Crossing-Symmetric Decomposition of the n-Point Veneziano Formula into Tree-Graph Integrals. I

Noboru NAKANISHI

Applied Mathematics Department, Brookhaven National Laboratory
Upton, Long Island, New York 11973

(Received August 25, 1970)

Given a cyclic ordering of external particles and an n-point tree Feynman graph T, the tree-graph integral F_T is defined in such a way that F_T has only the poles relevant to T, that there is a birational transformation by which F_T is transformed into an integral identical with the n-point Veneziano formula apart from its integration domain, and that the crossing-symmetry property and Chan’s bootstrap condition are manifest. It is proved that the n-point Veneziano formula is written as a sum of F_T over all tree graphs T belonging to the given cyclic ordering of external particles.

§ 1. Introduction and summary

In previous work, we have shown for $n=4, 5, 6$ that the n-point Veneziano formula $F^{(n)}$ belonging to a cyclic ordering $(1, \cdots, n)$ of external particles can be decomposed into n_T tree-graph integrals F_T:

$$F^{(n)} = \sum_{T \in T(n)} F_T,$$

where $T^{(n)}$ denotes the set of all the n-point tree Feynman graphs (three lines are incident with every vertex) belonging to the cyclic ordering $(1, \cdots, n)$, and n_T is the number of the trees of $T^{(n)}$, that is:

$$n_T = (2n-4)!/(n-1)!(n-2)!.$$

The tree-graph integrals F_T have a one-to-one correspondence to the n-point tree graphs T, and satisfy the following requirements:

[1] F_T has only the singularities which can be existent in the Feynman amplitudes corresponding to T.

[2] There is a birational transformation of integration variables by which F_T is transformed into an integral whose integrand is identical with that of the standard expression for $F^{(n)}$.

[3] If a tree graph \tilde{T} is obtained from T by a cyclic or anti-cyclic permutation of external particles, then $F_{\tilde{T}}$ is obtained from F_T by the same permutation. In particular, if T is invariant under certain cyclic or anti-cyclic permuta-

* Work performed under the auspices of the U.S. Atomic Energy Commission.
** On leave of absence from Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
Each tree-graph integral \(F_T \) satisfies Chan's bootstrap condition\(^{2} \), that is, if \(T \) is decomposed into two tree graphs \(T' \in T^{(n)} \) and \(T'' \in T^{(n-m+2)} \) by opening an internal line \(L_i \in T \), then the residue of \(F_T \) at \(\alpha_{P_i} = 0 \) is equal to \(F_{T'} F_{T''} \), where \(F_{T'} = 1 \) (or \(F_{T''} = 1 \)) if \(T' \in T^{(3)} \) (or \(T'' \in T^{(5)} \)) and \(\alpha_{P_i} \) is the Regge trajectory function corresponding to \(L_i \).

In the present paper, we extend our consideration to the case of \(n \) general. In § 2, we review a six-point symmetric tree-graph integral, and consider an extension to an eight-point symmetric tree-graph integral. In § 3, we explicitly construct a general birational transformation of integration variables by which \(F_T \) is transformed into an integral whose integrand is identical with that of \(F^{(5)} \) (see Requirement [2]). In § 4, after specifying the integration domain of \(F_T \), we show that the tree-graph integrals satisfy also all the other requirements stated above. Finally, the decomposition theorem (1·1) is proved for \(n \) general.

The unsolved problems are to prove the uniqueness of the definition of \(F_T \), to find an explicit, closed expression for the integrand of \(F_T \), and to investigate the asymptotic behavior of \(F_T \).

§ 2. Preliminaries and examples

As is well known, the \(n \)-point Veneziano formula belonging to a cyclic ordering \((1, \cdots, n)\) of external particles is written as\(^{3} \)

\[
\int_0^1 dv_1 \cdots \int_0^1 dv_{n-3} h \prod_{P} u_p^{-\alpha_P - 1}. \tag{2·1}
\]

Here \(P \) denotes a partition of the cyclic ordering \((1, \cdots, n)\) into two sets

\[
P' = (p, p+1, \cdots, q), \\
P'' = (q+1, \cdots, n, 1, 2, \cdots, p-1);
\]

\(\alpha_P = \alpha_P (s_P) \) stands for the Regge trajectory corresponding to a partition \(P \); \(u_p = u_{p-q} \) is the so-called "conjugate variable", which satisfies

\[
u_p = 1 - \prod_{P} u_p, \tag{2·3}
\]

where the product goes over all \(\overline{P} (= \overline{P'} + \overline{P''}) \) such that \(P' \cap \overline{P' \cap P''} \) is non-empty but equal to neither \(P' \) nor \(\overline{P'} \); \(\overline{P} \) is usually called a "dual" of \(P \), though this nomenclature is misleading mathematically.

The solution of (2·3) can be uniquely expressed in terms of \(n-3 \) independent variables \(v_1, \cdots, v_{n-3} \) if they are the \(n-3 \) conjugate variables corresponding to the partitions each of which is induced by opening an internal line of a particular tree graph \(T \in T^{(m)} \). The weight function \(h \) depends on the choice of the variables \(v_1, \cdots, v_{n-3} \). It is important to note that if and only if \(T \) has no internal vertices, that is, if at least one external line is incident with every ver-
Crossing-Symmetric Decomposition of the n-Point Veneziano Formula

As is well known, it is most convenient to choose as T a multiperipheral graph M_r shown in Fig. 1. In particular, for the multiperipheral graph M_r, we have\(^5\)

$$u_{i-1+1}=v_i, \quad (i=1, \ldots, n-3) \quad (2.4)$$

$$u_p-1=\frac{(1-\prod_{i=p-2}^{q-2}v_i)(1-\prod_{i=p-1}^{q-1}v_i)}{(1-\prod_{i=p-2}^{q-2}v_i)(1-\prod_{i=p-1}^{q-1}v_i)} \quad \text{for } 2\leq p < q \leq n-1 \quad (2.5)$$

with $v_0=v_{n-3}=0$, and

$$h=\prod_{2\leq p \leq 2\leq n-1}u_p-q+1. \quad (2.6)$$

Hereafter, v_1, \ldots, v_{n-3} always mean those variables defined by (2.4).

Now, we consider the six-point function. In this case, we have two tree graphs which have an internal vertex. One of them, which is shown in Fig. 2, was called C_1. According to the result of the previous paper,\(^b\) with a simple transformation of variables, the tree-graph corresponding to C_1 is written as

$$F_{C_1}=\int \int d\rho dx dx dx(1-x_1x_2x_3)^{-1}\left[\frac{x_1(1-x_3x_3)}{1-x_1x_3x_3}\right]^{-a_{13}-1}\left[\frac{x_3(1-x_3x_3)}{1-x_1x_3x_3}\right]^{-a_{34}-1}\times\left[\frac{1-x_2}{1-x_2x_2x_3}\right]^{-a_{45}-1}\left[\frac{1-x_2}{1-x_2x_2x_3}\right]^{-a_{12}+1}\times\left[\frac{1-x_2x_2x_3}{1-x_2x_2x_3}\right]^{-a_{12}+1}\left[\frac{1-x_2}{1-x_2x_2x_3}\right]^{-a_{45}-1}\times\left[\frac{x_1(1-x_3x_3)}{1-x_1x_3x_3}\right]^{-a_{13}-1}\left[\frac{x_3(1-x_3x_3)}{1-x_1x_3x_3}\right]^{-a_{34}-1}\times\left[\frac{1-x_2}{1-x_2x_2x_3}\right]^{-a_{45}-1}\left[\frac{1-x_2}{1-x_2x_2x_3}\right]^{-a_{12}+1}\times\left[\frac{1-x_2x_2x_3}{1-x_2x_2x_3}\right]^{-a_{12}+1}\left[\frac{1-x_2}{1-x_2x_2x_3}\right]^{-a_{45}-1} \quad (2.7)$$

Here the integration domain D_{C_1} is defined by

$$0 \leq x_i \leq 1 \quad (i=1, 2, 3) \quad (2.8)$$

and

$$\frac{1}{(1-x_i)(1-x_i)} \leq \frac{1}{(1-x_i)(1-x_i)} \quad (i=1, 2, 3) \quad (2.9)$$
where \((i, j, k)\) is a permutation of \((1, 2, 3)\). As is suggested by the conjugate variables corresponding to \(a_{13}, a_{125},\) and \(a_{56}\), the integrand of (2.7) is obtainable from that of the six-point Veneziano formula \(F^{(6)}\) by a birational transformation

\[
\begin{align*}
 v_1 &= \frac{x_1(1-x_2x_5)}{1-x_1x_2x_5}, \\
 v_2 &= \frac{(1-x_2)(1-x_1x_2x_5)}{(1-x_2x_5)(1-x_1x_5)}, \\
 v_3 &= \frac{x_3(1-x_1x_5)}{1-x_1x_2x_5},
\end{align*}
\]

that is,

\[
\begin{align*}
 x_1 &= \frac{v_1(1-v_2v_5)}{1-v_5}, \\
 x_2 &= \frac{1-v_1}{(1-v_1v_5)(1-v_5v_3)}, \\
 x_3 &= \frac{v_3(1-v_1v_5)}{1-v_1}.
\end{align*}
\]

The transformation (2.11) does not map the unit cube \(\{0 < v_i < 1, i = 1, 2, 3\}\) onto the unit cube \(\{0 < x_i < 1, i = 1, 2, 3\}\), but the important point is that the image of the latter by the transformation (2.10) entirely included in the former.

Next, we consider an eight-point tree graph, which we call \(E_1\), shown in Fig. 3. This graph is the simplest example which contains an internal line whose adjacent lines are all internal. The analysis of the tree-graph integral \(F_{E_1}\) is not only instructive but also important in the general consideration.

We first note that (2.10) is rewritten as

\[
\begin{align*}
 u_{12} &= \frac{x_1(1-x_2x_3)}{1-x_1x_2x_3}, \\
 u_{24} &= \frac{x_2(1-x_2x_1)}{1-x_1x_2x_3}, \\
 u_{34} &= \frac{x_3(1-x_1x_2)}{1-x_1x_2x_3}.
\end{align*}
\]

If we neglected the identity \(u_{1234} = u_{6075}\), in \(E_1\) we could adopt (2.12) and a similar parametrization for \(u_{36}, u_{7},\) and \(u_{476}.\) In order for \(u_{1234}\) to play a double
role, we remark the following identity:

\[
\frac{x_3'(1 - x_1 x_2)}{1 - x_1 x_2 x_3'} = \frac{x_3 (1 - x_2 x_3) (1 - x_4 x_5)}{1 - x_1 x_2 x_3 - x_2 x_3 x_4 + x_1 x_2 x_3 x_4 x_5}
\]

\[
= \frac{x_5'' (1 - x_4 x_5)}{1 - x_5'' x_4 x_5},
\]

(2.13)

where

\[
x_3' = \frac{x_3 (1 - x_2 x_3)}{1 - x_5 x_4 x_5},
\]

\[
x_3'' = \frac{x_3 (1 - x_1 x_2)}{1 - x_1 x_2 x_3}.
\]

(2.14)

In this way, the following parametrization is found to be appropriate:

\[
u_{12} = \frac{x_1 (1 - x_2 x_3')}{1 - x_1 x_2 x_3'},
\]

\[
u_{34} = \frac{x_3 (1 - x_3') x_1}{1 - x_1 x_2 x_3'},
\]

\[
u_{134} = \frac{x_3' (1 - x_2 x_3)}{1 - x_1 x_2 x_3'} = \frac{x_3'' (1 - x_4 x_5)}{1 - x_3'' x_4 x_5},
\]

\[
u_{56} = \frac{x_4 (1 - x_5 x_6 x_7)}{1 - x_5'' x_4 x_5},
\]

\[
u_{78} = \frac{x_8 (1 - x_7'' x_8)}{1 - x_7'' x_4 x_5}.
\]

(2.15)

Indeed, we obtain a birational transformation

\[
v_1 = \frac{x_1 (1 - x_2 x_3')}{1 - x_1 x_2 x_3'},
\]

\[
v_2 = \frac{(1 - x_3) (1 - x_2 x_3')}{(1 - x_1 x_2) (1 - x_3')},
\]

\[
v_3 = \frac{x_3' (1 - x_2 x_3)}{1 - x_1 x_2 x_3'} = \frac{x_3'' (1 - x_4 x_5)}{1 - x_3'' x_4 x_5},
\]

\[
v_4 = \frac{(1 - x_4) (1 - x_3'' x_4 x_5)}{(1 - x_3'' x_4) (1 - x_4 x_5)},
\]

\[
v_5 = \frac{x_5 (1 - x_5'' x_6 x_7)}{1 - x_3'' x_4 x_5},
\]

(2.16)

namely,

\[
x_1 = \frac{v_1 (1 - v_5 v_6)}{1 - v_5},
\]
The integrand of the tree-graph integral F_{n1} is now well defined by (2.1), together with (2.4)~(2.6), and (2.16).

Finally, according to a rule suggested in the previous work,1 the integration domain of F_{n1} is expected to be given by

$$0 \leq x_i \leq 1 \quad (i = 1, \ldots, 5)$$

and

$$\left(\frac{x_1}{1 - x_1}\right)^2 \leq \frac{1}{(1 - x_2) (1 - x_3')} \ ,$$

$$\left(\frac{x_2}{1 - x_2}\right)^2 \leq \frac{1}{(1 - x_3') (1 - x_1)} \ ,$$

$$\left(\frac{x_3}{1 - x_3}\right)^2 \leq \frac{1}{(1 - x_1) (1 - x_2) (1 - x_4) (1 - x_5)} \ ,$$

$$\left(\frac{x_4}{1 - x_4}\right)^2 \leq \frac{1}{(1 - x_5) (1 - x_6')} \ ,$$

$$\left(\frac{x_5}{1 - x_5}\right)^2 \leq \frac{1}{(1 - x_5') (1 - x_6)} \ .$$

(2.19)

It should be noted that x_3' and x_6'' are used instead of x_3 itself in the right-hand sides of (2.19) in conformity with (2.16). The appropriateness of (2.19) is verified in § 4.

§ 3. General birational transformation

In this section, given an arbitrary n-point tree graph $T \in T^{(n)}$, we find a birational transformation, which, together with (2.1), defines the integrand of the tree-graph integral F_T corresponding to T.

Let x_1, \ldots, x_{n-3} be the integration variables of F_T. They have a one-to-one correspondence to the internal lines L_1, \ldots, L_{n-3} of T. By opening a line L_i, T becomes disconnected. Let P_i be the partition of the cyclic ordering $(1, \ldots, n)$
which is induced by opening L_i in T. Then, according to Requirement [1] stated in § 1, u_{P_i} should involve a factor x_i. We first propose a general rule for expressing u_{P_i} in terms of x_1, \ldots, x_{n-3}, and then prove that this parametrization indeed induces a birational transformation.

First, we observe that any tree graph is 2-chromatic, that is, there is a mapping from the set of all its vertices to a set consisting of two colors A and B such that the two end vertices of any internal line correspond to two different colors. For any line L_i, we associate x_i' with the end vertex of color A and x_i'' with that of color B. The functions x_i' and x_i'' are defined by the following recurrence relations:

$$x_i' = \frac{x_i' (1 - x_i'' x_m'')} {1 - x_i' x_i'' x_m''},$$

$$x_i'' = \frac{x_i (1 - x_i' x_k')} {1 - x_i' x_i' x_k'} \tag{3.1}$$

where L_j and L_k are the two lines adjacent to L_i through the vertex of color A, and L_i and L_m are those through the vertex of color B (see Fig. 4). If L_i happens to be an external line, we set $x_i = 0$ so that $x_i' = x_i''$. The same rule also applies to L_k, L_l, and L_m. Therefore, if the color-B (or color-A) end vertex of L_i is external, then we have $x_i' = x_i$ (or $x_i'' = x_i$). It is easy to confirm that for any L_i, x_i' and x_i'' are uniquely defined in terms of x_1, \ldots, x_{n-3} by (3.1). Indeed, to calculate x_i' (or x_i'') explicitly, we need only the information of the left-half (or right-half) structure of Fig. 4.

Now, we parametrize the conjugate variables u_{P_i} by setting

$$u_{P_i} = \frac{x_i' (1 - x_i' x_i'')} {1 - x_i' x_i'' x_i''} = \frac{x_i (1 - x_i'' x_m'')} {1 - x_i' x_i'' x_m''} \tag{3.2}$$

The two expressions in (3.2) are equivalent to each other because of the identity (2.13). In particular, if the end vertex of color A is external, (3.2) reduces to

$$u_{P_i} = x_i' = \frac{x_i (1 - x_i'' x_m'')} {1 - x_i' x_i'' x_m''}. \tag{3.3}$$

Furthermore, if both end vertices of L_i are external, (3.2) of course reduces to

$$u_{P_i} = x_i. \tag{3.4}$$

Hence, if and only if T has no internal vertices we have (3.4) for all internal
THEOREM 1. The transformation from \(\{x_1, \ldots, x_{n-3}\} \) to \(\{v_1, \ldots, v_{n-3}\} \) is *birational*, where \(v_i \) is defined by (2.4). The image of the unit hypercube
\[
\{0 \leq x_i \leq 1, \ i = 1, \ldots, n-3\}
\]
entirely lies in the unit hypercube
\[
\{0 \leq v_i \leq 1, \ i = 1, \ldots, n-3\}.
\]

Proof: Since it is well known\(^b\) that the transformation between any two multiperipheral graphs is birational and maps the unit hypercube of one onto that of the other, we may use \(w_1, \ldots, w_{n-3} \) instead of \(v_1, \ldots, v_{n-3} \), where \(w_1, \ldots, w_{n-3} \) are the integration variables (in an arbitrary order) of any multiperipheral graph \(M \).

Since the theorem is obviously true for \(n=4 \), we employ mathematical induction with respect to \(n \). Since the number of external lines is more than that of vertices in \(T \), there is at least one vertex with which two external lines are incident. For definiteness, let this vertex be of color \(B \). Let \(L_i \) be the unique internal line incident with this vertex, and \(L_j \) and \(L_k \) be the two lines adjacent to \(L_i \) at the other end vertex (of color \(A \)). Then \(T \) can be drawn on a plane as shown in Fig. 5. In a realization of \(T \) on a plane, we can define the set of

\[
\text{all the uppermost internal lines, which constitute a path } Q \text{ between two consecutive external particles.}
\]

We make a duality transformation\(^*\) for such an internal line \(L_i \) that it is incident with a vertex lying on \(Q \) but does not belong to \(Q \). Then we obtain a tree graph \(\tilde{T} \equiv T^{(n)} \), which has the uppermost path \(\tilde{Q} \) consisting of \(L_i \) and all the lines of \(Q \). In \(\tilde{T} \), we make a duality transformation for a line incident with a vertex on \(\tilde{Q} \) but not belonging to \(\tilde{Q} \). Performing this procedure successively, we finally reach a multiperipheral graph \(M \equiv T^{(n)} \), in which \(L_j \) and \(L_k \) are the right and left adjacent lines of \(L_i \), respectively. The details of \(M \) depend on the order of duality transformations performed, but this fact is unimportant.

Now, according to (3.2) together with (3.1), we can write

\(^*\) A duality transformation for an internal line is to change the incidence of its four adjacent lines with its two end vertices in such a way that the cyclic ordering of the four adjacent lines are left unchanged.
where \(\Phi, \mathcal{V}, \varphi_i \), and \(\psi_m \) are certain rational functions, \(V \) and \(W \) are the sets of internal lines as indicated in Fig. 5, and

\[
\begin{align*}
\mathcal{V} &= \{ x_i | L_1 \in V \}, \\
\mathcal{W} &= \{ x_m | L_m \in W \}.
\end{align*}
\]

From (3.1), we also have

\[
\begin{align*}
x_j' &= x_j \frac{1 - \Phi(x_\mathcal{V})}{1 - x_j \Phi(x_\mathcal{V})}, \\
x_k' &= x_k \frac{1 - \mathcal{V}(x_\mathcal{W})}{1 - x_k \mathcal{V}(x_\mathcal{W})}, \\
x_j'' &= x_j \frac{1 - x_i x_k'}{1 - x_j x_k' x_k''}, \\
x_k'' &= x_k \frac{1 - x_i x_j'}{1 - x_i x_j' x_k''}.
\end{align*}
\]

On the other hand, according to (2.4) and (2.5), the conjugate variables considered in (3.7) are expressed in terms of \(w_i, \ldots, w_{n-1} \) of \(M \) in the following way:

\[
\begin{align*}
u_{p_i} &= (1 - w_i) \frac{(1 - w_j w_k)}{(1 - w_i w_j w_k)}, \\
u_{p_j} &= w_j, \\
u_{p_k} &= w_k, \\
u_{p_i} &= f_i(w_j, w_k), \quad (L_1 \in V) \\
u_{p_m} &= g_m(w_k, w_w), \quad (L_m \in W)
\end{align*}
\]

where \(f_i \) and \(g_m \) are certain rational functions, and

\[
\begin{align*}
\mathcal{V} &= \{ w_i | L_i \in V \}, \\
\mathcal{W} &= \{ w_m | L_m \in W \}.
\end{align*}
\]

Therefore we obtain the following system of algebraic equations:
\[\frac{(1 - w_i) (1 - w_j w_k)}{(1 - w_i w_j) (1 - w_i w_k)} = \frac{x_i (1 - x_j' x_k')}{1 - x_i x_j' x_k'}, \]

\[w_j = \frac{x_j' (1 - x_i x_j')}{1 - x_i x_j' x_k'} = \varphi (x_j'', x_j'), \]

\[w_k = \frac{x_k' (1 - x_i x_k')}{1 - x_i x_j' x_k'} = \psi (x_k'', x_w), \]

\[f_i (w_j, w_k) = \varphi_i (x_j'', x_k'), \quad (L_i \in V) \]
\[g_m (w_k, w_k) = \psi_m (x_k'', x_w), \quad (L_m \in W) \quad (3.12) \]

where

\[\varphi (x, x_y) = \frac{x [1 - \Theta (x_y)]}{1 - x \Theta (x_y)} , \]

\[\psi (x, x_y) = \frac{x [1 - \Phi (x_y)]}{1 - x \Phi (x_y)} . \quad (3.13) \]

We introduce two auxiliary graphs. Let \(T/L_i \) be the \((n-1)\)-point tree graph which is obtained from \(T \) by removing one of external lines adjacent to \(L_i \) and then contracting \(L_i \), and \(M/L_i \) be the \((n-1)\)-point multiperipheral graph which is obtained from \(M \) by same procedure. We denote the quantities of those auxiliary graphs by affixing a tilda to each of them. We have

\[u_{P_i} = \bar{x}_j = \varphi (x_j, \bar{x}_y), \]
\[u_{P_k} = \bar{x}_k = \psi (x_k, \bar{x}_w), \]
\[u_{P_i} = \varphi_i (x_j, \bar{x}_y), \quad (L_i \in V) \]
\[u_{P_m} = \psi_m (x_k, \bar{x}_w) \quad (L_m \in W) \quad (3.14) \]

from (3.2), and

\[u_{P_j} = \bar{w}_j, \]
\[u_{P_k} = \bar{w}_k, \]
\[u_{P_i} = f_i (\bar{w}_j, \bar{w}_k), \quad (L_i \in V) \]
\[u_{P_m} = g_m (\bar{w}_k, \bar{w}_k) \quad (L_m \in W) \quad (3.15) \]

from (2.4) and (2.5). Therefore

\[\bar{w}_j = \varphi (x_j, \bar{x}_y), \]
\[\bar{w}_k = \psi (x_k, \bar{x}_w), \]
\[f_i (\bar{w}_j, \bar{w}_k) = \varphi_i (x_j, \bar{x}_y), \quad (L_i \in V) \]
\[g_m (\bar{w}_k, \bar{w}_k) = \psi_m (x_k, \bar{x}_w) \quad (L_m \in W) \quad (3.16) \]

Owing to the induction assumption, the transformation defined by (3.16) is bira-
Crossing-Symmetric Decomposition of the n-Point Veneziano Formula 461

tional. Comparing (3.12) with (3.16), therefore, we find that the transformation between \(\{w_j, w_k, w_r, w_w\}\) and \(\{x_j'', x_k'', x_r, x_w\}\) is birational. Furthermore, from (3.12) we have (cf. (2.10))

\[
w_i = \frac{(1-x_i)(1-x_i x'_j x'_k)}{(1-x_i x'_j)(1-x_i x'_k)}. \tag{3.17}
\]

Since \(x_j', x_k', x_j'', \text{ and } x_k''\) are rational functions of \(x_1, \ldots, x_{n-3}\), the variables \(w_1, \ldots, w_{n-3}\) are rational in \(x_1, \ldots, x_{n-3}\). Conversely, from (3.12) and (3.9) we have (cf. (2.11))

\[
x_i = \frac{1-w_i}{(1-w_i w_j)(1-w_i w_k)}, \tag{3.18}
\]

and

\[
x_j = \frac{x_j'}{1-\phi + x_j' \phi}, \tag{3.19}
\]

\[
x_k = \frac{x_k'}{1-\phi + x_k' \phi}.
\]

Therefore, \(x_1, \ldots, x_{n-3}\) are rational functions of \(w_1, \ldots, w_{n-3}\).

Finally, from (3.1) we note that in the hypercube (3.5) we have

\[
0 \leq x_q'' \leq x_q' \leq 1, \quad (q=1, \ldots, n-3)
\]

\[
0 \leq x_q'' \leq x_q \leq 1. \quad (q=1, \ldots, n-3) \tag{3.20}
\]

The induction assumption implies that if

\[
0 \leq x_{q}\leq 1, \quad (q \neq i) \tag{3.21}
\]

then

\[
0 \leq w_q \leq 1, \quad (q \neq i) \tag{3.22}
\]

that is, if

\[
0 \leq x_q'' \leq 1, \quad 0 \leq x_q'' \leq 1,
\]

\[
0 \leq x_i \leq 1, \quad (L_i \in V)
\]

\[
0 \leq x_m \leq 1, \quad (L_m \in W) \tag{3.23}
\]

then

\[
0 \leq w_q \leq 1, \quad (q \neq i) \tag{3.24}
\]
Hence (3·24) follows from (3·20). Furthermore, from (3·17) and (3·20) we have

\[0 \leq w_i \leq 1. \]

(3·25)

Thus the theorem is established. q.e.d.

It follows from the above theorem that in the hypercube (3·5) we have

\[0 \leq u_P \leq 1 \quad \text{for all } P, \]

(3·26)

as it should be.

§ 4. Proof of the decomposition theorem

We first specify the integration domain \(D_T \) of the tree-graph integral \(F_T \) corresponding to \(T \in T^{\infty} \). As is suggested by (2·18) and (2·19), we define \(D_T \) by

\[0 \leq x_i \leq 1 \quad (i=1, \cdots, n-3) \]

(4·1)

and

\[\left(\frac{x_i}{1-x_i} \right)^2 \leq \frac{1}{(1-x'_f)(1-x'_e)(1-x''_e)(1-x''_m)}, \quad (i=1, \cdots, n-3) \]

(4·2)

where \(L_f, L_e, L_n, \) and \(L_m \) are the lines adjacent to \(L_t \) as shown in Fig. 4. The tree-graph integral is now defined completely.

Theorem 2. The tree-graph integrals satisfy the four requirements stated in § 1.

Proof: [1] The poles of \(F_T \) in \(s_P \) can arise only from

\[u_P=0. \]

(4·3)

If \(P=P_t \), that is, \(P \) is the partition induced by opening an internal line \(L_t \in T \), then (4·3) is of course realized by \(x_i=0 \). In the following, we show that if

\[P \neq P_t, \quad (i=1, \cdots, n-3) \]

(4·4)

then \(F_T \) has no poles corresponding to \(P \).

We assume that (4·3) is possible in \(D_T \) (otherwise the proof ends). Then, because of (2·3) and (3·26), (4·3) implies

\[u_P=1 \quad \text{for any } P. \]

(4·5)

Since at least one of \(P_1, \cdots, P_{n-s} \) is dual to \(P \), (4·5) means that there is a line \(L_t \) such that

\[u_{P_t}=1. \]

(4·6)

Hence (3·2) and (3·1) yield that

\[x'_t=x'_t=x_t=1. \]

(4·7)
Let
\[U = \{ L_q | x_q = 1 \}; \]
(4.8)

(4.7) shows that \(U \) is non-empty.

Lemma 2-1. If (4.3) is realized at a point \((x_1, \cdots, x_{n-3}) \) belonging to \(D_T \), then the set \(U \) contains at least three lines which are incident with a common vertex. \([\text{If} \ T \text{ has no internal vertices, this lemma implies that (4.3) is impossible in } D_T.\])

Proof of Lemma 2-1. Suppose that \(L_4 \in U \). Then (4.2) implies that at least one of its adjacent lines, say \(L_4 \), belongs to \(U \). By considering a product of the inequality (4.2) for \(L_i \) and that for \(L_4 \), we find that one of the lines adjacent to \(L_i \) but other than \(L_4 \) has to belong to \(U \). If this line is also adjacent to \(L_i \), then our lemma holds. Otherwise, we can proceed further by considering a product of three relevant inequalities. In this way, we finally find that *either* our lemma holds or \(U \) includes a path \(Q \). One end line of \(Q \) is \(L_4 \), but by construction its other end line should be external. Since, however, any external line cannot belong to \(U \) (because \(x = 0 \) for any external line), the latter alternative leads to a contradiction. Thus our lemma holds.

This lemma shows that there exists at least one line \(L_k \) such that \(P_k \) is not dual to \(P \) but we have \(x_k = 1 \), because any partition cannot be dual to all three partitions which correspond to three lines incident with a common vertex. \([\text{In the dual-graph language, any diagonal line of a polygon cannot intersect all three sides of a triangle formed by three diagonal lines.}\])

We transform \(F_T \) into an integral expressed in terms of the multiperipheral variables \(w_1, \cdots, w_{n-3} \) (see § 3). The mechanism by which the poles corresponding to \(P \) arise is well known in this form. Let \(P'_1, \cdots, P'_{n-3} \) be the partitions corresponding to \(w_1, \cdots, w_{n-3} \). Without loss of generality we may assume that \(P \) coincides with none of \(P'_1, \cdots, P'_{n-3} \). Then the poles corresponding to \(P \) arise from the points satisfying \(w_i = u_{P'_i} = 1 \) for all partitions \(P'_i \) dual to \(P \). It should be remarked that to yield the poles \(w_i \) has to be completely arbitrary for any \(P'_i \) non-dual to \(P \). In our case, however, there exists an extra condition \(x_k = 1 \), which is independent of (4.5). Hence, the volume element is not sufficient for yielding the poles corresponding to \(P \).

[3] Let \(\sigma \) be an arbitrary cyclic or anti-cyclic permutation operator of external particles, and suppose that
\[\tilde{T} = \sigma T. \]
(4.9)

Let \(x_1, \cdots, x_{n-3} \) and \(\tilde{x}_1, \cdots, \tilde{x}_{n-3} \) be the integration variables in \(F_T \) and those in \(F_{\tilde{T}} \), respectively. According to (3·2), if
\[u_{P_i} = \varphi_i (x_1, \cdots, x_{n-3}) \]
(4.10)
then we have
Furthermore, since (2.3) holds for T, we obtain
\[u_{\sigma P} = 1 - \prod_{\sigma P} u_{\sigma P} \] (4.12)
for \tilde{T}. Therefore, the fact that for any P (2.3) is uniquely solved as
\[u_{P} = \psi(x_1, \ldots, x_{n-3}) \] (4.13)
in T implies that we uniquely have
\[u_{\sigma P} = \psi(\tilde{x}_1, \ldots, \tilde{x}_{n-3}) \] (4.14)
in \tilde{T}. If we identify \tilde{x}_i with x_i ($i=1, \ldots, n-3$), the domain $D_{\tilde{T}}$ of $F_{\tilde{T}}$ coincides with D_P of F_P. Moreover, the Jacobians from the multiperipheral variables are the same for both F_P and $F_{\tilde{T}}$. Thus $F_{\tilde{T}}$ is obtained from F_T by merely replacing α_P by $\alpha_{\sigma P}$.

[4] The residue at $\alpha_P = 0$ is obtained by replacing $u_{\sigma P} = 0$ by $\delta(u_{\sigma P})$. Owing to [1], if and only if $P = P_i (1 \leq i \leq n-3)$, $\delta(u_{\sigma P})$ is nontrivial and proportional to $\delta(x_i)$ (the contribution from $x_j = x_k = 1$ is shown to be trivial by the same reasoning as in [1]). If we carry out the integration over x_i in F_T, then the integrand of the resulting integral is obtained by setting $x_i = 0$ except for the factor x_i in u_{P_i}. According to the general rule presented in §3 and the definition of D_T, to set $x_i = 0$ is realized by replacing L_i by two external lines, namely, by opening L_i. The exact equality of the residue to $F_{\tilde{T}}$ can be confirmed by transforming the integration variables into the multiperipheral variables.

Theorem 3. The n-point Veneziano formula $F^{(n)}$ can be written as a sum of all tree-graph integrals F_T corresponding to $T \in T^{(n)}$ (see (1·1)).

Proof: Since by definition F_T is transformed into an integral whose integrand is identical with that of $F^{(n)}$, it remains only to prove that the unit hypercube (3·6) is exactly equal to the disjoint union of the images, $D(T)$, of the domains D_T over all $T \in T^{(n)}$, where a disjoint union means a union such that any two of its constituents are disjoint (except for their boundaries). According to (4·1) and Theorem 1, all the images $D(T)$ are included in the unit hypercube (3·6).

We use the following two lemmas, which are proved afterwards.

Lemma 3-1. Let $L_i \in T \in T^{(n)}$, and let T_i be the tree graph which is obtained from T by making a duality transformation for L_i. Then $D(T)$ and $D(T_i)$ have a common boundary hypersurface, which we denote by $S(T, T_i)$, in the unit hypercube (3·6), and they lie in the opposite sides of $S(T, T_i)$.

Lemma 3-2. Let $\{T^1, T^2, \ldots, T^r\}$ be the set of the n-point tree graphs which are mutually obtainable by making duality transformations for two particular lines L_i and L_j alternately. Then $r = 4$ if L_i and L_j are not adjacent, and $r = 5$ if they are adjacent. Let
\[C(T, T', T^{(n)}) = S(T, T') \cap S(T', T^{(n)}); \] (4·15)
then r hypercurves

$$C(T^k, T^{k+1}, T^{k+2}) \quad (k=1, \cdots, r)$$

(4.16)

coincide with each other, where the superscripts should be considered in mod. r.

Apart from the boundaries of the unit hypercube (3.6), each $D(T)$ is bordered by $n-3$ algebraic hypersurfaces because of (4.2). Since the number of the tree graphs which are obtainable from T by making a duality transformation for only one line of T is exactly $n-3$, $D(T)$ is bordered by $S(T, T_i), \ldots, S(T, T_{n-3})$, apart from the boundaries of (3.6), according to Lemma 3-1. Each of those boundary hypersurfaces of $D(T)$ coincides with a boundary hypersurface of one of the domains adjacent to $D(T)$.

The true boundary of $D(T)$ on $S(T, T_i)$ is a hypersurface segment bordered by $n-4$ hypercurves $C(T_j, T, T_i)$ ($j \neq i$) apart from the boundaries of (3.6). Let T_{ij} be the tree graph which is obtained from T_i by making a duality transformation for L_j. Then according to Lemma 3-2, we have

$$C(T_j, T, T_i) = C(T, T_i, T_{ij}). \quad (j \neq i)$$

(4.17)

This relation shows that the bounding hypersurface segment of $D(T)$ on $S(T, T_i)$ exactly coincides with that of $D(T_i)$, that is, there are no gap and no overlapping. Thus (3.6) is the disjoint union of $D(T)$ over all $T \in T^{\infty}$.

(Proof of Lemma 3-1). Suppose that T is drawn as in Fig. 4. According to (3.2), we have

$$u_{pj} = \frac{x_j'(1-x_j'x_k')}{1-x_j'x_j'x_k'},$$

$$u_{pk} = \frac{x_k'(1-x_j'x_k')}{1-x_j'x_j'x_k'},$$

$$u_{pt} = \frac{x_i'(1-x_j'x_k')}{{1-x_j'x_j'x_k'}},$$

$$u_{pt} = \frac{x_j'(1-x_j'x_i')}{1-x_j'x_j'x_i'},$$

$$u_{pt} = \frac{x_i'(1-x_i'x_i')}{1-x_i'x_i'x_i'},$$

(4.18)

We denote the variables of F_{T_i} by y_l, y_j, \ldots Let P_i be the partition induced by opening the line L_i in T_i. Then, supposing that the vertex with which $L_i, L_m,$ and L_j are incident is of color A, we have

$$u_{pm} = \frac{y_m'(1-y_l'y_j')}{1-y_l'y_m'y_j'},$$

$$u_{pj} = \frac{y_j'(1-y_j'y_m')}{1-y_j'y_m'y_j'},$$
It is important to note that the fact of the coincidence of two hypersurfaces is a geometrical property, that is, we may prove it by expressing their equations in any system of \(n - 3 \) independent variables. Thus to prove Lemma 3-1 is equivalent to prove
\[
f(x_i; x'_i, x'_i, x''_i, x''_i) = [f(y_i; y'_m, y'_k, y''_k, y''_i)]^{-1},
\]
where
\[
f(x; a, b, c, d) = \frac{(1-x)^2}{x^2(1-a)(1-b)(1-c)(1-d)}.
\]
Crossing-Symmetric Decomposition of the n-Point Veneziano Formula 467

\[u_{P_1} = \frac{(1 - w_2)(1 - w_1 w_2 v_3)}{(1 - w_1 w_2)(1 - w_2 v_3)} , \]

\[u_{P_1} = w_3 , \]

\[u_{P_2} = \frac{(1 - w_1)(1 - w_2 w_3 v_4)}{(1 - w_2 w_3 v_4)(1 - w_1 v_4)} , \]

\[u_{P_3} = w_5 . \]

(4·24)

It should be noted that the relation between \(\{v_1, \ldots, v_5\} \) and \(\{w_1, \ldots, w_5\} \) is exactly the transformation between the variables for \(M_1 \) and those for \(M_7 \), that is, we have

\[w_1 = v_5 , \]

\[w_2 = \frac{1 - v_1 v_3 v_4 v_5}{1 - v_1 v_2 v_3 v_4 v_5} , \]

\[w_3 = \frac{(1 - v_1 v_2 v_3)(1 - v_1 v_2 v_3 v_4)}{(1 - v_1 v_2 v_3 v_4)(1 - v_1 v_2 v_3 v_4 v_5)} , \]

\[w_4 = \frac{(1 - v_5 v_3 v_4 v_5)}{(1 - v_5 v_3 v_4)(1 - v_5 v_3 v_4 v_5)} , \]

\[w_5 = \frac{(1 - v_5)(1 - v_5 v_4 v_5)}{(1 - v_5 v_4)(1 - v_5 v_4 v_5)} , \]

(4·25)

as is directly confirmed by (4·22), (4·23), and (4·24). As in § 2, \(\{x'_j, x'_k, \ldots\} \) and \(\{y'_m, y'_n, \ldots\} \) can be expressed in terms of \(\{v_1, \ldots, v_5\} \) and \(\{w_1, \ldots, w_5\} \), respectively, that is,

\[x'_j = \frac{v_1(1 - v_2 v_3)}{1 - v_3} , \]

\[x'_k = \frac{1 - v_3}{(1 - v_1 v_3)(1 - v_2 v_3)} , \]

\[x'_l = \frac{v_3 (1 - v_1 v_2)}{1 - v_1} , \]

\[x''_1 = \frac{v_3 (1 - v_4 v_5)}{1 - v_5} , \]

\[x''_k = \frac{1 - v_4}{(1 - v_3 v_4)(1 - v_4 v_5)} , \]

\[x''_l = \frac{v_5 (1 - v_4 v_5)}{1 - v_5} , \]

(4·26)

and

\[y'_m = \frac{w_1 (1 - w_2 v_3 v_4)}{1 - w_3} . \]
Furthermore, from (3·1) we have

\[
(1 - x_i')/x_i = (1 - x_i'^{''} x_m'') (1 - x_i')/x_i' \\
= (1 - x_j x_i') (1 - x_i'')/x_i'', \tag{4·28}
\]

and similar expressions for \((1 - y_i)/y_i\). Therefore, a simple calculation yields

\[
f(x_i; x_j', x_k', x_i'', x_m'') = \frac{(1 - v_5 v_3) (1 - v_4 v_4)}{v_5 v_3 v_4 (1 - v_5 v_3) (1 - v_4 v_4)},
\]

\[
f(y_i; y_m', y_j', y_k'', y_i'') = \frac{(1 - w_5 w_3) (1 - w_4 w_4)}{w_5 w_3 w_4 (1 - w_5 w_3) (1 - w_4 w_4)}. \tag{4·29}
\]

It is now straightforward to check (4·20) by using (4·25). Thus Lemma 3-1 is established.

(Proof of Lemma 3-2). First, we consider the case in which two lines \(L_i\) and \(L_j\) are not adjacent. Then the two duality transformations for them are commutative. Thus we obtain four tree graphs \(T^1, T^2, T^3,\) and \(T^4\). It is evident that

\[
S(T^1, T^2) = S(T^3, T^4),
\]

\[
S(T^2, T^3) = S(T^4, T^1). \tag{4·30}
\]

Hence the hypercurves (4·16) are the same.

In the case in which \(L_i\) and \(L_j\) are adjacent, we obtain five tree graphs \(T^1, \ldots, T^5\) because in the dual-graph representation they correspond to five different triangulations of a pentagon. It is sufficient to show, for example,

\[
C(T^1, T^3, T^5) = C(T^1, T^3, T^5), \tag{4·31}
\]

that is, to prove that the equation of \(S(T^3, T^5)\) coincides with that of \(S(T^3, T^5)\) on the hypersurface \(S(T^3, T^5)\).

As above, it is convenient to introduce the variables corresponding to the lines of ten-point multi peripheral graphs \(M_1\) and \(M_7\) (see Fig. 1). [We need also \(M_8, M_9, M_6\) if we consider the equalities other than (4·31).] Let
{v₁, ⋯, v₇} and {w₁, ⋯, w₇} be the variables in M₁ and those in M₂, respectively, in the formal sense. Then, as shown above (see (4·2), (4·20) and (4·29)), we have

\[S(T^0, T^1) : \frac{v₁v₅v₇(1 - v₅v₄)(1 - v₅v₇)}{(1 - v₅v₄)(1 - v₅v₇)} = 1, \]

(4·32)

\[S(T^1, T^1) : \frac{(1 - v₅v₄)(1 - v₅v₇)}{v₅v₄v₅(1 - v₅v₄)(1 - v₅v₇)} = \frac{(1 - w₅w₄)(1 - w₅w₇)}{(1 - w₅w₄)(1 - w₅w₇)} = 1, \]

(4·33)

\[S(T^1, T^0) : \frac{(1 - w₅w₄)(1 - w₅w₇)}{w₅w₄w₅(1 - w₅w₄)(1 - w₅w₇)} = 1. \]

(4·34)

The relation between \{v₁, ⋯, v₇\} and \{w₁, ⋯, w₇\} is as follows (cf. (2·5)):

\[w₁ = \frac{(1 - v₅)(1 - v₅v₅v₇)}{(1 - v₅v₄)(1 - v₅v₇)}, \]

\[w₂ = \frac{1 - v₅v₇}{1 - v₅v₄v₇}, \]

\[w₃ = v₅, \]

\[w₄ = \frac{1 - v₅v₅v₁v₄}{1 - v₅v₅v₄v₅}, \]

\[w₅ = \frac{(1 - v₅v₅v₄)(1 - v₅v₅v₅v₇)}{(1 - v₅v₅v₄)(1 - v₅v₅v₅v₇)}, \]

\[w₆ = \frac{(1 - v₅v₅)(1 - v₅v₅v₅v₇)}{(1 - v₅v₅v₄)(1 - v₅v₅v₅v₇)}, \]

\[w₇ = \frac{(1 - v₅)(1 - v₅v₅v₅)}{(1 - v₅v₄)(1 - v₅v₇)}. \]

(4·35)

On substituting (4·35) in the left-hand side of (4·34), we find that it equals

\[\frac{(1 - v₅v₅)(1 - v₅v₇)}{v₅v₄v₅(1 - v₅v₄)(1 - v₅v₇)} \cdot \frac{(1 - v₅v₄)(1 - v₅v₅v₄v₇)}{v₅v₄v₅(1 - v₅v₄)(1 - v₅v₅v₄v₇)}. \]

(4·36)

The first factor of (4·36) is identical with the inverse of the left-hand side of (4·32), and the second factor is equal to unity on S(T¹, T¹), because from (4·33) we have

\[v₁v₅ = 1 - \frac{(1 - v₅v₅)(1 - v₅v₇)}{v₅v₄v₅(1 - v₅v₄)}. \]

(4·37)

Thus Lemma 3–2 has been proved. q.e.d.

The above two lemmas can be summarized diagrammatically by introducing
a homogeneous graph $G^{(n)}$. Each vertex $v(T)$ of G represents a tree graph $T \in T^{(n)}$. Each line between two vertices $v(T)$ and $v(T')$ correspond to $S(T, T')$. Therefore, any vertex is of degree $n - 3$, that is, $n - 3$ lines are incident with every vertex. The graph $G^{(n)}$ is connected, because for any vertex $v(T)$ there exists a path between $v(T)$ and $v(M_l)$, whose length is at most $n - 3$ (see §3). Each of certain circuits, whose length is four or five, corresponds to a bounding hypercurve defined in Lemma 3-2. It is expected that any other circuit has a length more than five.

References

Note added in proof: The author has found the Koba-Nielsen representation of the tree-graph integral F_T, which is very elegant in form. Detailed accounts will appear in a succeeding paper.

*) $G^{(4)}$ consists of only one line, $G^{(5)}$ is a pentagon, and $G^{(6)}$ is a planar graph. The author is very grateful to Dr. Y. Shimamoto for his interesting comments on homogeneous graphs.