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and temperature. Such a metal, which must retain some of the
original void volume of the sphere bed to remain permeable, is
typified by the commercial porous-bronze specimen shown in the
authors’ Fig. 1. It may be seen from this figure that the identity
of the individual grains is largely preserved, and in this case
knowledge of the grain diameter (and possibly of a suitable shape
factor) may permit a prediction of the flow resistance of the com-
pact by the standard methods of fluid mechanies.

In the method of manufacture used by the authors, on the other
hand, the metal powder is mixed with a powdered solid which
undergoes a phase change into a gaseous state at a temperature
slightly below the sintering temperature of the metal. This
intimate mixture is then pressed in a die under pressures ranging
up to 100,000 psi, and the resulting compact sintered at high
temperature. The permeability of the metal is thus due to the
pores formed by the escape of the gases generated by the decom-
position of the porosity-forming agent. A metal prepared by
this technique is typified by the stainless-steel specimen shown
in the authors’ Fig. 1, from which the loss of particle identity
may be seen. This loss of identity, although it complicates the
flow picture, is rewarded by a mechanical strength in the compact
greater than that obtained by the conventional technique.

In closing, the authors would like to express their preference for
the granular bed correlation of Irgun and Orning? over that of
Rose,* since they believe that the two-term quadratic expression
of Ergun and Orning gives a clearer picture of the resistance
mechanism. In addition, the dimensionless coefficient of the quad-
ratic term (see the authors’ Equation [16]) provides a measure
of the effect of particle orientation (the mode of sphere packing)
upon the flow resistance. This effect has been neglected by
Rose, who considers the resistance of a sphere bed (in the ab-
sence of wall effects) to be completely described by the particle
diameter and bed porosity, but recent work by Martin, McCabe,
and Monrad® has shown it to be important in certain cases of
systematic sphere packing.

The Solution of Elastic Plate
Problems by Electrical
Analogies’

M. V. BarTon.2 The use of an analog computer for the solu-
tion of plate problems is valuable for the study of complicated
plates having difficult boundary conditions, or in which the plate
is variable in thickness, or has unusual plan form. Since, how-
ever, the differential equations to be solved for the plate have
been approximated in terms of finite differences, the function of
the computer is to solve sets of simultaneous algebraic equations
representing particular boundary value or characteristic-value
problems. Therefore it may be of interest to compare the re-
sults obtained by the analog computer with results obtained by
brute-force calculations.

It has been the experience of the writer that the type of charac-
teristic-value problem such as the vibration of the rectangular
plate discussed in the paper is very laborious to solve by usual
numerical procedures. For example, using an iteration proced-
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ure on a set of 12 finite-difference equations (same number as used
by the author), the characteristic value continues to oscillate be-
tween plus and minus values after 24 iterations. An alternative
method is to expand the determinant of the equations to obtain
the characteristic equation, which in this case is a twelve-degree
polynominal, and extract the roots of interest. This has been
done to determine the lowest characteristic value for the vibrating

cantilever plate. The frequency is found to be 0.503 1 /a2 \/D/m,

as compared with the author’s value of 0.501 1/a? \/ D/m.
The close correlation of these values is an indication of the accur-
acy of the computer. As the author points out, these values are
much lower than the test frequency because of the approximation
inherent in the finite-difference method so that comparisons with
experimental results are not a good basis for judging the comput-
er’s effectiveness.

It is interesting to note that the values of frequency obtained
for the vibrating cantilever plate using the twelve equations are
lower bounds. The value of the fundamental frequency ob-
tained by the Ritz method using a 9-term series of orthogonal
beam functions to represent the deflection gives an upper bound
of 0.556 1/a? \/ D/m which is less than 2 per cent higher than the
experimental value. Therefore it may be desirable to use the
analog computer to solve the set of equations resulting from the
application of the Ritz method rather than using the finite-dif-
ference method since for some problems greater accuracy can be
obtained with fewer cells.

P. G. Hobgg, Jr.? The author’s solution of the elastic plate
problem was particularly interesting to the writer because it can
be applied immediately to the elastic plane-strain problem. Asis
well known, if a stress function ¢ is defined by

g, = bz‘l’/bvzs g, = bz‘l’/blzv Try = _az\l’/b:by

then Y must satisfy the author’s Ilquation [10] with the right-
hand side equal to zero
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If the region under consideration is simply connected, the
boundary conditions for Y can be expressed in terms of the stress
vector T applied to the boundary of the region in plane strain. If
n and t are unit vectors, respectively, normal and tangential to
the boundary

where the integrations are to be taken around the boundary.
Thus the boundary conditions can always be computed in the
form of Equations [a] and [c] of the author’s paper. It follows,
then, that exactly the same network can be used to solve a prob-
lem in plane elastic strain.

The writer would now like to pose the much more difficult
problem of elastic-plastic plane strain. Here the stress function
¥ must be continuous with continuous first and second deriva-
tives throughout the region, must satisfy the boundary condi-
tions, Equation [2] of this discussion, and the yield inequality

[a,z - b,’] +4 o0, 452 < 0........ 3]
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