Letters to the Editor

Prog. Theor. Phys. Vol. 46 (1971), No. 1

Lepton-Baryon Resonances and Duality in Weak Processes

Yuji NAKAWAKI, Takesi SAITO, Yosiki SAKAI* and Yasutaka TANIKAWA *

Department of Physics
Osaka University, Toyonaka, Osaka
*Department of Physics
Kobe University, Kobe

April 10, 1971

In a previous paper, 1 we proposed the theory of duality for weak interactions and studied the process \(\nu + n \rightarrow \mu + p \) by using the Veneziano model, in which the \(\mu^+p \) resonance (T boson) recently observed by the CERN group 2 was considered to lie on a Regge trajectory \(\alpha_T(s) \). In the present letter we assume also an existence of a \(\mu^+n \) resonance, i.e., \(\mu^-p \) channel resonance (we call this the \(T' \) boson), lying on a Regge trajectory \(\alpha_{T'}(u) \), and introduce it into the previous model. Then, we can show that a new model reduces the energy dependence of quantities corresponding to the vector and axial-vector form factors to be much smaller than that in the previous model.

Let us write the scattering amplitude for the process \(\nu n \rightarrow \mu^-p \) as

\[
\sqrt{\mu_\nu p_\nu}<\mu p|T|\nu n>\sqrt{\nu_\nu n_\nu} = \left[\bar{\nu}(p) \left(F_{\nu} \gamma_\mu - \frac{F_{\nu}}{M} \sigma_\mu q_\nu \right) u(n) \right] + \left[\bar{\nu}(p) \left(F_{\nu} \gamma_\mu - \frac{F_{\nu}}{M} \sigma_\mu q_\nu \right) u(n) \right] \times \left[\bar{\nu}(\mu) \gamma_\mu u(\nu) \right] + \cdots ,
\]

where \(u(\nu) = \gamma_\mu u(\nu) \) is the two-component spinor of \(\nu \), \(q_\mu \) is a four-momentum transfer between proton and neutron: \(q_\mu = p_\mu - n_\mu \), \(F_\nu \)'s are invariant amplitudes, \(M \) is the nucleon mass and \(m_\mu \) is the muon mass. The invariant amplitudes \(F_\nu \) depend on both variables \(s = (n + \nu)^2 \) and \(t = (p - n)^2 \). The \(T \) and \(T' \) bosons appear in \(F_\nu \) as pole terms in the \(s \) and \(u = (n - \mu)^2 \) planes. Their residues can be obtained by making use of Fierz identities. The result is, for spin-one-resonances, as follows:

\[
F_{\nu} = \frac{g_\mu g_\nu}{s - M_{T}^2} \left(1 - \frac{M^2}{2M_{T}^2} \right) + \frac{g_\mu' g_\nu'}{u - M_{T'}^2} \left(1 - \frac{M^2}{2M_{T'}^2} \right) + \cdots ,
\]

\[
F_{A} = \frac{g_\mu g_\nu}{s - M_{T}^2} \left(1 - \frac{M^2}{2M_{T}^2} \right) + \frac{g_\mu' g_\nu'}{u - M_{T'}^2} \left(1 - \frac{M^2}{2M_{T'}^2} \right) + \cdots ,
\]

\[
F_{S} = \frac{g_\mu g_\nu}{s - M_{T}^2} \left(M_{nT} \right) + \frac{g_\mu' g_\nu'}{u - M_{T'}^2} \left(M_{nT'} \right) + \cdots ,
\]

\[
F_{P} = \frac{g_\mu g_\nu}{s - M_{T}^2} \left(M_{nT} \right) + \frac{g_\mu' g_\nu'}{u - M_{T'}^2} \left(M_{nT'} \right) + \cdots ,
\]

\[
F_{T} = \frac{g_\mu g_\nu}{s - M_{T}^2} \left(M_{nT} \right) - \frac{g_\mu' g_\nu'}{u - M_{T'}^2} \left(M_{nT'} \right) + \cdots ,
\]

where \(g_\mu \) and \(g_\nu \) are the \(\mu^-pT \) and \(\nu nT \) - coupling constants, \(g_\mu' \) and \(g_\nu' \) are the \(\mu^-nT' \) and \(\nu pT' \) - coupling constants, and \(M_T \) and \(M_{T'} \) are the \(T \) - and \(T' \) - boson masses, respectively. No other amplitudes contain the \(T \) - and \(T' \) -boson pole terms.

Rüjula and Zia 3,1) have shown that the interaction of the \(T \) boson is superweak. In the following, we assume, for the interaction of the \(T' \) boson, that \(g_\mu g_\nu = g_\mu' g_\nu' \), i.e., the \(T' \) interaction is also superweak.
(We further set $M_T'=M_T=2\text{GeV}$.)

Now, we take the Veneziano formula for F_v in the following form:

$$
F_v= \frac{G}{\sqrt{2}} \sum_{i=1}^{n} \left[V_i^t \Gamma(1-\alpha_T(s)) \frac{\Gamma(i-\alpha_T(t))}{\Gamma(1+i-\alpha_T(s)-\alpha_T(t))}
+ V_i^u \frac{\Gamma(1-\alpha_T(u)) \Gamma(i-\alpha_T(t))}{\Gamma(1+i-\alpha_T(u)-\alpha_T(t))}
+ (s, u) \text{ term} \right],
$$

(3)

where $\alpha_T(s)=(1/30)(s-M_T^2)+1$ is the T boson trajectory. Here we have considered only the ρ trajectory $\alpha_\rho(t)$ as the Regge trajectory appearing in the t-channel. A necessity of satellite terms is due to the following reasons:

i) At $s=(M+m_T^2)=1\text{GeV}^2$ and $t=0$, F_v must give the Fermi coupling constant G.

ii) The residue of the pole $\alpha_T(s)=1$ (or $\alpha_T(u)=1$) has the magnitude of the order $10^{-3}G$, if the T-boson interaction is superweak.

These conditions cannot be satisfied simultaneously by F_v without satellite terms. In Eq. (3) we have chosen a special form for the satellite terms. This is one of possible combinations to give F_v of the dipole type $(G/\sqrt{2})(1-t/0.71)^{-2}$, which is experimentally favoured. In the following we shall neglect the (s, u) term in Eq. (3), because it violates the dipole behavior of F_v.

Comparing the pole terms at $s=M_T^2$ and $u=M_T^2$ in Eq. (2) with those in Eq. (3), we get

$$
\frac{G}{\sqrt{2}} \sum_{i=1}^{n} V_i^t = \frac{G}{\sqrt{2}} \sum_{i=1}^{n} V_i^u
= g_\rho g_T \left(1 + \frac{M_T^2}{2M_T^2} \right) a_T,
$$

(4)

where $a_T=\frac{1}{30}$ is the slope of $\alpha_T(s)$. We now take $n=3$, and set $V_1^t=-V_2^t/2 = V_3^t$ and $V_1^u=V_2^u$, when $s=M_T^2$ and $u=M_T^2$. Then, in this case the F_v becomes $(s-u)$ even form, and one can see that for fixed t, as s increases the (s, t) term increases while the (u, t) term decreases, so that F_v remains almost constant.

Near the poles we may take, in order to satisfy the conditions ii) and (4),

$$
V_1^t = -2V_2^t + \delta_1^t, \quad V_1^u = -2V_2^u + \delta_1^u,
$$

$$
V_3^t = V_2^t - \delta_2^t, \quad V_3^u = V_2^u - \delta_2^u
$$

(5)

where $\delta_1^t+\delta_1^u=\delta_2^t+\delta_2^u$, $\delta_1^{(u)} = 10^{-3}$.

The $\delta_1^{(u)}$ can be neglected in the region far from the poles, because $V_t^{(u)}$ is of order 1. The curve of F_v against t is given in Fig. 1.

In the same way the Veneziano formula for F_A is given by

$$
F_A = \frac{G}{\sqrt{2}} \sum_{i=1}^{n} A_4^t \Gamma(1-\alpha_T(s)) \frac{\Gamma(i-\alpha_A_1(t))}{\Gamma(1+i-\alpha_T(s)-\alpha_A_1(t))}
+ A_4^u \frac{\Gamma(1-\alpha_T(u)) \Gamma(i-\alpha_A_1(t))}{\Gamma(1+i-\alpha_T(u)-\alpha_A_1(t))},
$$

(6)

where $\alpha_A_1(t)=t-0.02$ is the A_1 trajectory degenerating with the π trajectory. The curves of F_A against t are given in Fig. 2 for $n=3$ and Fig. 3 for $n=4$, respectively.

The other amplitudes F_θ, F_r and F_T may

*** The present experimental situation seems not to be conclusive. Here, we tentatively assume the coupling constants and the masses of T and T' bosons as orders of those values estimated in Ref. 3). A possible existence of weak baroleptons T and T' was predicted by Tanikawa and Watanabe.\(4\)

be written in the same manner. In general the larger \(n \) gives the less energy dependent form factors.

4) Y. Tanikawa and S. Watanabe, Phys. Rev. 113 (1963), 1344.