AN ALTERNATING LEAST SQUARES APPROACH TO INFERRING PHYLOGENIES FROM PAIRWISE DISTANCES

JOSEPH FELSENSTEIN

Department of Genetics, University of Washington, Box 357360, Seattle, Washington 98195-7360, USA;
E-mail: joe@genetics.washington.edu

Abstract.—A computational method is presented for minimizing the weighted sum of squares of the differences between observed and expected pairwise distances between species, where the expectations are generated by an additive tree model. The criteria of Fitch and Margoliash (1967, Science 155:279-284) and Cavalli-Sforza and Edwards (1967, Evolution 21:550-570) are both weighted least squares, with different weights. The method presented iterates lengths of adjacent branches in the tree three at a time. The weighted sum of squares never increases during the process of iteration, and the iterates approach a stationary point on the surface of the sum of squares. This iterative approach makes it particularly easy to maintain the constraint that branch lengths never become negative, although negative branch lengths can also be allowed. The method is implemented in a computer program, FITCH, which has been distributed since 1982 as part of the PHYLIP package of programs for inferring phylogenies, and is also implemented in PAUP*. The present method is compared, using some simulated data sets, with an implementation of the method of De Soete (1983, Psychometrika 48:621-626); it is slower than De Soete’s method but more effective at finding the least squares tree. The relationship of this method to the neighbor-joining method is also discussed. [Alternating least squares; distance methods; Fitch–Margoliash method; phylogenies.]

Distance matrix methods have long been used for inferring phylogenies, and their popularity has increased in recent years as potential users have become aware of long-branch attraction problems that can afflict parsimony methods. They have been particularly widely used with molecular sequences. There are a wide variety of different distance matrix methods, including neighbor joining (Saitou and Nei, 1987), minimum evolution (Kidd and Sgaramella-Zonta, 1971; Rzhetsky and Nei, 1992), and the least squares methods. The least squares methods are of particular interest because they use a single objective function to solve for branch lengths and to choose among tree topologies and can thus be related to the least squares method of statistical estimation. Some, although not all, computer simulations (cf. Kuhner and Felsenstein, 1994) have shown that least squares methods perform better than do the other distance-based methods.

Fitch and Margoliash (1967) and Cavalli-Sforza and Edwards (1967) proposed different but closely related criteria for fitting trees to distance matrices. Their criteria were both of the form

\[Q = \sum_{i \in T} \sum_{j \in T} w_{ij} (D_{ij} - d_{ij})^2 \]

(1)

(T being the set of all tips on the tree) so that they were proposing a least squares fit of observed to expected distances. The statistical model implicit in this criterion is that the distances \(D_{ij} \) are distributed independently, with mean \(d_{ij} \) and variance proportional to the reciprocal of \(w_{ij} \). Fitch and Margoliash took the variance of the distances to be proportional to their expectations \(d_{ij} \), and approximated this by choosing as their weight the squared inverse of the observed distance

\[w_{ij} = 1 \/ D_{ij}^2 \]

(2)

whereas Cavalli-Sforza and Edwards assumed homogeneity of variances and thus chose \(w_{ij} = 1 \). In both methods, we have an additive tree model: the expectations \(d_{ij} \) are the sums of the branch lengths along a path from species \(i \) to species \(j \) in an unrooted tree whose tips (terminal nodes) are the species. The branch lengths are to be estimated by minimizing the weighted sum of squares \(Q \). I have reviewed the biological and statistical issues involved in inferring phylogenies from distance matri-
ces (Felsenstein, 1984); references to other distance methods will be found in that paper.

One of the difficulties with least squares methods has been computing the branch lengths. These can be computed for a given tree topology by solving a set of linear equations (Cavalli-Sforza and Edwards, 1967), one for each branch. However, this computation can be difficult, and it also does not allow us to constrain the branch lengths to be nonnegative.

The purpose of this paper is to provide details of an alternating least squares method that attempts to minimize Q for a given tree topology. It works for any weighting system for which the weights do not depend on the expected distances d_{ij} and lends itself particularly well to the maintenance of the constraint that the branch lengths not become negative. The iterations result in a sequence of values of Q that are monotonic and nonincreasing and converge to a stationary point on the least squares surface. Combined with an algorithm for searching among tree topologies, this alternating least squares method forms the basis of a computer program, FITCH, which has been distributed as part of the PHYLIP package since early 1982. PHYLIP executables, source code, and documentation are available on the World Wide Web at http://evolution.genetics.washington.edu/phylip.html. The algorithm described in this paper also forms the basis for the least squares distance matrix method in the program PAUP* (Swoford, 1996).

The alternating least squares method (e.g., Wold, 1966) depends on a transformation that temporarily reduces the dimensionality of the problem. A method is presented here for finding the least squares branch lengths for three branches of the tree at a time by "pruning" all but those branches from the tree and solving exactly for the remaining three branch lengths. By repeating this operation for different parts of the tree, one approaches asymptotically a least squares solution.

The tree topology will be specified by constants x_{ijk} where $x_{ijk} = 1$ if branch k lies on the path from node i to node j and 0 otherwise. In practice, the array x_{ijk} need not be formed because its elements can be recovered as needed from the data structures representing the tree. The D_{ij} and the w_{ij} are assumed to be given at the beginning of the computation for all pairs of tips i and j.

Pruning the Tree

Our immediate objective will be, starting with some arbitrarily specified branch
lengths, to minimize the sum of squares Q with respect to the lengths of the three branches incident on an interior node (e.g., node 0), holding all other branch lengths constant. We can reduce the size of the problem by "pruning" the tree, i.e., removing tips i and j and replacing the interior node k with a new tip, in such a way that the sum of squares for this new tree as a function of the lengths of its remaining branches differs from the sum of squares Q by a calculable constant. This constant does not depend on the three branch lengths whose lengths we are to improve. By pruning the tree repeatedly we can finally reduce it to a three-species tree whose central node is node 0. The least squares branch lengths for this tree can be easily computed, and the value of Q for the full tree differs from that of this three-species tree by a known constant. This means that we can pick any interior node, can find for the three branches incident upon it the branch lengths that minimize Q, and can then find the value of Q. We can move around the tree, doing this successively for different interior nodes. The result is the required iterative method for minimizing the sum of squares Q.

Considered as a function of the unknown branch lengths v_i, the sum of squares is

$$Q = \sum_{p \in T} \sum_{q \in T} w_{pq} \left(D_{pq} - \sum_{u \in B} x_{pqu} v_u \right)^2,$$

where T is the set of all tips and B is the set of all branches of the tree. This is a quadratic form in the v_i. It could be minimized by differentiating with respect to the v_i and equating the derivatives to zero to obtain normal equations for the v_i, but this approach will not be taken here. We want to replace the problem of minimizing Q with respect to the full set of the v_i by a smaller problem. Consider the phylogeny in Figure 1. For the moment we revert to the simpler Equation 1, keeping in mind that the d_{ij} are sums of branch lengths. Suppose that we were to regard the lengths of the branches connected to two adjacent tips, i and j, as constants and consider minimizing Q with respect to all branch lengths except i and j. Let S be the set of all remaining tips after i and j have been removed and after the node at which they join, k, has been added to the set of tips. If k were actually a tip it would have distances D_{uv} to all other tips still on the tree. In this smaller tree, which lacks segments i and j but has k, the sum of squares is

$$R = \sum_{p \in S} \sum_{q \in S} w_{pq} (D_{pq} - d_{pq})^2,$$

the d_{pq} being the sums of branch lengths between p and q in this pruned tree. We would like to find a constant K, a set of distances D_{uv} and a set of weights w_{kl} such that $Q = R + K$, where K does not depend on the lengths of any of the branches except i and j. If we can do this, then the quadratic form R will be minimized at the same values of the remaining branch lengths as will Q.

We can find K, the D_{uv}, and the w_{kl} by a process of equating coefficients in R to corresponding terms in Q. We consider Q and R as functions of the branch lengths v_i. For all pairs of tips (p, q) in S, neither of which can be equal to i, j, or k, the terms in Q are identical to those in R. This leaves us with only terms involving i or j in Q or k in R. Taking the difference $Q - R$, we can write this as

$$Q - R = \sum_{i \in S} w_{ii} (D_{ii} - d_i)^2 + \sum_{i \in S} w_{ij} (D_{ij} - d_j)^2$$

$$+ w_{ik} (D_{ik} - d_k)^2 - \sum_{i \in S} w_{kl} (D_{kl} - d_{kl})^2.$$}

The lengths of the branches other than i and j remain in Equation 5 only in the quantities d_{kl}. Also,

$$d_{ii} = d_{ii} + v_i$$

$$d_{jj} = d_{jj} + v_j.$$

Inserting the expressions in Equations 6 into Equation 5 and collecting the terms in d_{ii} and d_{ij}, the coefficient of d_{ii} in $Q - R$ is

$$w_{ii} - w_{ii} - w_{ij}$$

and the coefficient of d_{ij} is
If the difference between Q and R is to be a constant independent of the lengths of the branches remaining on the pruned tree, then the above coefficients must all be zero. Equating them to zero, we can solve for the w_{kl} and the D_{kl}:

$$w_{kl} = w_{ai} + w_{ji} \quad (7)$$

and

$$D_{kl} = \frac{w_{ai}(D_{ai} - v_{i}) + w_{ji}(D_{ji} - v_{j})}{w_{ai} + w_{ji}} \quad (8)$$

Because the terms in d_{ij} have been eliminated from $Q - R$, we have now eliminated all terms that could contain any of the branch lengths other than v_i and v_j. The difference between Q and R must then be a constant not containing the lengths of any branches other than i and j. We can find it by collecting all the terms in Equation 5 that do not have d_{ij} in them:

$$Q - R = \sum_{i \neq j} w_{ii}(D_{ii} - v_{i})^2 + \sum_{i \neq j} w_{jj}(D_{jj} - v_{j})^2$$

$$+ w_{ij}D_{ij}^2 - \sum_{i \neq j} w_{ij}D_{ij}^2, \quad (9)$$

and using Equations 7 and 8, Equation 9 can be reduced after some algebra to

$$Q - R = w_{ij}D_{ij}^2 + \sum_{i \neq j} w_{ii}w_{jj}$$

$$\times[(D_{ii} - v_{i}) - (D_{jj} - v_{j})]^2$$

$$+ (w_{ii} + w_{jj}), \quad (10)$$

which can never be negative.

Equations 7, 8, and 10 give us the means of reducing the size of the problem from n tips to $n - 1$ tips, dropping two branch lengths from the minimization problem. This process can be used to construct an alternating least squares method for minimizing Q.

Iteration of Branch Lengths

Consider only the case of an unrooted bifurcating tree, which has each interior node connected to three neighbors. As can be seen in Figure 1, if one proceeds outwards from an internal node such as node 0 in any of the three possible directions, one finds a rooted bifurcating tree. In any rooted bifurcating tree having two or more tips, there are always at least two tips branching from the same interior node: in Figure 1 tips i and j are two of these, but three other such pairs are also visible. Equations 7, 8, and 10 permit us to reduce the size of the problem by removing two tips and creating one new one while not affecting the values of the least squares estimates of the lengths of the remaining branches. We can continue this process, repeatedly applying these equations until only three tips are left, all connected directly to the designated interior node (node 0). Designate these three nodes as a, b, and c.

The problem is now reduced to minimizing the sum of squares

$$Q = K + \sum w_{ab}(D_{ab} - v_{a} - v_{b})^2 + \sum w_{bc}(D_{bc} - v_{b} - v_{c})^2 + \sum w_{ac}(D_{ac} - v_{a} - v_{c})^2$$

$$+ w_{ab}(D_{ab} - v_{a} - v_{b})^2 + w_{bc}(D_{bc} - v_{b} - v_{c})^2 + w_{ac}(D_{ac} - v_{a} - v_{c})^2. \quad (11)$$

As Farris (1972) pointed out, the minimum of Equation 11 is achieved when the rightmost three terms become zero when the branch lengths v_{ab}, v_{bc}, and v_{ac} are chosen to satisfy the equations

$$D_{ab} = v_{a} + v_{b}$$

$$D_{bc} = v_{b} + v_{c}$$

$$D_{ac} = v_{a} + v_{c}, \quad (12)$$

these being the normal equations that are derived by differentiating Q with respect to the branch lengths and equating the derivatives to zero. The solution (Farris, 1972) is

$$v_{a} = (D_{ab} + D_{ac} - D_{bc})/2$$

$$v_{b} = (D_{ab} + D_{bc} - D_{ac})/2$$

$$v_{c} = (D_{ac} + D_{bc} - D_{ab})/2. \quad (13)$$

Having used Equations 7 and 8 to compute the quantities w_{ab}, w_{bc}, w_{ac}, D_{ab}, D_{bc}, and D_{ac}, we have minimized the sum of squares Q with respect to the three branch lengths v_{ab}, v_{bc}, and v_{ac}, holding all the other branch lengths constant. It follows that Q is nonincreasing during each such step.

If we follow the strategy of moving through the tree, taking each interior node of the tree in turn, pruning the tree to re-
duce the problem to minimization of Q with respect to the three branch lengths incident on that node, and finding the optimum lengths for those three branches, the successive values of the sums of squares Q cannot increase: they will form a monotonically nonincreasing sequence bounded below by zero. The sequence of values of Q must thus converge; it seems a reasonable expectation that the sequence of values of the branch lengths will also converge.

The iteration at each stage sets the derivatives of Q with respect to three of the branch lengths to zero. When further iteration through all interior nodes of the tree produces no change, it follows that the derivatives of Q with respect to all branch lengths are zero, so that we have reached a stationary point. We cannot guarantee from this that the stationary point is a minimum. However, a glance at Equation 1 shows that if the w_i are nonnegative the quadratic form Q cannot ever be negative; this fact is sufficient to guarantee that no saddle points or maxima can exist. We have not ruled out that there could be directions in which the sum of squares might be unchanging. This is the case where the quadratic form is positive semidefinite. In such a case the algorithm will reach one of the tied points along the line (or plane) of equally good solutions. We can in any case guarantee that we have minimized the quadratic form of Equation 1.

An alternative scheme would of course be to set up and solve the linear equations that are the normal equations for the least squares problem. The present method amounts to an iterative approach to solving these equations, differing from conventional iterative approaches such as Gauss-Seidel iteration by changing the variables three at a time instead of one at a time. The present method also avoids directly setting up the equations and takes advantage of the sparseness of the coefficient matrix in a natural way. It also enables us to maintain the constraint that branch lengths not be negative, if that is desired.

The Algorithm

The strategy used in the program FITCH starts with the first three species. These are connected into an unrooted tree (only one topology is possible), and Equations 13 are used to solve for least squares branch lengths. The program then considers where the fourth species can be added to the tree. There are three possible places that a new internal node could be added, with the fourth species connected to it, and these are on the interiors of the three branches. Each of these positions is tried in turn, and the least squares branch lengths are found for each of the resulting topologies. The program accepts that placement of the species that results in the smallest sum of squares.

The algorithm continues in this fashion, adding each species to all possible places in the tree and picking the placement that minimizes the sum of squares after iterative computation of the least squares branch lengths. It is convenient to start the iteration for each topology by calculating the lengths of the branches incident upon the newly introduced node, because that provides starting values for their lengths. The iteration for each topology proceeds by traversing the tree outwards from that node, optimizing branch lengths for each internal node encountered. Although it would perhaps be best to repeat the traversal until the sum of squares stopped changing, for the data sets I have encountered four passes through the tree is quite sufficient.

After each species is added to the tree, except the fourth species, a series of local rearrangements is carried out to see if the tree can be improved. A local rearrangement switches the order of adjacent branches in the tree. In the present version of the program all local rearrangements are tried after each species is added. If any local rearrangements improve the tree, as judged by the sum of squares, the rearrangement process is continued until no further improvement by local rearrangement is possible.

The user has the option of specifying that, after the last species is added to the tree, the last bout of rearrangements should be global. In that case, each subtree is removed from the tree and reinserted in
all possible places, the best of these being chosen and the process continued until no further improvement results. Swofford and Olsen (1990) described this rearrangement strategy as subtree pruning and regrafting. At that point, we have a tree that cannot be improved upon by moving any single group. This does not guarantee that we have found the best topology, but it gives us some reassurance that we have at least made a serious attempt to find it.

In PAUP*, the strategy for searching among tree topologies is different and will not be described here.

Avoiding Negative Branch Lengths

I have argued elsewhere (Felsenstein, 1984, 1986) that it is appropriate to find the least squares tree among all those having no negative branch lengths. The present algorithm does not avoid negative branch lengths; it is entirely possible for one or more of the solutions to Equations 13 to be negative. However, it is quite easy to alter the algorithm to avoid negative branch lengths; this is what is done by default in FITCH because allowing negative branch lengths is an option.

When finding the optimum values of the three branch lengths around an interior node, suppose we require that Equation 11 be minimized without allowing any of \(v_{ab}, v_{bc}, \) or \(v_c \) to become negative. If the solution to Equations 13 does not find any negative branch length, then there is no problem. If one or more of the branch lengths is negative, in principle we should examine all seven possible patterns of zero branch lengths in which one, two, or all three of the branch lengths are zero.

It would be possible to minimize Equation 11 for each and pick the best solution, but I have followed a simpler and less exact strategy. Any of the branch lengths that have become negative are set to zero, and the resulting values are taken as a starting point. Each of the three branch lengths is then considered in turn. Fixing the values of the other two, the least squares solution for \(v_z \) is

\[
\hat{v}_z = \frac{w_{ab}(D_{ab} - v_a) + w_{ac}(D_{ac} - v_c)}{(w_{ab} + w_{ac})}.
\]

(14)

If the minimum occurs at a negative branch length, then the nonnegative value of that branch length that minimizes Equation 11 will be zero, because Equation 11 is a quadratic in each of its three variables and has positive curvature in each. Thus, when a branch length computed from Equation 14 becomes negative, it is instead set to zero. The branch lengths \(v_{ab}, v_{bc}, \) and \(v_c \) are determined in this way in turn until there is no further change. Although this procedure is not guaranteed always to find the best nonnegative values of the branch lengths, it seems to do quite well in practice.

Complexity of the Computation

In calculating how much effort is involved in the computation, we must consider how many topologies of each given size are examined and how much effort is involved in optimizing the branch lengths for each topology. We start with three species, adding the fourth in each of three possible places. When we add the \(n \)th species, there are \(2n - 5 \) possible places to add it. There are also, for \(n > 4 \), \(2n - 6 \) local rearrangements that will be tried, assuming that none of them causes the tree to be altered, which in turn would require additional rounds of rearrangement. The addition of the \(n \)th species will thus cause \(4n - 11 \) evaluations of the least squares branch lengths.

The evaluation of branch lengths on a tree requires four passes through the tree. Each of these prunes the tree \(n - 3 \) times if it possesses \(n \) tips, and each time it is pruned the distances of the central node to all other nodes are updated. When there are \(m \) nodes remaining on the tree as it is being pruned, this updating requires on the order of \(2m - 3 \) operations.

Putting all of this together, one can show that estimating a tree and its branch lengths requires on the order of \(n^4 \) operations. This means that the algorithm will be fairly slow for large numbers of tips. For 20 species, FITCH required 46.9 sec to
TABLE 1. The immunological distance data set of Sarich (1969) symmetrized. Dog = *Canis familiaris*; bear = *Ursus americanus*; raccoon = *Procyon lotor*; weasel = *Mustela vison*; seal = *Phoca vitulina richardii*; sea lion = *Zalophus californianus*; cat = *Felis domestica*; monkey = *Aotus trivirgatus*. These data were used to construct the tree given in Figure 2.

<table>
<thead>
<tr>
<th></th>
<th>Dog</th>
<th>Bear</th>
<th>Raccoon</th>
<th>Weasel</th>
<th>Seal</th>
<th>Sea lion</th>
<th>Cat</th>
<th>Monkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td>0</td>
<td>32</td>
<td>48</td>
<td>51</td>
<td>50</td>
<td>43</td>
<td>98</td>
<td>148</td>
</tr>
<tr>
<td>Bear</td>
<td>32</td>
<td>0</td>
<td>26</td>
<td>34</td>
<td>29</td>
<td>33</td>
<td>84</td>
<td>136</td>
</tr>
<tr>
<td>Raccoon</td>
<td>48</td>
<td>26</td>
<td>0</td>
<td>42</td>
<td>44</td>
<td>44</td>
<td>92</td>
<td>152</td>
</tr>
<tr>
<td>Weasel</td>
<td>51</td>
<td>34</td>
<td>42</td>
<td>0</td>
<td>44</td>
<td>38</td>
<td>86</td>
<td>142</td>
</tr>
<tr>
<td>Seal</td>
<td>50</td>
<td>29</td>
<td>44</td>
<td>44</td>
<td>0</td>
<td>24</td>
<td>89</td>
<td>142</td>
</tr>
<tr>
<td>Sea lion</td>
<td>48</td>
<td>33</td>
<td>44</td>
<td>38</td>
<td>24</td>
<td>0</td>
<td>90</td>
<td>142</td>
</tr>
<tr>
<td>Cat</td>
<td>98</td>
<td>84</td>
<td>92</td>
<td>86</td>
<td>89</td>
<td>90</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Monkey</td>
<td>148</td>
<td>136</td>
<td>152</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>148</td>
<td>0</td>
</tr>
</tbody>
</table>

execute on my DECstation 5000/125, a machine whose SPECfp92 rating is approximately 25 (so that it is approximately as fast as a 486DX/66). For 40 species (the 20 species were a random sample from these 40), it took 730 sec, which is 15.565 times longer, very close to the expected multiplier of $2^4 = 16$.

A NUMERICAL EXAMPLE

We can get some feel for the progress of the iteration by watching it in an example. Consider the data set of Sarich (1969), which is reproduced in Table 1. Running FITCH on this data set without allowing negative branch lengths, using the Fitch–Margoliash criterion, gives the tree shown in Figure 2, which is rooted using the monkey as an outgroup. The weighted sum of squares for this tree is 0.06996. Figure 3 shows the progress of branch length iteration when we take this tree topology and initially set all branch lengths equal to

Figure 2. The least squares estimate for the Sarich (1969) data set, using the Fitch–Margoliash criterion and the algorithm described in this paper. Horizontal distance is proportional to branch length. The tree has been rooted with monkey as the outgroup.

Figure 3. Change in branch lengths over eight passes through the tree in Figure 2, starting with arbitrary initial values. The lengths essentially reach their final values after four passes. Because each iteration consists of successive changes around each of the six interior nodes, each time interval is divided into sixths and each change is shown at the point that it occurred.
1. Eight passes through the tree are shown; the branch lengths essentially cease changing after the first four.

As expected, the iteration succeeds rapidly. For moderately clean data, the iteration computes the internal branch lengths using Equations 13, in effect using weighted averages of the distances between members of the three different subtrees defined by an internal node. Once the tree approaches its final branch lengths, if there is not serious internal conflict in the data these weighted averages depend rather little on the details of the branch lengths within the subtrees, and hence the branch lengths rapidly stabilize. It is the very independence of evolution in the different subtrees, the very "treeness" of the data, that ensures the success of this alternating least squares approach.

AN EXAMPLE WITH SEQUENCE DATA

To give a better feel for how the present algorithm copes with real data, I analyzed the metazoan ribosomal RNA (rRNA) data set of Turbeville et al. (1994), which includes 16 species, many of them chordates or their near relatives. These data can be retrieved from the alignments section of the EMBL database as alignment DS16914. Both their analysis and this one used only a subset of better aligned sites. FITCH took 17.6 sec to analyze these distances on a 486DX/33 running the Linux operating system. On a Digital Alphastation 400 4/233, it took 1.46 sec. The tree (Fig. 4) is identical to the tree produced by Turbeville et al. using the same program. In the study by Turbeville et al., the trees produced by FITCH were similar to those produced by neighbor joining and by likelihood and to those produced by parsimony analysis of a combined molecular and morphological data set, and these trees all supported the existence of the Chordata. These trees differed from the tree produced by parsimony analysis of the molecular data alone. The utility of a comparison based on a single case is, however, limited.

COMPARISON WITH DE SOETE'S METHOD

An approach to searching over additive trees, constraining the estimated branch lengths to be nonnegative, is the innovative method of De Soete (1983), which starts with the observed distances and then gradually brings them closer to additive tree distances while searching for the least squares fit. This method is quite different from the present approach, which searches in the space of additive trees. De Soete's method approaches that space from outside. Therefore, it may carry out a far more effective search for the tree topology that leads to the minimum sum of squares.

The most widely used implementation of De Soete's method is probably Isadt, a C program by Michael Maciukenas distributed in Stephen Smith's Genetic Data Environment (GDE) package of programs for DNA analysis. To test whether the present method had any advantages over Isadt, I simulated the evolution of 20 DNA sequences on a tree. The tree was generated by a branching process, with the rate of branching of a lineage being 1 per unit time. Branching was continued until the 21st lineage was just about to be produced, and then the process was stopped.

DNA sequences 300 bases in length were stochastically evolved along the resulting trees. Each branch had an expected rate of change per unit time of either 0.0667 or
0.2, these values being chosen with equal probability. Thus the resulting trees were not ultrametric when the branch lengths relevant to base change are considered. All sites changed with equal probabilities, and a Kimura two-parameter model (Kimura, 1980) was used, with an instantaneous transition/transversion ratio of 2.

One hundred trees and data sets were produced by this simulation. Of these, 30 had at least two identical DNA sequences on them. The resulting distances in those cases caused lsadt to terminate with an error message. The remaining 70 distance matrices were analyzed with both programs. The sum of squares of the fit from the lsadt results is not provided by that program; it was computed using the estimated trees that emerged from lsadt as user trees whose branch lengths were not to be reestimated in a run of FITCH. In analysis of the distance matrices by FITCH, the unweighted least squares method of Cavalli-Sforza and Edwards (1967) was used because lsadt was also using that unweighted criterion.

In every case, lsadt was at least 10 times faster than FITCH. Of the 70 distance matrices on which both methods were run, 4 had results that were identical to five decimal places. In all 66 of the matrices for which the results were different, FITCH gave a lower sum of squares. For many of these, the differences were small, indicating that some accuracy may have been sacrificed for speed in lsadt. But for 25 of the 66 matrices, the lsadt sum of squares was >1% greater, and for 5 matrices it was >10% greater. When the trees were examined more closely, for 24 matrices the tree topologies estimated by lsadt and FITCH differed. In none of these was the difference due to rearrangement of zero-length branches. For 11 of these 24 matrices, the sum of squares differed by >1%, and for 2 matrices it differed by >10%. Thus, for 14 matrices, two trees of the same topology differed in sum of squares by >1%, and for 3 matrices the sum of squares differed by >10%.

These results suggest that the present method can sometimes find better tree topologies and/or better branch lengths than can De Soete's method, in spite of the constraint on its search algorithm to stay within the space of additive trees. It is not clear how other implementations of De Soete's method would perform in these comparisons.

Relationship to the Neighbor-Joining Method

The neighbor-joining method of Saitou and Nei (1987) has become popular because of its speed: its execution time is proportional to the cube of the number of species. Simulation studies (Kuhner and Felsenstein, 1994) have shown it to be nearly as effective as the Fitch-Margoliash method in recovering the true phylogeny. It estimates the lengths of branches to two tips that are "neighbors" on the tree and then removes these and replaces them with a new tip. Distances are calculated from the new tip to all other tips currently on the tree. Saitou and Nei showed that the step that estimates the branch lengths of two neighbors makes a least squares estimate, by the unweighted criterion of Cavalli-Sforza and Edwards (1967) of the branch lengths v_i and v_j for a tree that has i and j as neighbors but has all the other tips that remain on the tree branching from a multifurcating node. Figure 5 shows the tree topology to which this least squares estimate applies. Neighbor joining may thus be regarded as an approximation to the least squares algorithm of Cavalli-Sforza and Edwards (1967). It differs from
the present method in that having settled on branch lengths \(v_t \) and \(v_f \) it never returns to that part of the tree to reestimate them.

Saitou and Nei's algorithm "prunes" the tree. Its recalculation of distances from node \(k \) to each remaining tip closely parallels the current method: it uses

\[
D_{ij} = (D_{it} + D_{jt} - D_{ij})/2. \tag{15}
\]

Because in neighbor joining, as in the current method, for two neighbors on the tree \(D_{ij} = v_i + v_j \), we can substitute this equation into Equation 15 and rearrange it into the case of Equation 8 for which \(w_i = w_j = 1 \), as is true for the Cavalli-Sforza and Edwards criterion.

In the neighbor-joining method, the values of \(v_t \) and \(v_f \) are determined when the tree is as shown in Figure 5. Because the values are identical to those one would get from Cavalli-Sforza and Edwards's unweighted least squares criterion, they are also identical to the values that the present algorithm would give to \(v_t \) and \(v_f \) if iteration was done with the tree structure of Figure 5. The relative success of the neighbor-joining algorithm in approximating the least squares solution to a completely resolved tree suggests that the estimate is not very sensitive to the details of the resolution of the multifurcation in Figure 5. David Swofford (pers. comm.) has pointed out that this may also be the reason for the rapidity with which the present algorithm converges, as shown in Figure 3. Because \(v_t \) and \(v_f \) are not very sensitive to the other details of the structure of the tree, they reach reasonable values very rapidly.

We may thus regard the neighbor-joining method as a quick and fairly accurate approximation to the unweighted least squares method.

Relationship to the Minimum Evolution Method

The minimum evolution distance matrix method (Kidd and Sgaramella-Zonta, 1971; Rzhetsky and Nei, 1992) searches among tree topologies. For each tree topology, it evaluates branch lengths by least squares fitting. The topology is evaluated not by the overall sum of squares but by the sum of the lengths of these branches. The present algorithms can thus be used to do the branch length calculations in a minimum evolution method. It is thus not hard to modify a program that infers phylogenies by least squares to make one that infers them by minimum evolution. This option will be provided in future versions of FITCH.

Summary

In this paper, I have not described a new distance matrix method. Instead, I have introduced a new computational framework for the long-existing least squares family of distance matrix methods. This framework, by making effective use of the structure of the tree, allows us to maintain a constraint of nonnegativity of branch lengths. The algorithm "prunes" the sum of squares on the tree in a natural way. This process may be helpful for other tree calculations that use least squares. It can serve as the basis for either least squares estimation of the tree or minimum evolution estimation and has some relationship to the neighbor-joining method. When used in connection with local rearrangement of the tree, it seems more effective, if slower, than De Soete's innovative algorithm for searching the space of trees. It forms the basis of the least squares distance matrix calculations in the FITCH program of PHYLIP and in PAUP*. Having been in distribution in PHYLIP since 1982, it has been used to compute most of the least squares trees that have been published in the systematics and molecular evolution literature.

Acknowledgments

I thank David Swofford for illuminating comments in discussion of these matters and John Huelsenbeck, Peter Beerli, and Mary Kuhner for corrections of the manuscript and helpful suggestions. This work was supported in part by task agreement number DE-AT06-76EV71005 of contract number DE-AM06-76RLO2225 between the U.S. Department of Energy and the University of Washington, by NSF grant numbers BSR-8614807, DEB-9207558, and BIR-9527687, and by NIH grants 2 R55 GM41718-04 and 1 R01 GM51929-01.

References

Cavalli-Sforza, L. L., and A. W. F. Edwards. 1967. Phylogenetic analysis: methods and estimation pro-
1997 FELSENSTEIN—FITTING TREES TO DISTANCES BY ALTERNATING LEAST SQUARES 111

Received 6 March 1995; accepted 1 October 1996
Associate Editor: Richard Olmstead