
opposite effect in the 3 normal prostate cell lines. However,
neither cancer nor normal cells showed any obvious changes
after parthenolide treatment for the major cytosolic superox-
ide removal protein, copper, and zinc-containing SOD (CuZn-
SOD). This observation was confirmed by quantification of the
corresponding enzyme activity (Fig. 2D). These results suggest
that parthenolide-mediated alteration of cellular redox status
is mediated, at least in part, by changing the activities of
antioxidant enzymes in mitochondria.
To probe whether altering cellular redox status is associated

with a change in mitochondrial respiration, the OCR in the
parthenolide-treated cells was measured using a Seahorse
Bioscience FX OxygenFlux Analyzer. The basal and maximal
OCR in normal cells was higher than in cancer cells (Fig. 2E).
Importantly, parthenolide was able to increase the OCR and
reserve capacity in PZ cells, whereas parthenolide had no effect
on PC3 OCR. Finally, the cytotoxicity of parthenolide was

tested in all the cell lines using an MTT assay, which requires
active mitochondria. As shown in Fig. 2F, parthenolide was
toxic to all the cancer cells but not to the normal cell lines.
Taken together, these results suggest that changes in cellular
redox status andmitochondrial functionmay be a cause for the
differential biologic effects of parthenolide on cancer and
normal cells.

Keap1 is susceptible to parthenolide-mediated redox
modification

Keap1, a redox-sensitive protein, has been reported to play
an important role in cell survival under oxidative stress (29). To
investigate whether parthenolide modifies Keap1 function, a
Keap1 antibody linked to biotin was used to immunoprecip-
itate redox-modified Keap1 protein and the presence of oxi-
dized (-S-S-) and reduced (-SH) cysteine residues was detected
using a secondary antibody linked to streptavidin. In the 3

A

B

5 x 3 Gy DMAPT + 5 x 3 Gy

Prostate

Bladder

0

20

40

60

80

100

Prostate Bladder

5 x 3Gy DMAPT/5 x 3Gy

*

*

%
 D

a
m

a
g

e
d

 m
it

o
c

h
o

n
d

ri
a

 /
 t

o
ta

l

m
it

o
c

h
o

n
d

ri
a

* P < 0.05

C

D

a b

c d

12,000X 12,000X

8,000X 8,000X

0

10

20

30

40

50

60

70

P < 0.05

P < 0.05

P < 0.01

D
a

y
s

 w
h

e
n

 t
u

m
o

r 
v

o
lu

m
e

re
a

c
h

e
s

 t
o

 2
,0

0
0

 (
m

m
3
)

Days after treatment

T
u

m
o

r 
v
o

lu
m

e
 (

m
m

3
)

0

500

1,000

1,500

2,000

2,500

3,000

0 2 4 6 8 11 14 17 20 24 28 32 36

Untreated

DMAPT

1 Gy

1 Gy + DMAPT

2 Gy

2 Gy + DMAPT

Unt
re

at
ed

DMAPT
1 G

y

1 G
y +

 D
MAPT

2 G
y

2 G
y +

 D
MAPT

Figure 1. The effect of parthenolide on radiosensitivities of prostate cancer and normal cells. A, prostate cancer PC3 cells were injected into the flanks of nude
male mice. The resulting tumors were treated with DMAPT and IR. Tumor volume was measured and tumor growth was calculated. B, time needed for
tumor growth to reach 2,000mm3 volume after treatment was calculated and plotted. C, mice without cancer were treated with radiation alone (5� 3 Gy) and
DMAPT (10 mg/kg) with radiation. Prostate and bladder tissues were removed for pathologic analysis using electron microscopy. Arrows indicate normal
mitochondria and asterisks indicate mitochondria with myelin figures. M, normal mitochondria; Ly, lysosome; and V, mitochondria with vacuoles. D,
quantification of mitochondrial damage in mice prostate and bladder tissues.

Keap1, a Central Regulator of Cellular Redox Signaling

www.aacrjournals.org Cancer Res; 73(14) July 15, 2013 4409

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/73/14/4406/2689488/4406.pdf by guest on 04 O

ctober 2024



normal cell lines, parthenolide increased the oxidized form of
Keap1 but decreased the reduced form of Keap1 (Fig. 3A).
Interestingly, the results from the 3 cancer cell lines seemed to
be completely opposite to results observed in normal cells
treated with parthenolide: the level of the oxidized form was
decreased, but the level of the reduced form was increased

(Fig. 3B). To verify that the observed increase in reduced Keap1
also occurred in vivo, mouse xenograft tumor tissues with and
withoutDMAPT treatmentwere also used for determination of
Keap1 redox status. Consistent with data obtained from cul-
tured tumor cells treated with parthenolide, the in vivo results
show that parthenolide decreased the oxidized form of Keap1
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but increased the reduced form of Keap1 in the tumors (Fig.
3C). Changes in antioxidant proteins inmouse xenograft tumor
tissues treated with DMAPT are also consistent with the result
obtained from in vitro studies (Fig. 3D), indicating that parthe-
nolide decreases the level of mitochondrial antioxidant pro-
teins in prostate tumors.

Oxidization of Keap1 leads to activation of the Nrf2
prosurvival pathway in normal cells
Activation of the Nrf2 signaling pathway through dissocia-

tion with Keap1 resulting in Nrf2 nuclear translocation is
considered to be a primary prosurvival pathway in response
to oxidative stress (30, 37). To examine whether parthenolide
changes Nrf2 nuclear translocation, the levels of Nrf2 in nuclei
were measured. As shown in Fig. 4A, the nuclear levels of Nrf2
were increased in the 3 normal cell lines treated with parthe-
nolide, but no changes were observed in the 3 cancer cell lines.
To examine whether activation of the Nrf2 pathway is a major
mechanism by which parthenolide protects normal cells
against radiation injury, Keap1 and Nrf2 were silenced in PZ
cells by transfecting their siRNA (Fig. 4B, left). Cell survival
decreased when Nrf2 was silent. IR significantly reduced cell
survival but the cell survival was restored when Keap1 was
silenced (Fig. 4B, right panel). These results suggest that

oxidation of Keap1 and subsequent activation of Nrf2 by
parthenolide is essential for normal cell survival after radiation
treatment.

Thioredoxin is necessary for parthenolide-mediated
reduction of Keap1 in cancer cells

TrX is highly expressed in cancer cells and stimulates cell
growth. We previously reported that parthenolide decreases
the reduced form of TrX but increases the oxidized form of TrX
in prostate cancer cells (25). In the present study, we verify that
TrX was expressed at a high level in all 3 cancer cell lines,
whereas a low level was observed in the 3 noncancer cell lines
(Fig. 5A). Immunoprecipitation of Keap1 protein from PC3 cell
extracts using a TrX antibody suggests an interaction between
Keap1 and TrX that is increased by parthenolide (Fig. 5B). To
detect whether the parthenolide-influenced reduction of
Keap1 in cancer cells is dependent on TrX, we selectively
silenced TrX by transfecting its siRNA before parthenolide
treatment (Fig. 5C, left). As expected, the reduced form of
Keap1 was decreased, but the oxidized form of Keap1 was
increased when TrX was silent (Fig. 5C, middle and right). The
results suggest that TrX is interacting with Keap1 to keep
Keap1 in a reduced state in parthenolide-treated cells. To
further confirm that the function of Keap1 leads to cell death
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modification of Keap1 initiates different signaling pathways
that affect mitochondrial function, leading to cell survival or
cell injury in response to radiation, as illustrated in Fig. 7.

Discussion
The majority of anticancer therapies fail because cancers

develop phenotypes that are treatment resistant and because
treatments cause unwanted and/or detrimental side effects to
normal cells or to untargeted tissues. While conventional
adjuvant therapies improve tumor response to radiotherapy,
they generally cause additional damage to normal tissues.
Thus, the focus of the present study is to identify adjuvant
therapeutics that can reduce the side effects of radiotherapy.
Our study provides a proof-of-concept for improving the
efficacy of radiotherapy while protecting against injury to

normal tissues. It has been shown that parthenolide, the
anti-inflammatory phytochemical, is able to suppress tumor
growth in many organs (22–25). In addition, parthenolide
seems to synergically enhance chemotherapeutic efficiency
when it is combined with taxol or cisplatin to treat lung and
gastric cancer cells (23, 40). Parthenolide also sensitizes radio-
resistant osteosarcoma cells to radiotherapy (41). Here, we
show that DMAPT, a parthenolide prodrug, sensitized prostate
cancer cells to radiotherapy in vivo and protected normal
prostate and bladder against radiation-induced tissue injury.
These results extend our previous survival studies in prostate
cancer cell lines and normal prostate epithelial cells.

ROS, as products of cell metabolism, play a dual role in
tumorigenesis and tumor suppression. The "two-faced" char-
acter of ROS has emerged as a potential source for discovering
anticancer drugs. Redox homeostasis is frequently deregulated
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in cancers, as it is constantly exposed to high levels of ROS
compared with normal counterparts. Our data show that
constitutively elevated levels of oxidative stress in cancer cells
represent a specific vulnerability that can be selectively tar-
geted by direct- or indirect-acting prooxidants and antioxi-
dants or redoxmodulators. Theoretically, the differential redox
status of cancer cells compared with normal cells should
provide a therapeutic window for selective redox intervention
via additional increases in ROS. In this context, normal and
cancer cells should respond differently to the same level of
prooxidant action generated either by direct production of
oxidative species or by modulation of specific cellular targets
involved in redox regulation. In this study, we show that
parthenolide serves as a prooxidant and displays a selective
redox modification capability that differentially modulates
cellular redox signals and targets. The Michael acceptor reacts
with a thiol group of target proteins through covalent adduc-

tion (21). Parthenolide contains electrophilic a-methylene-
g-lactone, a bisfunctional Michael acceptor, and displays a
potential for bifunctional target alkylation and crosslinking.
The present study shows the inverse effects of parthenolide on
redoxmodification in cancer cells compared with normal cells.
Remarkably, observations of the cytotoxic and cytoprotective
effects of parthenolide are consistent with its action in the
modulation of ROS levels in both cancer and normal cells.
Alteration of cellular ROS by parthenolide is attributed to
functionally up- or downregulating antioxidant enzymes in
mitochondria, which consequently regulates mitochondrial
respiration. Parthenolide is able to selectively reduce the
activity of several enzymes involved in oxidative stress removal
in cancer cells, which in turn can cause ROS levels to rise above
the threshold for cell death. This finding predicts that antiox-
idant proteins and mitochondria are feasible therapeutic
targets.
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It has been reported that parthenolide is a potent inhibitor of
NF-kB, which is a ROS-responsive transcriptional factor
involved in both tumor progression and tumor resistance to
treatment through upregulation of antiapoptotic genes, such
as Bcl-2, Bcl-xL, survivin, and XIAP (42). We previously showed
that NADPH oxidase-mediated inactivation of the Foxo 3
signaling pathway is involved in the parthenolide-enhanced
radiosensitivity of prostate cancer (25). However, previous
studies did not explain how parthenolide exerts such an
opposing effect in tumor and normal cells. The present study
identifies Keap1 as a redox signaling sensor that plays a pivotal
role in the differential regulation of the downstream signaling
targets in response to radiation-mediated cytotoxicity in pros-
tate cancer and normal cells. Keap1, an adaptor protein for
ubiquitin-based processing by the CUL3/RBX1-dependent E3
ubiquitin ligase complex, functions as a sensor for thiol-reac-
tive redox modification (43). The present study shows that
stabilization of Nrf2 by oxidation of Keap1 serves as a major
mechanism by which parthenolide protects normal tissues
against radiotoxicity through upregulation of antioxidant
enzymes in mitochondria. However, Nrf2 transcriptional acti-
vation did not play a major role in parthenolide-treated
prostate cancer cells. Thus, it is interesting to note that unlike
traditional chemotherapeutic agents, parthenolide is unable to
enhance resistance of prostate cancer to radiation treatment
by stimulating Nrf2 target genes.
In addition to regulating the Nrf2 signaling pathway, Keap1

is able to bind other proteins such as p62 and PGAM5 (44).
Interaction between Keap1 and p62 facilitates release of Nrf2
from the complex, which is considered to be a noncanonical
cysteine-independent mechanism for the autophagy deficien-

cy–activated Nrf2 pathway (45). The N-terminus of PGAM5
interacts with the Kelch domain of Keap1 and its C-terminus
binds to Bcl-xL. Keap1-dependent ubiquitination results in
proteasome-dependent degradation of PGAM5 and Bcl-xL
(38). Bcl-xL, an important member of the Bcl-2 family, is a
potent antiapoptotic factor that plays a crucial role in cell
survival by maintaining the electrochemical and osmotic
homeostasis of mitochondria (46). The present study shows
that parthenolide increases the level of reduced Keap1 and
consequently induces Keap1-dependent degradation of
PGAM5 and Bcl-xL in cancer cells, suggesting that formation
of the Keap1-PGAM5-Bcl-xL complex is a mechanism under-
lying the effect of parthenolide on radiosensitization of pros-
tate cancer cells.

Although a high rate of aerobic glycolysis in tumors, known
as the Warburg effect, has been observed in various types of
cancer, cancers have functional mitochondria, and mitochon-
drial respiration is necessary for cancer cell proliferation (47).
Cancer cells depend on a hyperactive metabolism to fuel their
rapid growth and also on antioxidative enzymes to quench
potentially toxic ROS generated by such a high metabolic
demand (48). Our results show that parthenolide not only
suppresses MnSOD and GpX, 2 major antioxidant enzymes in
mitochondria, but also activates Bcl-xL degradation in cancer
cells, which suggests thatmitochondria are a feasible target for
anticancer treatment. The present study also shows that
parthenolidemaymaintain normal cell survival through induc-
tion ofMnSODandGpXactivity. Thus, amore efficient and safe
therapymay involvemodification of cellular redox signaling by
alteration of the antioxidant response coupled to selective
degradation of prosurvival members of the Bcl2 family in
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Figure 7. A proposed mechanistic
model for parthenolide-mediated
inverse therapeutic effects on
radiosensitivity of prostate cancer
and radioresistance of normal
cells. Parthenolide sensitizes
cancer cells to radiation, in part, by
maintaining Keap1 in a reduced
state and enhancing its interaction
with PGAM5 and Bcl-xL, resulting
in degradation of Bcl-xL in
mitochondria. In contrast,
parthenolide protects normal cells
against radiation via oxidation of
Keap1 and release of the Nrf2
transcription factor for activation of
mitochondrial antioxidant
enzymes.

Keap1, a Central Regulator of Cellular Redox Signaling

www.aacrjournals.org Cancer Res; 73(14) July 15, 2013 4415

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/73/14/4406/2689488/4406.pdf by guest on 04 O

ctober 2024



cancer cells, as conventional anticancer therapy mainly causes
cell growth arrest or cell death by raising cellular ROS, which
oxidizes and damages DNA, proteins, and lipids. Optimizing
prototype redox chemotherapeutics from natural sources pro-
vides an exciting opportunity to further develop even better
candidates to enhance therapeutic efficacy with less off-target
toxicity.
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