute the conditional state probability

terms with the Baum–Welch algorithm (Baum et al.

; Rabiner ). A description of the Baum–Welch

algorithm for non-homogeneous hidden Markov models

is available in Gelati et al. (a), and is applicable to

the presented Markov-switching model after minor

modifications.

To obtain bpðnÞij , we maximize Equation (A 1) using

Lagrange multipliers to enforce the constraints
PS

j¼1 pij ¼ 1
om http://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf

2020
(for i¼ 1,…,S). We therefore define the function:

wpð pij;ψÞ ¼
XM
m¼2

Pr{sm�1 ¼ i; sm ¼ jja1:M;C1:M;bθðn�1Þ}

× log pij þ ψ 1�
XS
j¼1

pij

0@ 1A ðA2Þ

which collects the terms of Equation (A 1) that do not

reduce to zero when computing the derivative in pij. Impos-

ing (@wp=@pij) ¼ 0, we obtain:

XM
m¼2

Pr
{sm�1 ¼ i; sm ¼ jja1:M;C1:M;bθðn�1Þ}

pij
� ψ ¼ 0 ðA3Þ

Applying the constraint
PS

j¼1 pij ¼ 1, we find that

ψ ¼
XS
j¼1

Pr{sm�1 ¼ i; sm ¼ jja1:M;C1:M;bθðn�1Þ}

¼ Pr{sm�1 ¼ ija1:M;C1:M;bθðn�1Þ} ðA4Þ

Thus, the estimate of pij is:

bpðnÞij ¼
PM

m¼2 Pr{sm�1 ¼ i; sm ¼ jjA1:M;C1:M;bθðn�1Þ}PM
m¼2 Pr{sm�1 ¼ ijA1:M;C1:M;bθðn�1Þ}

ðA5Þ

To compute bμðnÞj , we define the function:

wμðμjÞ ¼ Pr{s1 ¼ jja1:M;C1:M;bθðn�1Þ}

×

"
� 1
2
ðc1 � μjÞ0Vðc1 � μjÞ

#

þ
XM
m¼2

XS
i¼1

Pr{sm�1 ¼ i; sm ¼ jja1:M;C1:M;bθðn�1Þ}

×

"
� 1
2
ðcm � μjÞ0Vðcm � μjÞ

#

¼
XM
m¼1

Pr{sm ¼ jja1:M;C1:M;bθðn�1Þ}

×

"
� 1
2
ðcm � μjÞ0Vðcm � μjÞ

#
ðA6Þ
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which collects the terms of Equation (A 1) that do not reduce to

zero when computing the gradient in μj. Imposing ∇μjwμ ¼ 0

(where0 is aN-long zerovectorandwhereN is the lengthof cm):

XM
m¼1

Pr{sm ¼ jja1:M;C1:M;bθðn�1Þ}ðcm � μjÞ ¼ 0 ðA7Þ

Thus, the estimate of μj is:

bμðnÞ
j ¼

PM
m¼2 Pr{sm ¼ jja1:M;C1:M;bθðn�1Þ}cmPM
m¼1 Pr{sm ¼ jja1:M;C1:M;bθðn�1Þ}

ðA8Þ

To obtain the estimates of the ARX spill parameters

(δi, λi, γi and σi), we define the function:

wARXðδ1; . . . ; δS; λ1; . . . ; λS; γ1; . . . ; γS; σ1; . . . ; σSÞ

¼
XM
m¼1

XS
i¼1

Pr{sm ¼ ija1:M;C1:M;bθðn�1Þ}

× log
1

σi
ffiffiffiffiffiffi
2π

p � ðam � δi � am�1λi � c0mγiÞ2
2σ2

i

" #
ðA9Þ

Imposing (@wARX=@δi) ¼ 0, (@wARX=@λi) ¼ 0,

∇γiwARX ¼ 0, and ð@wARX=@σiÞ ¼ 0, we obtain:

XM
m¼1

Pr{sm ¼ ija1:M;C1:M;bθðn�1Þ }

× ðam � δi � λiam�1 � c0mγiÞ ¼ 0 ðA10Þ

XM
m¼1

Pr{sm ¼ ija1:M;C1:M;bθðn�1Þ }

× ðam � δi�λiam�1 � c0mγiÞam�1 ¼ 0 ðA11Þ

XM
m¼1

Pr{sm ¼ ija1:M;C1:M;bθðn�1Þ }

× cmðam � δi�λiam�1 � c0mγiÞ ¼ 0 ðA12Þ

XM
m¼1

Pr{sm ¼ ija1:M;C1:M;bθðn�1Þ }

× ½ðam � δi�am�1λi � c0mγiÞ2 � σ2
i � ¼ 0 ðA13Þ

Equations (A 10), (A 11) and (A 12) constitute a linear

system of 2þN equations in 2þN unknown variables (δi,
://iwaponline.com/hr/article-pdf/42/5/413/372597/413.pdf
λi and the components of γi):

Xi

δi
λi
γi

24 35 ¼ bi ðA14Þ

where

Xi ¼
XM
m¼1

Pr{sm ¼ ija1:M;C1:M;bθðn�1Þ}

×

1 am�1 c0m
am�1 a2m�1 am�1c0m
cm am�1cm cmc0m

264
375

ðA15Þ

and

bi ¼
XM
m¼1

Pr{sm ¼ ija1:M;C1:M;bθðn�1Þ}

×

am
am�1am
amcm

264
375

ðA16Þ

The estimates of δi, λi and γi are obtained by solving

Equation (A14):

bδðnÞibλðnÞibγðnÞi

2664
3775 ¼ X�1

i bi ðA15Þ

The estimate of σi is computed by substituting the esti-

mates obtained from Equation (A 15) into Equation (A 13):

bσðnÞ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 Pr sm ¼ i a1:M;C1:M;bθðn�1Þ���n o
× am � bδðnÞi �am�1 bλðnÞi �c0m bγðnÞi

� �2

PM
m¼1 Pr sm ¼ ia1:M;C1:M;bθðn�1Þn o

vuuuuuuuut ðA16Þ
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