The active metabolite of leflunomide, A77 1726, inhibits the production of prostaglandin E₂, matrix metalloproteinase 1 and interleukin 6 in human fibroblast-like synoviocytes

Objectives. To investigate the effects of the active metabolite of leflunomide, A77 1726, on fibroblast-like synoviocytes. In rheumatoid arthritis (RA) synoviocytes participate in tissue destruction by producing metalloproteinases (MMP), prostaglandin E₂ (PGE₂) and interleukin (IL) 6, which are involved in extracellular matrix degradation, resorption of the mineral phase and osteoclast-mediated bone resorption.

Methods. Human synoviocytes were stimulated with IL-1α or tumour necrosis factor α (TNF-α) in the presence of A77 1726. Culture supernatants were analysed for production of interstitial collagenase (MMP-1), tissue-inhibitor of metalloproteinases 1 (TIMP-1), PGE₂ and IL-6. Total RNA was isolated and analysed for steady-state levels of MMP-1, cyclooxygenase-2 (COX-2) and IL-6 mRNA.

Results. A77 1726 inhibited the production of PGE₂ in synoviocytes activated by TNF-α and IL-1α with median inhibitory concentrations (IC₅₀) of 7 and 3 μM respectively. In contrast, MMP-1 and IL-6 production was inhibited at high A77 1726 concentrations (> 10 μM), whereas TIMP-1 was not affected. The inhibition of MMP-1 and IL-6 production was due to the known inhibitory effect of A77 1726 on pyrimidine synthesis, as it was reversed by the addition of uridine. This did not apply to PGE₂ production, which was inhibited via direct action of A77 1726 on COX-2, as shown by the increasing amount of substrate (arachidonic acid) in the culture medium.

Conclusion. This study shows that some of the beneficial effect of leflunomide in RA patients may be due to the inhibition of PGE₂, IL-6 and MMP-1 production in synoviocytes. This effect, coupled with its multiple inhibitory effects on T lymphocyte functions, might account for the significant reduction in the rate of disease progression in RA patients treated with leflunomide.

Keywords: Rheumatoid arthritis, PGE₂, MMP-1, IL-6, Synoviocytes.
synoviocytes [3]. The activity of MMP is specifically controlled by tissue inhibitors of metalloproteinases (TIMP) [4], whose production is increased by IL-6 [5]. Numerous observations support the premises that in RA the resorption of the mineral phase is dependent on PGE$_2$, the extracellular matrix degradation is mediated by proteolytic enzymes such as MMP, and the resorption of periarticular bones is triggered by IL-6-stimulated osteoclasts [6]. Together, these mechanisms lead to tissue destruction and eventually invalidity in patients [1, 7].

Leflunomide (Arawa®) has been approved by the Food and Drug Administration for treatment of RA [8]. In vivo (in the cell), leflunomide is rapidly converted into its active metabolite A77 1726 [9]. Although the precise mode of action of leflunomide in vivo is still elusive, in vitro A77 1726 reversibly inhibits dihydroorotate dehydrogenase (DHODH), the rate-limiting step in the de novo synthesis of pyrimidines [10–12]. Indeed, most of the effects of A77 1726 can be reversed by supplying the product of DHODH activity, i.e. uridine, to target cells. Leflunomide is a potent non-cytotoxic inhibitor of the proliferation of stimulated B and T lymphocytes in vitro, it is effective in several rodent models of autoimmune diseases, and it prolongs graft survival in animals [9, 13]. The latter effects have drawn attention to the mechanisms of action of leflunomide in immune cells, mainly T cells, in which it also blocks TNF-mediated cellular responses by inhibiting nuclear factor-κB (NFκB), a mechanism that depends on pyrimidine biosynthesis [14, 15]. We showed previously that A77 1726 inhibited the expression of monocyte-activating factor at the surface of T lymphocytes. This in turn decreased the activation of monocyte-macrophages, thus inhibiting the production of IL-1β and MMP by monocyte-macrophages [16]. In this study, we address the question of the effect of A77 1726 on the production of PGE$_2$, IL-6 and MMP-1 in synoviocytes isolated from RA patients.

Materials and methods

Materials and reagents

The active metabolite of leflunomide, A771726, the kind gift of Dr. M. Herrmann (Aventis, Wiesbaden, Germany), was made up as a 2 mM solution in water. Dulbecco’s modified Eagle’s minimal essential medium (DMEM), phosphate-buffered saline without Ca$^{2+}$ and Mg$^{2+}$ (PBS), fetal calf serum (FCS), penicillin, streptomycin, L-glutamine and TRIzol® reagent were purchased from Gibco (Paisley, UK), and arachidonic acid (AA) and uridine were purchased from Sigma Fine Chemicals (St Louis, MO, USA). All other reagents were of analytical grade or better. Human recombinant IL-1α and TNF-α were obtained from Biogen (Geneva, Switzerland) and Synergen (Boulder, CO, USA), respectively.

Synoviocyte cultures

Human synoviocytes were isolated by protease treatment of surgical synovectomy specimens obtained from RA and osteoarthritis patients and cultured in DMEM supplemented with 10% FCS, 50 IU/ml penicillin, 50 μg/ml streptomycin and 2 mM L-glutamine (medium) at 37°C under an atmosphere of 5% CO$_2$ [17, 18]. Synoviocytes (passages 2–5) were seeded into 96-well flat-bottom plates (2 x 104 cells/well) and maintained for 48 h in medium before activation. Synoviocytes were cultured for 2 h with the indicated concentration of A77 1726 before the addition of optimal concentrations of TNF-α (10 ng/ml) or IL-1α (250 pg/ml) in a final volume of 200 μl/well [17, 18]. When required, uridine (50 or 200 μM) or AA (30 μM) was added 30 min before A77 1726. After 48 h, supernatants were analysed for PGE$_2$, MMP-1, TIMP-1 and IL-6 as described elsewhere [17–19]. Results are expressed as mean ± s.e. of at least three experiments carried out with three different cultures of synoviocytes.

mRNA analysis

Synoviocytes were seeded into 10 ml Petri dishes (2 x 106 cells/dish) in complete DMEM. After 48 h the cells were incubated for 30 min with or without 30 μM AA prior to the addition of 10$^{-4}$ M A77 1726. After 2 h, cells were stimulated with 10 ng/ml TNF-α or 250 pg/ml IL-1α for 3 and 18 h before total RNA extraction by TRIzol according to the supplier’s instructions (Life Technologies, Paisley, UK). Total RNA was subjected to Northern blot (10 μg) and RNase protection (2 μg) analysis as described previously [18, 20, 21].

Results

A77 1726 inhibits PGE$_2$, IL-6 and MMP-1 but not TIMP-1 production in synoviocytes

To determine whether A77 1726 affects the production of PGE$_2$, IL-6, MMP-1 and TIMP-1, isolated synoviocytes were activated by an optimal concentration of TNF-α (10 ng/ml) or IL-1α (250 pg/ml) in the presence or absence of A77 1726. In human synoviocytes, which did not produce significant amounts of PGE$_2$ in the absence of stimulus, TNF-α and IL-1α induced the production of 190 ± 76 and 291 ± 130 ng/ml PGE$_2$ respectively (Fig. 1A). PGE$_2$ production was completely abolished in the presence of 10$^{-4}$ M A77 1726. Synoviocytes constitutively produced MMP-1 (1.9 ± 1.6 μg/ml, n = 5) and its inhibitor TIMP-1 (3.0 ± 1.9 μg/ml). Depending on the synoviocyte donor/preparation, TNF-α and IL-1α increased MMP-1 production to 3.8 ± 1.7 and 3.1 ± 1.5 μg/ml respectively, and the induced but not the basal production of MMP-1 was inhibited by 10$^{-4}$ M A77 1726 (Fig. 1B). In contrast, TIMP-1 production was neither increased by TNF-α or IL-1α nor affected by A77 1726 (Fig. 1C). IL-6 production by synoviocytes was marked in the absence of stimulus, reaching 7 ± 5 ng/ml (Fig. 1D). This basal production was increased by IL-1α and TNF-α to 346 ± 100 and 129 ± 78 ng/ml respectively. In the presence of A77 1726, the IL-6 production induced by IL-1α and TNF-α was inhibited by 47 and 63% respectively (Fig. 1D).

To ascertain whether the inhibitory effect of A77 1726 on PGE$_2$, IL-6 and MMP-1 production would occur at concentrations possibly reached in treated patients, the
inhibitory effect of serial concentrations of A77 1726 was assessed. A77 1726 diminished PGE2 production by synoviocytes in a dose-dependent way; PGE2 production was abolished at 10^{-4} M A77 1726 and inhibited by 100 and 99% upon stimulation by TNF-\alpha and IL-1z respectively (Fig. 2A and B). The apparent median inhibitory concentration (IC_{50}) was 7 and 3 \mu M A77 1726 when synoviocytes were stimulated by TNF-\alpha and IL-1z respectively. In contrast, the induction of MMP-1 production was inhibited at high A77 1726 concentrations only, and no inhibition was observed at concentrations < 5 \times 10^{-3} M A77 1726 (Fig. 2C and D). Similarly, the induced production of IL-6 was only inhibited by concentrations > 5 \times 10^{-3} M A77 1726 (Fig. 2E and F). Confirming results shown in Fig. 1, TIMP-1 production was not affected by A77 1726 (Fig. 2G and 2H), demonstrating that the marked inhibition of cytokine-induced production of PGE2, IL-6 and MMP-1 at high concentrations of A77 1726 was not due to a putative cytotoxic effect of the drug.

In order to assess whether the inhibition of PGE2, MMP-1 and IL-6 production was due to the well-described in vitro inhibition of pyrimidine synthesis by A77 1726, uridine was used to reverse the inhibitory effect of A77 1726. In contrast with the inhibition of MMP-1 and IL-6 production that was completely reversed by uridine (Fig. 3), the inhibition of PGE2 production by A77 1726 was not reversed by either 50 \mu M (data not shown) or 200 \mu M uridine (Fig. 3). This suggests that the inhibition of MMP-1 and IL-6 production was due to the inhibition of DHODH, i.e. the inhibition of pyrimidine synthesis, another mechanism involved in the inhibition of PGE2 production.

Because A77 1726 has been reported to inhibit the activity of cyclooxygenase (COX) 2 directly [22, 23], the inhibition of PGE2 production by A77 1726 was assessed in the presence of an excess of the enzyme substrate AA. As shown in Fig. 4A and B, AA (30 \mu M)
did not induce a detectable amount of PGE2, suggesting that COX-1 expression by synoviocytes was poor. AA increased the production of PGE2 induced by IL-1α and TNF-α, which reached 743 ± 221 and 406 ± 210 ng/ml respectively. AA shifted the IC₅₀ to 20 μM A77 1726 (Fig. 4A and B), implying that the inhibitor was displaced from the enzyme and consequently that A77 1726 interacted directly with COX-2. In the presence of AA, neither the production of MMP-1 nor its inhibition by A77 1726 was affected (not shown). Upon synoviocyte stimulation by IL-1α and TNF-α, AA increased basal IL-6 production slightly (1.3- and 1.7-fold respectively, to 340 ± 26 and 100 ± 13 ng/ml). Although AA did not reverse the inhibition by A77 1726 of IL-6 production induced by IL-1α (Fig. 4C), it partially reversed the inhibition when synoviocytes were stimulated by TNF-α (Fig. 4D). This suggests that PGE2 might enhance cytokine-induced IL-6 production, a phenomenon that was more pronounced, i.e. detectable, when cytokine stimulation was low. Indeed, the production of IL-6 induced by TNF-α was three times lower than that induced by IL-1α, suggesting that IL-1α overcame the enhancing effect of PGE2 on IL-6 production. This was confirmed by the use of indomethacin, which inhibits the production of PGE2. Indomethacin abolished the production of PGE2 induced by both IL-1α and TNF-α (Fig. 5A). Because MMP-1 production was not affected, its inhibition by A77 1726 cannot result from the diminution of PGE2.
concentration in the medium (Fig. 5B). However, the specific inhibition of PGE2 production by indomethacin decreased IL-6 production by 20 and 42% when synoviocytes were stimulated by IL-1α and TNF-α respectively, demonstrating that the production of IL-6 due to endogenously produced PGE2 was higher when cells were stimulated by TNF-α than by IL-1α.

To confirm that different mechanisms were involved in the inhibition of PGE2, MMP-1 and IL-6 in synoviocytes, the effect of A77 1726 on steady-state levels of mRNAs for COX-2, MMP-1 and IL-6 was assessed by either Northern blot or RNase protection analysis. COX-2 mRNA was not expressed in synoviocytes, whether unstimulated or cultured in the presence of AA (Fig. 6A and B). Upon stimulation for 3 h by IL-1α or TNF-α, COX-2 mRNA was expressed. Levels of MMP-1 mRNA were high in unstimulated synoviocytes, and 2- to 2.5-fold increase was observed in the presence of cytokines (Fig. 6C and F). However, in the presence of A77 1726, AA, or both, there were no changes in the steady-state level of either COX-2 or MMP-1 mRNA, as shown by Northern blot analysis (Fig. 6A–C). Similarly, after 15 h of incubation the steady-state level of MMP-1 mRNA was not affected by A77 1726, uridine, or both, as shown by RNase protection assay (Fig. 6D and F). This contrasted with the fact that MMP-1 production induced by cytokines was indeed inhibited by A77 1726 (Figs 1 and 2) and that uridine reversed this inhibition (Fig. 4).

The steady-state level of IL-6 mRNA was inhibited by A77 1726, an effect that was reversed by uridine (Fig. 6D and E). This confirms that A77 1726 inhibited IL-6 production through the inhibition of DHODH, i.e. the inhibition of pyrimidine synthesis.

Discussion

The salient result of this study is that leflunomide modulates the production of destructive factors by synoviocytes. Indeed, the active metabolite of leflunomide, A77 1726, inhibits PGE2, IL-6 and MMP-1 production in synoviocytes. Although the inhibition of MMP-1 and IL-6 production only occurred at high A77 1726 concentrations, PGE2 production was inhibited by A77 1726 with an IC50 < 10 μM when either IL-1α or TNF-α was used as a stimulus. This effect was not reversed by uridine, contrary to other inhibitory activities of A77 1726 that have been described [9, 15], which have an IC50 in the same range. However, the inhibition of MMP-1 and IL-6 production was fully reversed by uridine, demonstrating that the inhibition of MMP-1 and IL-6 expression was due to the blockade of pyrimidine synthesis. The inhibition of MMP-1 and IL-6 production was observed in the presence of 5 × 10^{-5} M A77 1726, roughly equal to the maximal plasma concentration in treated patients, i.e. around 50 μM [24]. This suggests that part of the beneficial effects of A77 1726 in RA patients might be due to the inhibition of PGE2, MMP-1 and IL-6 production in synoviocytes.

High concentrations of A77 1726 are required to inhibit the induced production of MMP-1 and IL-6. However, even at these high drug concentrations, the production of TIMP-1 was not affected by A77 1726, showing that high levels of A77 1726 did not display cytotoxicity towards synoviocytes. Furthermore, from the premise that TIMP-1 production remained unchanged upon A77 1726 treatment, it follows that the drug tends to favour factors that counteract the enzymatic...
degradative processes. This is reminiscent of previous results we obtained about the effect of A77 1726 on the expression of monocyte-stimulating factors on the surface of activated T lymphocytes [16]. Indeed, in that study we showed that in the presence of \(10^{-3} M\) A77 1726 the molar ratios of IL-1 receptor agonist/IL-1β and TIMP-1/MMP-1 produced by the monocytes were increased around 4- and 2-fold, respectively. This demonstrated that in the T cell-monocyte-macrophage system also, A77 1726 tends to favour the inhibition of proinflammatory and matrix-destructive factors over that of anti-inflammatory factors and metalloproteinase inhibitors, thus interfering with both inflammation and tissue destruction.

A77 1726 inhibited the activity of COX-2 directly. Indeed, an excess of exogenous COX-2 substrate (AA) increased the cytokine-induced production of PGE2 in the absence of A77 1726 and increased the IC\(_{50}\) of A77 1726 2- to 6-fold. The direct inhibition of COX-2 by A77 1726 has been described in other cellular systems. A77 1726 inhibits the activity of COX-1 and -2 isolated from sheep, although with an IC\(_{50}\) of 742 and 2766 \(\mu M\) respectively, suggesting that A77 1726 is a weak inhibitor of PGE2 synthesis [22]. This low inhibitory potency was attributed in part to the premise that A77 1726 displays extremely high levels of binding to serum proteins [25]. More recently, A77 1726 was shown to inhibit COX-2 activity in the presence of 10% FCS in two cell lines, J774.2 murine macrophages and A549 human epithelial cancer cells, with IC\(_{50}\) values comparable to those observed here, i.e. in the micromolar range [23]. Although A77 1726 has been shown to inhibit PGE2 production directly in several types of cells, this is the first observation of such inhibition occurring in synoviocytes, which are primarily involved in tissue degradation processes in RA. A77 1726 has been shown to inhibit both COX-1 and COX-2 activity [22]. It is, however, very unlikely that it inhibits a putative COX-1 activity in synoviocytes as there was no constitutive production of PGE2 in these cells and AA did not induce any detectable PGE2 production in the absence of cytokine. Therefore, as A77 1726-inhibition of PGE2 production was observed in the presence of 10% FCS in the micromolar range, it might occur in vivo and thus account for part of the beneficial effect of leflunomide in RA. New drugs which specifically inhibit COX-2 but not COX-1 activity have been shown to display anti-inflammatory activities in RA patients [26, 27]. A77 1726 is not a specific inhibitor of COX-2, as it has also been shown to inhibit COX-1 [22]. However, it displays weak inhibitory activity compared with other COX inhibitors with IC\(_{50}\) values in the micromolar range [22]. However, we cannot rule out the possibility of synergism or an additive effect due to the inhibition of PGE2 when leflunomide is administered together with other NSAIDs.

Although A77 1726 inhibited MMP-1 production, it did not decrease the level of MMP-1 mRNA, suggesting that the inhibition of MMP-1 production occurred at a post-transcriptional level. This contrasts with data showing that A77 1726 blocks NFκB activation in T cells, MMP-1 promoter containing an NFκB-responsive element [14, 28]. Whether A77 1726 inhibits NFκB nuclear translocation in synoviocytes remains to be determined. A77 1726 might inhibit MMP-1 production because of decreased production of pyrimidine sugars [29]. Indeed, pyrimidine sugars are important in the synthesis of the N-glycans that are present on at least some MMP-1s [30, 31]. Thus, considering its inhibitory effect on DHODH, A77 1726 could decrease the concentration of one or the other of the pyrimidine sugars, triggering misglycosylation of MMP-1, which in turn could hamper its production.

The efficiency of leflunomide in the treatment of RA patients might be due to the fact that it acts at several levels of the inflammatory cascade [32]. Indeed, in addition to the inhibition of production of PGE2, MMP-1 and IL-6 in synoviocytes, A77 1726 diminishes the ability of stimulated T cells to induce the production of proinflammatory cytokines in monocyte-macrophages [16], a mechanism highly relevant to chronic inflammation [2, 33–35]. Inhibiting the induction of cytokine production in monocyte-macrophages by A77 1726 in turn lowers the levels of inducers of metalloproteinases, IL-6 and PGE2 in synoviocytes, and because this affects PGE2 synthesis directly in the latter cells the production of inflammatory factors is decreased still further. Together, these effects might account for the significant reduction in the rate of disease progression in RA patients treated with leflunomide [36–38].

In conclusion, this study demonstrates that leflunomide may affect functions of stromal cells involved in tissue destruction in RA. This suggests that leflunomide not only acts on several types of cells involved in the inflammatory cascade but also interferes with different intracellular processes, and may thus display broad efficacy in RA.

Acknowledgements

The authors are grateful to Dr M. L. Herrmann (Aventis, Wiesbaden, Germany) for his generous gift of A77 1726, and to Mrs Roswitha Rehm for skilful reading of the manuscript. This work was supported in part by a grant from the Swiss National Science Foundation (320-068286.02), the Hans Wilsdorf Foundation and a grant from the Swiss Society for Multiple Sclerosis.

References

Effects of leflunomide on synoviocytes

30. Deage V, Burger D, Dayer JM. Exposure of T lymphocytes to leflunomide but not to dexamethasone favors the production by monocyte cells of interleukin-1 receptor antagonist and the tissue-inhibitor of metalloproteinases-1 over that of interleukin-1β and metalloproteinases. Eur Cytokine Netw 1998;9:663–8.

31. Deage V, Burger D, Dayer JM. Exposure of T lymphocytes to leflunomide but not to dexamethasone favors the production by monocyte cells of interleukin-1 receptor antagonist and the tissue-inhibitor of metalloproteinases-1 over that of interleukin-1β and metalloproteinases. Eur Cytokine Netw 1998;9:663–8.

