The Implications of a High Allelic Frequency of CYP2B6 G516T in Ethnic Chinese Persons

To the Editor—The article by Ribaudo et al. [1] and Lai et al. [2] raises interesting questions about the implications of a high frequency of the allele CYP2B6 G516T in ethnic Chinese populations. The study by Ribaudo et al. [1] demonstrated a fourfold increase in ketamine metabolism and a two- to ninefold increase in propofol metabolism in Chinese individuals compared to non-Chinese individuals. However, the study by Lai et al. [2] reported a higher frequency of the G516T allele in Chinese individuals, which could explain the observed differences in drug metabolism. It is important to further investigate the potential genetic basis for these differences and to consider the implications for clinical practice, particularly in patients of ethnic Chinese descent.

References


Matti Waris and Lisa J. White
1Department of Virology, University of Turku, Turku, Finland; and 2Ecology and Epidemiology Group, University of Warwick, Coventry, United Kingdom

To the Editor—Dr. Gavin Donaldson recently compared climate change and the pattern of epidemics of respiratory syncytial virus (RSV) infection in England and Wales for 1981–2004 [1]. His conclusion—that the warming of the temperature may be shortening the RSV infection season and, thus, decreasing the disease burden—is interesting, but it should be taken within the context of the global dynamics of RSV transmission. An equivalent analysis performed on the total annual number of hospitalizations for RSV infection, rather than on the timing of the end of the RSV infection season, would better test this hypothesis.

In contrast with Donaldson [1], we do not believe that within-school cross-infection has been ruled out. The combination of the short-lived immunity to RSV infection and the pattern of epidemics of respiratory syncytial virus transmission. An equivalent analysis performed on the total annual number of hospitalizations for RSV infection, rather than on the timing of the end of the RSV infection season, would better test this hypothesis.

The vast majority of the children hospitalized with RSV infection are infants and toddlers, who catch their infections from older siblings or in day care centers. Assuming that the average virulence of the circulating virus strains remains the same, the size and density of the most susceptible child population are the main determinants of the RSV infection epidemic, or what we recognize as one. Regarding the length of the RSV infection season, nativity, urbanization, and travel are likely to be more important changes in the environment of the virus than the climate warming.

Acknowledgments

Financial support. Wellcome Trust through the VIP funding scheme (to L.J.W.).


Seasonality of Respiratory Syncytial Virus Infection

To the Editor—Dr. Gavin Donaldson recently compared climate change and the pattern of epidemics of respiratory syncytial virus (RSV) infection in England and Wales for 1981–2004 [1]. His conclusion—that the warming of the temperature may be shortening the RSV infection season and, thus, decreasing the disease burden—is interesting, but it should be taken within the context of the global dynamics of RSV transmission. An equivalent analysis performed on the total annual number of hospitalizations for RSV infection, rather than on the timing of the end of the RSV infection season, would better test this hypothesis.

In contrast with Donaldson [1], we do not believe that within-school cross-infection has been ruled out. The combination of the short-lived immunity to RSV infection and the pattern of epidemics of respiratory syncytial virus transmission. An equivalent analysis performed on the total annual number of hospitalizations for RSV infection, rather than on the timing of the end of the RSV infection season, would better test this hypothesis.

The vast majority of the children hospitalized with RSV infection are infants and toddlers, who catch their infections from older siblings or in day care centers. Assuming that the average virulence of the circulating virus strains remains the same, the size and density of the most susceptible child population are the main determinants of the RSV infection epidemic, or what we recognize as one. Regarding the length of the RSV infection season, nativity, urbanization, and travel are likely to be more important changes in the environment of the virus than the climate warming.

Acknowledgments

Financial support. Wellcome Trust through the VIP funding scheme (to L.J.W.).


Seasonality of Respiratory Syncytial Virus Infection

To the Editor—Dr. Gavin Donaldson recently compared climate change and the pattern of epidemics of respiratory syncytial virus (RSV) infection in England and Wales for 1981–2004 [1]. His conclusion—that the warming of the temperature may be shortening the RSV infection season and, thus, decreasing the disease burden—is interesting, but it should be taken within the context of the global dynamics of RSV transmission. An equivalent analysis performed on the total annual number of hospitalizations for RSV infection, rather than on the timing of the end of the RSV infection season, would better test this hypothesis.

In contrast with Donaldson [1], we do not believe that within-school cross-infection has been ruled out. The combination of the short-lived immunity to RSV infection and the pattern of epidemics of respiratory syncytial virus transmission. An equivalent analysis performed on the total annual number of hospitalizations for RSV infection, rather than on the timing of the end of the RSV infection season, would better test this hypothesis.

The vast majority of the children hospitalized with RSV infection are infants and toddlers, who catch their infections from older siblings or in day care centers. Assuming that the average virulence of the circulating virus strains remains the same, the size and density of the most susceptible child population are the main determinants of the RSV infection epidemic, or what we recognize as one. Regarding the length of the RSV infection season, nativity, urbanization, and travel are likely to be more important changes in the environment of the virus than the climate warming.

Acknowledgments

Financial support. Wellcome Trust through the VIP funding scheme (to L.J.W.).