Spatial distribution of reference evapotranspiration considering topography in the Taoer river basin of Northeast China

LiQiao Liang, LiJuan Li and Qiang Liu

ABSTRACT

Spatial distribution of reference evapotranspiration (ET0) is essential in water resources planning and management, especially in semi-arid areas. In this paper, a digital elevation model is used in an ‘interpolate-then-calculate’ approach to calculating the spatially distributed ET0 using the physically based Penman–Monteith equation in the Taoer river basin in China. The results show the following. (1) Of 11 interpolation methods, the Inverse Distance Weighting (IDW) method was found to be best for interpolating wind speed and a tri-variate secondary trend surface method was found most suitable for interpolating mean air temperature and relative humidity. Spatial modelling of the radiation environment considered the effects of elevation, slope and aspect. (2) Monthly values in January for the three meteorological variables showed larger spatial variations than in July, and just the reverse of net surface radiation. (3) The resulting ET0 calculated at each grid cell with 200 m resolution and its spatial variation showed strong seasonal variation. Lower ET0 was found in high-elevation southern Great Xingan mountains in the northwest basin, while higher values were located in the plains adjacent to the lower reach. (4) The ET0 distribution by the ‘interpolate-then-calculate’ approach better reflected the effects of topography than that of the ‘calculate-then-interpolate’ approach.

Key words | interpolate-then-calculate, Penman–Monteith equation, reference evapotranspiration, spatial distribution, Taoer river basin, topographic influences

INTRODUCTION

Evapotranspiration is one of the most important variables to reflect the combined effects of climate change and catchment characteristics, which impact on the water cycle in the basin scale (Blackie & Simpson 1993; Xu et al. 2006). Exploration of the spatial distribution of ET can provide valuable information for water resources planning and management in catchments, especially in arid and semi-arid areas.

Furthermore, many hydrological, agricultural and environmental models have been developed and widely used, including assessments of global water cycle intensification due to climate change (Huntington 2006) and frameworks to predict impact of re-vegetation activities on regional hydrology (Zhang et al. 2001; Donohue et al. 2007). The implementation of these models requires a spatially distributed measure of potential evapotranspiration (McVicar et al. 2007).

In order to avoid ambiguities that existed in the definition of potential evapotranspiration, the reference evapotranspiration concept was introduced by irrigation engineers and researchers in the late 1970s and the early 1980s (Allen et al. 1998). Reference evapotranspiration (ET0) is defined as ‘the rate of evapotranspiration from a hypothetical reference with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m⁻¹ and an albedo of 0.23, closely resembling the evapotranspiration from an

extensive surface of green grass of uniform height, actively growing, well-watered and completely shading the ground. The only factors affecting ET0 are climate parameters. Consequently, ET0 is a climatic parameter and can be computed from weather data. Various calculation methods have been performed to estimate ET0 from different climatic variables for different locations (Dehghanisanj et al. 2004; Utset et al. 2004; Joshua et al. 2005; Liu & Lin 2005; Dinapashoh 2006).

Reference evapotranspiration by many methods are mostly calculated for individual point locations. Many researchers interpolated station values to obtain a spatial distribution of ET0 using isoline or grid automatic drawing software (Dalezios et al. 2002; Dinapashoh 2006). This distribution cannot provide more precise spatial variation, although it may show spatial characteristics of ET0 to some extent. Xu et al. (2006) spatially distributed ET0 for the entire Changjiang (Yangze) river basin with an approximate 25 km resolution output. Zhang & Shen (2007) spatially distributed Penman–Monteith ET0 with Surfer8.0 software using data for 616 meteorological stations in China.

The above-mentioned research mainly used interpolation methods dominated by the point measurements and were performed by the ‘calculate-then-interpolate’ approach. Topographic influences on climate variables (Yoshino 1975; Daly 2006; Stahl et al. 2006) were not considered in these approaches, even although the study areas have complex terrain and large elevation ranges. The method of calculating ET0 then spatially interpolating it geometrically in two dimensions (longitude and latitude) implies that topographic changes of key meteorological variables between stations are not considered in the implementation.

Zhao et al. (2004) spatially distributed ET0 in the Chinese Loess Plateau using the improved Hargreaves method; the results showed the importance of topographic influence on air temperature and resulting ET0. However, their results did not consider the influence of topography on other meteorological variables affecting ET0. McVicar et al. (2007) spatially distributed physically realistic expressions of ET0 (Penman–Monteith equation) by ANUSPLIN software, considering topographic influences on forcing variables in the Coarse Sandy Hilly Catchments in the Yellow river basin in China. They filled the niche of spatially distributing ET0 (a physically based ET0 formulation) while modelling the influence of topography and land-surface conditions on the forcing meteorological variables by using an ‘interpolate-then-calculate’ approach.

ANUSPLIN provides interpolation of noisy multivariate data using thin plate-smoothing splines by providing comprehensive statistical analyses, data diagnostics and spatially distributed standard errors (Hutchinson 2004). Additionally, the software has been used extensively for spatially interpolating hydrometeorological surfaces including air temperature (McVicar & Jupp 2002; Yan et al. 2005), precipitation (McVicar et al. 2002), wind speed (Hutchinson et al. 1984), pan evaporation (Jeffrey et al. 2001), solar radiation (Jeffrey et al. 2001; McVicar & Jupp 2002), and vapour pressure (Jeffrey et al. 2001; McVicar & Jupp 2002). However, its high cost is the major drawback of applying commercial ANUSPLIN software in developing countries. In China, its application is restricted to researchers cooperating with Australian researchers.

The objective of our study is to spatially interpolate ET0 using an ‘interpolate-then-calculate’ approach, reflecting topographic influences in ArcGIS software with a long-term dataset from 1961 to 2005. First, appropriate interpolation methods were selected to spatially distribute key meteorological variables (e.g. wind speed, air temperature and relative humidity). Second, the net radiation environment was spatially modelled. Third, using grid maps of meteorological variables thus obtained, ET0 was spatially calculated by the physically based Penman–Monteith equation.

STUDY AREA AND DATA DESCRIPTION

Study area

The Taoer river basin (45°6′–47°12′N, 117°18′–124°6′E) is located in Northeast China (Figure 1) with an area of about 42 × 103 km2, supporting a population of 3.6 million. From west to east, the basin changes from the upper reach to the lower reach, with topography changing from mountain to hill to plain and climate from semi-humid to semi-arid. The highest elevation difference exceeds 1,500 m.

Soil transits reveal forest soil to chernozem to chestnut soil, mixed with other types such as meadow soil, saline soil,
aeolian sandy soil and swamp soil. Landscape transits reveal ‘priority to forests’ to ‘priority to stock raising’, then ‘priority to agriculture in agri-pastoral transitional zone’. In the lower reach, lakes and marsh developed because the river bed swung frequently.

Mean annual precipitation is 390 mm, while pan evaporation is about 1,800 mm which is four times higher than precipitation. Moreover, monthly and inter-annual variation of precipitation is large. The highest annual precipitation during 1961–2001 is almost four times the lowest precipitation. Growing season precipitation accounts for 89.0% of annual precipitation. As an important part of the Northeast China Plain, the Taoer river basin is one of the most important agricultural regions in China.

Under the combined impact of global climate change and intensified human perturbations, land use and land coverage has changed and the effects of desertification and salinization are evident. On the other hand, the decrease of wetland areas and the deterioration of the regional water environment are prominent and several rivers have become seasonal. The alkali-saline land in the east of the Taoer river basin is one of the most severe in China. The area of the alkali-saline land reached 15.3×10^3 km2 in 1999, accounting for 36.4% of the Taoer river basin (Liang et al. 2008). In recent decades, high evapotranspiration has intensified the salinization. The percentage of severe alkali-saline land to the total alkali-saline land area increased from 26.9% in 1958 to 43.7% in 1999 (Zhang & Wang 2002). The area of secondary salinization land in 2000 was reported to be 10 times that of the value in 1950 (Jiang 2007). Generally, the middle and lower reaches of the Taoer River are environmentally fragile (Zhao 1999) with ecosystems sensitive to climate change (Gao et al. 2000).

Data description

Monthly meteorological data were obtained from 15 stations in and around the Taoer river basin for this study from January 1961 through December 2005. Four monthly meteorological variables were recorded including: (1) mean air temperature (T, °C); (2) mean wind speed (u, m s$^{-1}$); (3) mean relative humidity (RH, %); (4) bright sunshine hours (n, hours). The historical dataset is 45 years long implying that it is representative, stable and comparable and that it describes temporal and spatial distribution of climate. All variables were averaged over the recent 45 years for each month at each station to represent the long-term climate in the Taoer river basin. Data were provided by China Meteorological Administration (CMA), Jilin Meteorological Bureau and Inner Mongolia Meteorological Bureau.
The wind speed measurements at 10 m height above the
ground were transformed to wind speed at 2 m height
by the wind profile relationship introduced in Food and
Agriculture Organization (FAO) paper 56 (Allen et al.
1998). The formula is

\[u_2 = \frac{u_z}{\ln(67.8z - 5.42)} \]

where \(z \) is 10 m.

A digital elevation model (DEM) with grid resolution of
30 m x 30 m for the Taoer river basin was selected
(Figure 1). The slope map (Figure 2) and aspect map
(Figure 3) were derived from the DEM using Arcview 3.2
software.

In order to provide a brief overview of the climate of the
study area, meteorological data measured at 15 stations
were spatially averaged to provide regional values. Monthly
data were subsequently temporally averaged from 1961
to 2005. The Taoer river basin climate is characterized by:

1. \(T \) peaks in July (Figure 4(a));
2. Figure 4(b) shows a
 bimodal mode in the monthly distribution of \(u \) with
 a strong peak in April and a weaker peak in late autumn;
3. maximum \(n \) occurs in May (Figure 4(c)) which is
 governed by the day length and modulated by increasing
 cloud cover associated with the summer monsoons; and
4. similar variations occur in RH seasonal cycle with the
 minimum in April and maximum in July (Figure 4(d)).
 The general pattern of RH is governed by the summer
 monsoons. The similar variations of monthly main meteor-
 ological variables were also reported for other areas in
 China (Xu et al. 2006; McVicar et al. 2007).

METHODS

Spatially interpolating the required meteorological
variables

To spatially distribute \(ET_0 \) on a grid-cell requires that the
input variables were either spatially interpolated or spatially
modelled. There are many algorithms available to spatially
interpolate meteorological data sets: (1) IDW (Franke 1982;
Watson & Philip 1985; Marquinez et al. 2003); (2) various
forms of kriging (Dalezios et al. 2002); (3) spline (Price et al.
2000); and (4) trend surface (Vicente-Serrano et al. 2003).
These methods can be performed using commercial GIS
software; however, they only take latitude and longitude
into account and neglect elevation.

Common methods which consider topography to
interpolate meteorological data include tri-variate splines
in ANUSPLIN (McVicar et al. 2007), cokriging (Krajewski
1987; Yates & Warwick 1987) and tri-variate trend surface
(Yu et al. 2004). These methods require special software
(e.g. Australian ANUSPLIN software with the core of tri-
variate splines). Furthermore, additional meteorological
variables are needed for interpolation (although this
method is not widely applied). Presently, climate research-
ers use the tri-variate trend surface which also reflects the
influence of topography on spatial distribution of meteoro-
logical variables.

In this study, 11 commonly used interpolation methods
were compared and tested for their interpolation quality in
relation to wind speed, relative humidity and air temperature.
The best methods were identified and selected for further testing on monthly interpolation of the above three meteorological variables. The correlation coefficients between the interpolated values of ET₀ and the original values for the four best methods are shown in Table 1. The tri-variate secondary trend surface method was used in this study to interpolate mean monthly relative humidity and air temperature for the 15 stations into a grid of 200 m × 200 m in latitude and longitude since it reflects the effects of topography and also has the highest correlation coefficient. To interpolate wind speed, the IDW method was used in this study since it demonstrated the highest correlation coefficient (although the tri-variate secondary trend surface method considers the DEM).

All interpolation was performed at 200 m resolution, which is higher than the 25 km resolution used in Xu et al.’s (2006) study.

The basic function for tri-variate trend surface is:

\[Y = F(\lambda, \varphi, h) + \varepsilon \]

where \(Y \) is the predicted meteorological value; \(F(\lambda, \varphi, h) \) is the macroscopic distribution function and generally expressed by tri-variate trend surface or quadratic polynomial regression equation; \(\lambda, \varphi \) and \(h \) are longitude, latitude and elevation respectively; \(\varepsilon \) is the error term generated by microtopography and random error (which can be neglected if microtopography is not considered).

Table 1 | Comparison of interpolation quality of tri-variate secondary trend surface, IDW, kriging (linear) and kriging (exponential) (values in this table are mean correlation coefficients of 12 months from the cross-validation tests)

<table>
<thead>
<tr>
<th></th>
<th>Tri-variate secondary trend surface</th>
<th>IDW</th>
<th>Kriging (linear)</th>
<th>Kriging (exponential)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind speed</td>
<td>0.72</td>
<td>0.78</td>
<td>0.76</td>
<td>0.75</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>0.88</td>
<td>0.80</td>
<td>0.85</td>
<td>0.84</td>
</tr>
<tr>
<td>Air temperature</td>
<td>0.92</td>
<td>0.84</td>
<td>0.89</td>
<td>0.87</td>
</tr>
</tbody>
</table>
The function for tri-variate secondary trend surface is:

\[Y = b_0 + b_1 \lambda + b_2 \varphi + b_3 h + b_4 \lambda \varphi + b_5 \lambda h + b_6 \varphi h + \varepsilon \]

where \(b_0 - b_9 \) are the coefficients to be determined.

To evaluate the quality of interpolation, errors are calculated by the cross-validation method. The functions are:

\[ME = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i) \]

\[MABE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - x_i}{x_i} \right| \]

where ME is mean error; MABE is relative error; \(n \) is the number of stations; \(y_i \) is the predicted value at the \(i \)th station and \(x_i \) is the observed value at the \(i \)th station.

The central longitude and latitude of the Taoer river basin are 121.949°E and 46.12°N, respectively. Longitude/latitude (\(\Delta \lambda / \Delta \varphi \)) of the basin is standardized by subtracting the central longitude/latitude. Models between macro-geographical factors and meteorological variables are established by step regression in SPSS (Statistical Package for the Social Sciences) 13.0. To obtain a grid map of meteorological variables, the models are performed with the AML (ArcInfo Macro Language) module in ArcGIS 8.3.

Spatial modelling of the radiation environment

The radiation measurements are too limited to be interpolated in the study area. In this study, the radiation environment was therefore spatially modelled based on longitude, latitude, elevation, slope and aspect in order to reflect topographic influences. Surface net radiation (\(R_n \)) is the balance of the incoming and outgoing shortwave and longwave radiation components of the Earth’s surface, or the balance of net solar radiation and net longwave radiation at the surface, and is used for the increase of temperature change and evapotranspiration.

There are three approaches for obtaining surface net radiation:

1. Use the radiation balance model, which is given as
 \[RB = G(1 - RS) + (LD - LU), \]
 where RB is the radiation balance of the surface, \(G \) is the global radiation, \(RS \) is the surface albedo, \(LD \) is the longwave radiation reaching the surface and \(LU \) is the longwave radiation emitted by the surface (e.g. Rímóczí-Páál 2005).

2. Obtain net radiation from a joint product from NCEP (the National Centers for Environmental Prediction) and NCAR (the National Center for Atmospheric Research) (Jenne 1992; Yu et al. 2004).

3. Use methods such as the Chang Jen-Hu (Chang 1970) and those used for Penman equation and Penman–Monteith equation.

 In particular, the Chang Jen-Hu equation was modified by recalculating its four coefficients with surface net radiation at 50 stations in China (Yu et al. 2004). The modified Chang Jen-Hu Equation (Equation (21)) was selected in our study to calculate surface net radiation due to the better results in China (Yu et al. 2004; Liu et al. 2006).

 Taking daily surface net radiation for the 15th day of the month as mean daily value of the month, Figure 5 depicts the technique.

Astronomical radiation

The astronomical radiation on a slope during a period of sunshine is expressed as:

\[R_0 = \frac{T}{2\pi} \left(\frac{1}{q} \right)^2 I_0 [u \sin \delta (\omega_s - \omega_r) + v \cos \delta (\sin \omega_s - \sin \omega_r) - w \cos \delta (\cos \omega_s - \cos \omega_r)] \]
where \(R_0 \) is astronomical radiation (MJ m\(^{-2}\)); \(T \) is the length of a day (1,440 min); \((1/\rho)^2 \) is the Earth–Sun distance factor; \(I_0 \) is the solar constant (0.082 MJ m\(^{-2}\) min\(^{-1}\); \(\omega_{\text{str}}, \omega_{\text{sun}} \) are initial and terminal hour angles of sunshine period respectively; \(u, v \) and \(w \) are factors related to geography and topography and are defined as:

\[
\begin{align*}
 u &= \sin \varphi \cos \alpha - \cos \varphi \sin \alpha \cos \beta \\
 v &= \sin \varphi \sin \alpha \cos \beta + \cos \varphi \cos \alpha \\
 w &= \sin \alpha \sin \beta
\end{align*}
\] (7)

where \(\varphi \) is latitude, \(\alpha \) is slope and \(\beta \) is aspect (in radians).

Solar declination and the Earth–Sun distance factor are calculated by the Fourier series (Zuo et al. 1991):

\[
\delta = 0.006894 - 0.399512 \cos \tau + 0.072075 \sin \tau
- 0.006799 \cos 2\tau + 0.000896 \sin 2\tau
- 0.002689 \cos 3\tau + 0.001516 \sin 3\tau
\] (10)

where \(\tau \) is hour angle (radians), defined \(\tau = 2\pi(D_n - 1)/365 \), and \(D_n \) is day number (between 1 and 365).

The sunrise \((-\omega)\) and sunset \((\omega)\) hour angles only relate to latitude and solar declination. It is expressed as:

\[
\omega = \arccos(-\tan \phi \tan \delta)
\] (12)

The sunshine period in a day is divided into 10 sub-periods with a time-step of \(1/5 \)th of the day, i.e. 25–46 min in this study. The daily value comprises the accumulative radiation of 10 sub-periods.

Atmospheric transmissivity

Atmospheric transmissivity is the ratio of solar radiation to astronomical radiation, which reflects the weakening effect of atmosphere on solar radiation. It can be expressed as:

\[
t = t_{\text{max}} t_r \text{ rain}
\] (13)

\[
t_{\text{max}} = \frac{\sum_{s<r} Q_{\text{spot}} s \cdot t(P_z/P_0) m_t}{\sum_{s<r} Q_{\text{spot}} s} + 0.001ae
\] (14)

\[
t_f = 1.0 - 0.9\exp(-B\Delta T^C)
\] (15)

\[
B = a + 0.001be
\] (16)

where \(t \) is actual transmissivity; \(t_{\text{max}} \) is clear-sky transmissivity (related to the number of days in a year, vapour pressure, geographical position and elevation); \(t_f \) is correction coefficient; \(Q_{\text{spot}} s \) is astronomical radiation at the time of \(s \); \(sr \) and \(ss \) are time of sunrise and sunset; \(t_{\text{nadis}}\text{dry} \) is dry atmospheric transmissivity on sea level at noon; \(P_z \) and \(P_0 \) are air pressure at height \(z \) and sea level, respectively; \(m_t \) is optical air mass when solar zenith is \(\theta \); \(\alpha \) is a coefficient affected by water vapour; \(e \) is vapour pressure (k Pa); \(b \) and \(C \) are empirical coefficients; \(\Delta T \) is daily range of air temperature; and \(r \) is a coefficient affected by precipitation. The value of rain is normally 0.75–0.8 on rainy or snowy days, otherwise 1 (He et al. 2004). In our study, rain is set to 0.8 on rainy or snowy days and 1 on clear days. According to the proportion of rainy/snowy days to all days in a month at Taonan station in the study area, the mean monthly value of rain is 0.906–0.993. Here, values of main parameters are: \(t_{\text{nadis}}\text{dry} = 0.87; \alpha = -0.000061; a = 0.0175; b = 0.0000122; C = 1.5 \) (Glassy & Running 1994; Li et al. 2003; He et al. 2004). Atmospheric transmissivity \(t \) is interpolated by inverse distance weighting method to obtain a grid map.

The correction coefficient of air pressure is defined as:

\[
\frac{P_z}{P_0} = [(288 - 0.0065h)/288]^{5.256}
\] (17)

where \(h \) is height above the ground (m).

Air mass at sea level is defined as:

\[
M_0 = [1299 + (614 \sin \alpha)^2]^{0.5} - 614 \sin \alpha
\] (18)

\[
\sin \alpha = \sin \varphi \sin \delta + \cos \varphi \cos \delta \cos \omega
\] (19)

Solar radiation is defined as:

\[
R_s = R_0 t
\] (20)

Surface net radiation

The modified Chang Jen-Hu method calculates monthly surface net radiation with mean air temperature, vapour
Calculating ET₀

Based on grid maps of the required meteorological variables and radiation, ET₀ is calculated by the Penman–Monteith (P–M) method. This was recommended by the FAO as the standard method to calculate ET₀ and has been used worldwide (Allen et al. 1998):

\[
ET_0 = \frac{0.408\Delta(R_n - G) + \gamma{\frac{T_{100}}{T_{273}}}u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.54u_2)}
\]

(22)

where ET₀ is the reference evapotranspiration (mm d⁻¹); Rn is the net radiation at the crop surface (MJ m⁻² d⁻¹); G is the soil heat flux (MJ m⁻² d⁻¹) (neglected for daily calculation since the magnitude of the flux in this case is relatively small); T is the mean daily air temperature at 2 m height (°C); u₂ is the wind speed at 2 m height (m s⁻¹); e_s is the saturation vapour pressure (kPa); e_a is the actual vapour pressure (kPa); e_s – e_a is the saturation vapour pressure deficit (kPa); Δ is the slope of the saturated water–vapour pressure curve (kPa/°C); and γ is the psychrometric constant (kPa/°C). The computation of all data required for the calculation of ET₀ followed the method and procedure given in Chapter 3 of the FAO paper 56 (Allen et al. 1998). If the data time-step is monthly then the resultant ET₀ is provided with units of mm month⁻¹ (Allen et al. 1998; McVicar et al. 2007).

RESULTS AND DISCUSSION

Spatially interpolating wind speed

The interpolation quality for wind speed by the IDW method was evaluated in Table 2. Mean errors are all positive, which indicates that predicted values are higher than observed values. Mean errors in January, February and December are larger than the standard deviation, so we can conclude that the quality of spatial interpolation of wind speed is lowest in winter. The average of relative error is 8.8%. Errors are lower from April to October with relative error < 10% and higher in other months.

Through inverse distance weighting interpolation, 12 grid maps of mean wind speed in different months are obtained. Taking, for example, January and July (Figure 6), wind speed in January was generally high and decreased gradually from the south to the north with maximum value in Tuquan. On the other hand, wind speed in July was generally low and decreased from the southeast to the northwest with the lowest value in Suolun. Spatial variation in January was larger than in July for wind speed.

Spatially interpolating relative humidity and air temperature

The results of spatially modelling relative humidity are shown in Table 3. It can be seen that all factors selected by stepwise regression are at significant level α = 0.05 and most models were established with two factors. Multiple correlation coefficients in every month except for March all

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean error (m s⁻¹)</td>
<td>0.40</td>
<td>0.35</td>
<td>0.32</td>
<td>0.24</td>
<td>0.16</td>
<td>0.09</td>
<td>0.08</td>
<td>0.10</td>
<td>0.18</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td>Relative error (%)</td>
<td>16.6</td>
<td>13.6</td>
<td>10.2</td>
<td>6.8</td>
<td>4.8</td>
<td>3.6</td>
<td>3.8</td>
<td>5.0</td>
<td>7.8</td>
<td>8.5</td>
<td>10.2</td>
</tr>
<tr>
<td>Mean (m s⁻¹)</td>
<td>2.42</td>
<td>2.58</td>
<td>3.10</td>
<td>3.54</td>
<td>3.28</td>
<td>2.55</td>
<td>2.12</td>
<td>1.97</td>
<td>2.34</td>
<td>2.67</td>
<td>2.62</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.37</td>
<td>0.31</td>
<td>0.36</td>
<td>0.39</td>
<td>0.42</td>
<td>0.29</td>
<td>0.24</td>
<td>0.25</td>
<td>0.29</td>
<td>0.29</td>
<td>0.34</td>
</tr>
</tbody>
</table>
exceed 0.90 at significant level \(a = 0.01 \). Relative errors are all under 10% with an average of 5.1% (<5% during June to September).

Standard longitude grid map, standard latitude grid map and elevation grid map were employed in ArcGIS to create a monthly relative humidity grid map with the appropriate model and 12 maps were obtained. Considering January and July (Figure 7), patterns of relative humidity in difference months are similar, with values decreasing gradually from the south to the north in the upper reach (location of highest elevation). In the middle and lower reaches, its spatial variation is small and distribution is homogeneous (particularly in July). The spatial variation of relative humidity was larger in January than in July.

Models to spatially simulate air temperature are listed in Table 4. All factors selected by stepwise regression except

<table>
<thead>
<tr>
<th>Model</th>
<th>Multiple correlation coefficient (R)</th>
<th>Variance ratio (F)</th>
<th>Number of factors in the model</th>
<th>Relative error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>55.231 + 1.028(\Delta \phi \Delta \varphi) + 0.026(\Delta \varphi h) + 4.226(\Delta \lambda)</td>
<td>0.973</td>
<td>65.4</td>
<td>3</td>
</tr>
<tr>
<td>Feb</td>
<td>48.192 + 0.018(\Delta \phi)(h) + 2.709(\Delta \phi \Delta \varphi)</td>
<td>0.964</td>
<td>78.0</td>
<td>2</td>
</tr>
<tr>
<td>Mar</td>
<td>40.744 + 0.0007246(hh)</td>
<td>0.833</td>
<td>29.4</td>
<td>1</td>
</tr>
<tr>
<td>Apr</td>
<td>37.485 + 0.009(\Delta \varphi h) + 1.896(\Delta \phi \Delta \varphi)</td>
<td>0.949</td>
<td>54.0</td>
<td>2</td>
</tr>
<tr>
<td>May</td>
<td>40.185 + 0.005(\Delta \varphi h) + 1.662(\Delta \phi \Delta \varphi)</td>
<td>0.917</td>
<td>31.5</td>
<td>2</td>
</tr>
<tr>
<td>Jun</td>
<td>58.651 + 0.007(\Delta \varphi h) - 1.554(\Delta \lambda \Delta \varphi)</td>
<td>0.926</td>
<td>36.3</td>
<td>2</td>
</tr>
<tr>
<td>Jul</td>
<td>72.138 + 0.389(\Delta \lambda) - 1.070(\Delta \lambda \Delta \varphi) + 0.005(\Delta \varphi h)</td>
<td>0.899</td>
<td>15.4</td>
<td>3</td>
</tr>
<tr>
<td>Aug</td>
<td>72.02 + 0.005(\Delta \varphi h) - 1.513(\Delta \lambda \Delta \varphi)</td>
<td>0.919</td>
<td>32.8</td>
<td>2</td>
</tr>
<tr>
<td>Sep</td>
<td>60.989 + 0.005(\Delta \varphi h) + 1.248(\Delta \phi \Delta \varphi)</td>
<td>0.900</td>
<td>25.7</td>
<td>2</td>
</tr>
<tr>
<td>Oct</td>
<td>51.000 - 2.053(\Delta \lambda \Delta \varphi) + 0.005(\Delta \varphi h) + 1.186(\Delta \phi \Delta \varphi)</td>
<td>0.946</td>
<td>31.4</td>
<td>3</td>
</tr>
<tr>
<td>Nov</td>
<td>52.607 + 0.011(\Delta \varphi h) + 2.217(\Delta \phi \Delta \varphi)</td>
<td>0.932</td>
<td>39.9</td>
<td>2</td>
</tr>
<tr>
<td>Dec</td>
<td>57.676 + 4.489(\Delta \lambda) + 0.027(\Delta \varphi h)</td>
<td>0.946</td>
<td>50.9</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 6 | Spatial distribution of mean wind speed in January and July averaged over 1961–2005 for the Taoer river basin (m s\(^{-1}\)).

Figure 7 | Spatial distribution of mean relative humidity in January and July averaged over 1961–2005 for the Taoer river basin (%).
Table 4 | Models between macro-geographical factors and mean air temperature in the Taoer river basin (parameters as for Table 3)

<table>
<thead>
<tr>
<th>Model</th>
<th>Multiple correlation coefficient R</th>
<th>Variance ratio F</th>
<th>Number of factors in the model</th>
<th>Relative error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>$-15.848 - 0.008 \Delta \varphi h - 0.495 \Delta \varphi \Delta \varphi$</td>
<td>0.930</td>
<td>148.3</td>
<td>2</td>
</tr>
<tr>
<td>Feb</td>
<td>$-11.646 - 0.011 \Delta \varphi h + 1.284 \Delta \varphi - 0.231 \Delta \varphi \Delta \varphi$</td>
<td>0.934</td>
<td>317.2</td>
<td>3</td>
</tr>
<tr>
<td>Mar</td>
<td>$-2.782 - 0.0000049 hh - 0.003 \Delta \varphi h + 0.256 \Delta \Delta \varphi + 0.158 \Delta \Delta \lambda - 0.001 hh$</td>
<td>0.939</td>
<td>452.5</td>
<td>5</td>
</tr>
<tr>
<td>Apr</td>
<td>$7.991 - 0.004 \Delta \varphi h - 0.004 h$</td>
<td>0.936</td>
<td>718.2</td>
<td>2</td>
</tr>
<tr>
<td>May</td>
<td>$16.998 - 0.002 \Delta \varphi h - 0.007 h - 0.316 \Delta \lambda$</td>
<td>0.938</td>
<td>1134.1</td>
<td>3</td>
</tr>
<tr>
<td>Jun</td>
<td>$21.806 - 0.006 h - 0.002 \Delta \varphi h$</td>
<td>0.933</td>
<td>421.0</td>
<td>2</td>
</tr>
<tr>
<td>Jul</td>
<td>$24.389 - 0.007 h - 0.501 \Delta \varphi h$</td>
<td>0.933</td>
<td>401.2</td>
<td>2</td>
</tr>
<tr>
<td>Aug</td>
<td>$22.559 - 0.007 h - 0.618 \Delta \varphi h$</td>
<td>0.921</td>
<td>319.3</td>
<td>2</td>
</tr>
<tr>
<td>Sep</td>
<td>$15.984 - 0.007 h - 0.878 \Delta \varphi + 0.241 \Delta \lambda \Delta \varphi$</td>
<td>0.934</td>
<td>326.6</td>
<td>3</td>
</tr>
<tr>
<td>Oct</td>
<td>$6.546 - 0.004 \Delta \varphi h - 0.004 h$</td>
<td>0.937</td>
<td>928.8</td>
<td>2</td>
</tr>
<tr>
<td>Nov</td>
<td>$-5.498 - 0.007 \Delta \varphi h - 0.0000011 hh + 0.284 \Delta \varphi$</td>
<td>0.934</td>
<td>330.3</td>
<td>3</td>
</tr>
<tr>
<td>Dec</td>
<td>$-13.548 - 0.007 \Delta \varphi h - 0.333 \Delta \varphi \Delta \varphi$</td>
<td>0.926</td>
<td>206.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Spatially modelling the radiation environment

We obtained 12 grid maps on net surface radiation; those for January and July are depicted in Figure 9. We found less spatial variation in January than in July. The distribution of radiation was affected by topography (elevation, slope and aspect) in the study area. Radiation was higher in the low elevation and low latitude area in the south and east of the basin. Net surface radiation was generally high in July and showed high homogenous distribution in the plain in the middle and lower reach.

Spatial variation of ET_0

Using grid maps of climate variables and net surface radiation, ET_0 was calculated by the Penman–Monteith equation at each grid cell at the high resolution of 200 m.

Figure 8 | Spatial distribution of mean air temperature in January and July averaged over 1961–2005 for the Taoer river basin (°C).
Figure 9 | Spatial distribution of mean surface net radiation in January and July averaged over 1961–2005 for the Taoer river basin (MJ m\(^{-2}\)).

Figure 10 | Spatial distribution of monthly \(ET_0\) considering topographic influences averaged over 1961–2005 for the Taoer river basin (mm).
Figure 10 shows monthly ET₀ grid maps from January to December averaged over the 45 years. It can be seen that the spatial variation of ET₀ in winter was less than that in the other seasons. In the plains adjacent to the lower reach of the Taoer river, ET₀ demonstrated a homogenous distribution. In mountainous regions in the upper reach, low ET₀ are measured in the ridges while high ET₀ is measured in the valleys and plains. Generally, low ET₀ were found in the southern Great Xingan mountains. For the monthly ET₀ spatial distributions from March to September, ET₀ decreased from the southeast to the northwest. In the other months, high values were found in the south and ET₀ decreased from the south to the north. The magnitude of ET₀ in difference months highlighted the monthly variation with a maximum in May and low values in winter.

Comparison of spatial interpolation methods for ET₀

The spatial distributions of monthly ET₀ by ‘calculate-then-interpolate’ method were interpolated by tri-variate secondary trend surface method and the three interpolation methods which performed best: IDW, kriging (linear) and kriging (exponential). The relative error of interpolation is lowest for tri-variate secondary trend surface method with a value of 10.8% (Table 5).

The spatial distribution of ET₀ by IDW and ordinary kriging methods only consider the effects of distance between sample points and interpolated points, and do not take into account the effects of elevation variation. These methods would provide accurate results when the number of sample points is large with uniform geographical conditions, e.g. ET₀ interpolation in Greece (Dalezios et al. 2002) and Changjiang catchment (Xu et al. 2006), and precipitation interpolation in the Yellow river basin (Liu et al. 2008).

ET₀ is influenced by meteorological variables which vary with elevation, slope and aspect (Tong et al. 2007). The reason for the unsatisfactory results with the ‘calculate-then-interpolate’ method is that the elevation varies considerably over the basin, and the number of sample points is also limited. The spatial distribution of ET₀ by tri-variate secondary trend surface which considered the DEM better reflected the effects of topography on ET₀ and is more realistic compared to the other three methods.

The relative error of ET₀ distribution by tri-variate secondary trend surface for the ‘interpolate-then-calculate’ method is 8.4% (Table 5), which is lower than that by tri-variate secondary trend surface for the ‘calculate-then-interpolate’ method (10.8%). Topography was seen to affect values of ET₀ due to the influence of elevation, slope and aspect on meteorological variables during processes to obtain ET₀ distribution. The comparison indicated that the ‘interpolate-then-calculate’ method better reflected the effects of topography on ET₀ than the ‘calculate-then-interpolate’ method.

CONCLUSIONS

In this paper, the ‘interpolate-then-calculate’ approach was implemented to calculate ET₀ at each grid cell to obtain a high-resolution surface of long-term averaged monthly ET₀. This approach exhibits topographic influences on the forcing climate variables and net radiation by spatially interpolating wind speed (considering longitude and latitude), relative humidity and air temperature (considering elevation, longitude and latitude) and spatially modelling net surface radiation environment (considering slope, aspect, elevation, longitude and latitude) with 200 m resolution.

The ‘interpolate-then-calculate’ approach is superior to a geometric dimensional ‘calculate-then-interpolate’ approach, which would only have used 15 points in and around the Taoer river basin. In an area with complex topography and a small number of stations, the ‘interpolate-then-calculate’ approach which considers the DEM should therefore be preferred to the ‘calculate-then-interpolate’ approach. This study also presented the spatial distribution
of \(ET_0 \) averaged over the past 45 years, which is valuable information for irrigation and water resources management in the Tuuer river basin.

The conclusions of this study are as follows.

1. On comparing 11 interpolation methods, IDW method was found most suitable for interpolating wind speed. Tri-variate secondary trend surface method was best for interpolating mean air temperature and relative humidity, since it takes the DEM into account.

2. In order to adequately reflect topographic influences, the radiation environment was modelled considering slope and aspect in addition to longitude, latitude and elevation. This result better reflected the topographic influence than that by ANUSPLIN software by McVicar et al. (2007) which only considering longitude, latitude and elevation.

3. The three meteorological variables and radiation showed strong seasonal variation. Spatial variations of the three meteorological variables in January were larger than that in July, while net surface radiation showed the opposite.

4. The resulting \(ET_0 \) calculated at each grid cell at 200 m resolution showed strong seasonal and spatial variation. Low \(ET_0 \) was found in the southern Great Xingan mountains in the upper basin.

5. The ‘interpolate-then-calculate’ approach showed better interpolation quality results than the ‘calculate-then-interpolate’ approach for calculating \(ET_0 \).

ACKNOWLEDGEMENTS

The National Natural Sciences Fund (Project No. 40571029), Key Project of Knowledge Innovation Program of CAS (Project No. KZCX2-YW-Q06-1) and China Postdoctoral Science Foundation (Project No. 20090430562) supported the research. The authors gratefully acknowledge the support of K.C. Wong Education Foundation, Hong Kong.

REFERENCES

Improving the estimation of solar radiation of mountain
microclimate simulation model in subtropical mountainous
with English abstract).

Liang, L. Q., Li, L. J., Zhang, L., Li, J. Y. & Li, B. 2008 Sensitivity of
the Penman-Monteith reference crop evapotranspiration in the

equation in the semiarid climate of North China. *Agric. Water
Manage.* 71, 1–17.

Resour.* 21(1), 139–145.

Liu, Q., Yang, Z. F. & Cui, B. S. 2008 Spatial and temporal
variability of annual precipitation during 1961–2006 in Yellow

Marquínez, J., Lastra, J. & García, P. 2005 Estimation Models for
precipitation in Mountainous regions: the use of GIS and

interpolate moisture availability in the Murray-Darling basin: a
199–212.

Zhang, L. & Li, L. T. 2002 Monitoring regional agricultural
water use efficiency for Hebei Province on the North China

McVicar, T. R., Van Niel, T. G., Li, L. T., Hutchinson, M. F., Mu,
X. M. & Liu, Z. H. 2007 Spatially distributing monthly
reference evapotranspiration and pan evaporation considering

Price, D. T., McKenny, D. W., Nalder, I. A., Hutchinson, M. F. &
Kesteven, J. L. 2000 A comparison of two statistical methods
for spatial interpolation of Canadian monthly mean climate

Rimóczi-Páll, A. 2005 Mapping of radiation balance components
Earth* 30, 151–158.

Stahl, K., Moore, R. D., Floyer, J. A., Asplin, M. G. & McKendry,
I. G. 2006 Comparison of approaches for spatial interpolation
of daily air temperature in a large region with complex
topography and highly variable station density. *Agric. For.
Meteorol.* 139, 224–236.

Tong, L., Kang, S. Z. & Zhang, L. 2007 Temporal and spatial
variations of evapotranspiration for spring wheat in the
Shiyang river basin in northwest China. *Agric. Water
Manage.* 87, 241–250.

Utset, A., Farré, I. & Martínez-Cob, A. 2004 Comparing
Penman-Monteith and Priestley-Taylor approaches as
reference evapotranspiration inputs for modelling maize
water-use under Mediterranean conditions. *Agric. Water
Manage.* 66, 205–219.

Vicente-Serrano, S. M., Saz-Sanchez, M. A. & Cuafrat, J. M. 2003
Comparative analysis of interpolation methods in the middle
Ebro valley (Spain): application to annual precipitation and

Watson, D. F. & Phillip, G. M. 1985 A refinement of inverse
distance weighted interpolation. *Geo-Processing* 2(4),
315–327.

Analysis of spatial distribution and temporal trend of
reference evapotranspiration and pan evaporation
in Changjiang (Yangtze river) catchment. *J. Hydrol.* 327,
81–93.

Yan, H., Nix, H. A., Hutchinson, M. F. & Booth, T. H. 2005 Spatial
interpolation of monthly mean climate data for China. *Int.
J. Climatol.* 25, 1369–1379.

Yoshino, M. M. 1975 *Climate in a Small Area: An Introduction to
Local Meteorology.* University of Tokyo Press, Tokyo.

Yu, G. R., He, H. L. & Liu, X. A. 2004 *Atlas for Spatialized
Information of Terrestrial Ecosystem in China: Volume of
Climatological Elements.* China Meteorological Press, Beijing,
China (in Chinese).

Zhang, F. M. & Shen, S. H. 2007 Spatial distribution and temporal
trend of reference crop evapotranspiration in China. *J. Nanjing
abstract).

annual evapotranspiration to vegetation changes at catchment

Zhao, Y. L. 1999 *Distribution of Fragile Types of Eco-Environment
and Their Comprehensive Management in China.* Beijing:

distributed modelling of the potential evapotranspiration in
semi-arid climate of the Chinese Loess Plateau. *J. Arid
Environ.* 58, 387–403.

at Earth Surface.* Science Press, Beijing, China (in Chinese).

First received 21 December 2008; accepted in revised form 25 November 2009. Available online June 2010