Lepton Conservation, μ-e Symmetry, Neutral Currents and the Principle of Universality

S. Y. Tsai

Department of Physics and Atomic Energy Research Institute, College of Science and Engineering, Nihon University, Tokyo

May 22, 1970

All the known interactions involving leptons, electromagnetic and weak, are consistent with:

(i) the existence of two different kinds of two-component neutrinos ν_e and ν_μ,
(ii) the separate conservation of the electron number N_e and the muon number N_μ, and
(iii) the μ-e symmetry.

In this note, we want to demonstrate that, in the framework of the two-distinct two-component neutrino theory, the charged weak lepton current L_μ consistent with
the conservation law of the total lepton number is always consistent also with the properties (ii) and (iii) above, provided that L_i obeys the principle of universality.2

For our present purpose, we state this principle as follows (see also below): the charged current L_i together with its hermitian conjugate L_i^\dagger should generate an SU(2) algebra of "charges".

Let us denote the two distinct two-component neutrinos by ν_1 and ν_2, and define e^-, μ^-, ν_1 and ν_2 as leptons and e^+, μ^+, $\bar{\nu}_1$, and $\bar{\nu}_2$ as anti-leptons. The most general form of the charged lepton current which satisfies the lepton conservation law can be written as

$$L_i = i\bar{\nu}_i \gamma_j a_i A \nu_j,$$

(1)

where L_i is given by Eq. (1) while $L_i^{(0)}$ is its neutral counterpart, the form of which is to be determined by the principle itself. The universality principle then insists that $Q^{(+)}$, $Q^{(-)}$ and $Q^{(3)}$ should obey the SU(2) algebra. It is then readily verified that $L_i^{(0)}$ is settled to be of the form

$$L_i^{(0)} = (i\bar{\nu}_i \gamma_j a_i A \nu_j - i\bar{\nu}_i \gamma_j A A^\dagger A \nu_j) / 2$$

(2)

with A subject to the condition

$$AA^\dagger A = A .$$

(3)

Equation (3) is satisfied either if A is any unitary matrix, or if A is a singular matrix of the form, say,

$$A = \begin{pmatrix} \alpha & \beta \\ \kappa & \kappa \beta \end{pmatrix} ,$$

$$\left(1 + |\kappa|^2\right) (|\alpha|^2 + |\beta|^2) = 1 .$$

(4)

We first consider the latter case. Inserting Eq. (4) into Eqs. (1) and (2), one finds

$$L_i = (1 + |\kappa|^2)^{-1/2} (i\bar{\nu}_i \gamma_j a_i A \nu_j + \kappa \bar{\nu}_i \gamma_j a_i \nu_j) ,$$

(5)

$$L_i^{(0)} = i\bar{\nu}_i \gamma_j a_i \nu_j / 2 - (1 + |\kappa|^2)^{-1} (i\bar{\nu}_i \gamma_j a_i \nu_j + \kappa \bar{\nu}_i \gamma_j a_i A \nu_j^\dagger) / 2 ,$$

(6)

with $\nu_j = (|\alpha|^2 + |\beta|^2)^{-1/2} (\alpha \nu_1 + \beta \nu_2)$ and κ an arbitrary constant. We see that we have arrived at, essentially, a single two-component neutrino theory,4 which is of course excluded by experiments.1

Next turn to the former solution: A is unitary. If one defines two new fields ν_e and ν_μ through

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = A \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} ,$$

(7)

the whole Lagrangian including the free part5 can then be rewritten with ν_e and ν_μ, and Eqs. (1) and (2) now reduce, respectively, to

$$L_i = i\bar{\nu}_i \gamma_j a_i A \nu_j + i\bar{\nu}_i \gamma_j a_i \nu_\mu ,$$

(8)

$$L_i^{(0)} = (i\bar{\nu}_i \gamma_j A \nu_e + i\bar{\nu}_i \gamma_j A \nu_\mu) / 2 .$$

(9)

The charged lepton current L_i in the above form is the familiar one and just fulfills all the properties listed in the beginning. We remark that the argument given above casts doubts on the recent attempt3 to extend the domain of the universality so as to incorporate possible nonconservation of N_e and N_μ into the lepton currents.

We now recall that the principle in question is "universal" just because it is

4 Recall that the two-component nature together with the lepton conservation require both ν_1 and ν_2 to be of zero mass and that neutrinos undergo weak interactions only.
Letters to the Editor

applicable also to the hadron currents and make the “universal” $V-A$ current \times current weak interaction acquire a meaning.\(^2\)

In fact, when combined with the octet current hypothesis, the principle determines the form of J_i and $J_i^{(0)}$, the hadronic counterparts of L_i and $L_i^{(0)}$, as

$$J_i = \cos \theta (j_i^{(1)} - ij_i^{(3)}) + \sin \theta (j_i^{(4)} - ij_i^{(5)}), \quad (10)$$

and the effective Lagrangian constructed from L_i and J_i with a common coupling constant G ($G \approx 10^{-5} m_p^{-2}$)

$$\mathcal{L}_a = 2 \sqrt{2} G (L_i + J_i) \langle L_i + J_i \rangle \quad (12)$$

gives consistent explanation of all purely- and semi-leptonic weak processes.\(^1\)

Now that the charged currents L_i and J_i given by Eqs. (8) and (10) are “observable” through the weak interactions, it is reasonable to expect that their neutral counterparts $L_i^{(0)}$ and $J_i^{(0)}$ given by Eqs. (9) and (11) should also be “observable” through some interaction, provided that the universality principle does possess a deeper physical meaning. An example of such a hypothetical interaction, analogous to Eq. (12), is readily written down:

$$\mathcal{L}_F = 2 \sqrt{2} F (L_i^{(0)} + J_i^{(0)}) \langle L_i^{(0)} + J_i^{(0)} \rangle \quad (13)$$

This is a modified form of the neutral current \times current interaction proposed by the present author before. The new interaction in the form (13) should appear as a superweak one ($F/G \leq 10^{-4}$).\(^4\)

Finally, we add a remark on the alternative form of the lepton conservation law, in which one postulates a single four-component neutrino ν and defines e^-, ν and μ^+ as leptons. In this scheme, the most general form of the charged lepton current becomes

$$L_i = \alpha i e \gamma_\nu a \nu + \alpha' i \bar{e} \gamma_\nu a \nu + \beta i e \gamma_\nu a \nu + \beta' i \bar{e} \gamma_\nu a \nu \quad (14)$$

Although the universality principle restricts the values of the constants in Eq. (14) to be

$$\{ |\alpha|^2, |\beta'|^2 \}$$

we need some further criterion to single out the special choice: $|\alpha| = |\alpha'| = 1$ and $\beta = \beta' = 0$, this being such one compatible with experiment. Thus the universality principle provides a way to discriminate between the two possible forms of the lepton conservation law.

3) P. Chang, preprint.

\(^{4)} j_i^{(a)} = (V_j^{(a)} + A_j^{(a)})/2$, where a is the $SU(3)$ index, and θ is the Cabibbo angle.