Effects of Free Fatty Acids and Glucose on Splanchnic Insulin Dynamics

Magda M.I. Hennes, Arnavaz Dua, and Ahmed H. Kissebah

The mechanism of hyperinsulinemia that accompanies insulin resistance in some abdominally obese and diabetic individuals is poorly understood. Both increased secretion of insulin and decreased clearance have been demonstrated. The present study was undertaken to examine the role of free fatty acids (FFAs) and glucose in regulating splanchnic insulin dynamics in vivo. Plasma FFA levels were raised approximately twofold via an intralipid/heparin infusion in eight lean women. Insulin dynamics were assessed using the individual's C-peptide kinetic coefficients. Studies were performed in the basal state and during two levels of glycemia, 7 and 11 mmol/L. Studies were repeated using saline, and thus each subject served as her own control. Under basal conditions, raising FFA flux resulted in a modest increase in plasma insulin concentration (PIC) secondary to an increase in insulin secretion rate (ISR); however, endogenous insulin clearance (EIC) was not influenced. During the 7 mmol/L hyperglycemic clamp, maintaining a high FFA flux resulted in a 30% increase in PIC above the effect produced by glucose alone. This represents the cumulative effects of stimulation of ISR and inhibition of EIC. Clamping plasma glucose at 11 mmol/L while maintaining a high FFA flux increased PIC twofold above that produced by glucose alone. This increase in PIC was mainly due to a significant reduction in EIC without an accompanying increase in ISR (392 ± 159 and 787 ± 187 μm/min with and without intralipid infusion, respectively). Analysis of variance indicated that the suppressive effect of FFA on EIC was independent of the effect of glucose. The effect of the two substrates seems to be additive. Diabetes 46:57-62, 1997

Abdominally obese subjects, particularly those with glucose intolerance and/or NIDDM, exhibit several metabolic disorders including dyslipidemia, hypertension, and atherogenesis (1). Hyperinsulinemia is also a characteristic feature of this obesity phenotype (2,3) and appears to play a causative role in the pathogenesis of associated atherogenic risks (4-6).

Peripheral plasma insulin level is a function of both pancreatic production and metabolic clearance. Increased insulin secretion has been demonstrated in human obesity (7). The mechanism of insulin hypersecretion is manifold. Direct stimulation of pancreatic islets by glucose and indirect response to peripheral insulin resistance have been suggested (8). There is also some evidence suggesting that free fatty acids (FFAs) might act as secretagogues (9). Insulin clearance is also a function of body weight (10). While obese individuals show decreased clearance (11,12), weight loss is associated with an increase in clearance (13,14). Furthermore, individuals with abdominal obesity are distinguished from those with lower-body obesity by approximately threefold reduction in insulin clearance in the face of an increased insulin production (8). Caloric restriction results in reduction of visceral adipose mass, which correlates with improvement in insulin clearance (15).

The liver is a main site for insulin clearance, removing approximately 50-60% during the first portal passage (16). In abdominally obese individuals, increased size and lipolytic activity of the intra-abdominal/visceral fat depot could result in high portal vein and systemic FFA flux (17). We have, therefore, hypothesized that increased FFA flux in abdominal obesity might play a role in regulating splanchnic insulin dynamics. Work from our group (18) and others (19) has demonstrated that exposure of isolated rat hepatocytes to increasing concentrations of albumin-bound fatty acids could result in decreased insulin receptor binding, as well as post-receptor processing and degradation. Increasing FFA levels in the portal vein of isolated rat livers resulted in reduced insulin clearance (20). On the other hand, glucose intolerance and raised fasting plasma glucose levels are also characteristic features of some abdominally obese subjects (21) and might also influence hepatic removal of the hormone.

The present study was undertaken to determine the effects of increased supply of FFA and glucose on pancreatic insulin secretion, metabolic clearance, and consequently overall peripheral insulin levels. Plasma FFA flux was elevated in healthy lean women via an infusion of intralipid and heparin under basal conditions and at two levels of glycemia (7 and 11 mmol/L). Insulin secretion and endogenous clearance rates were then assessed, and the interactions between FFA and glucose under these conditions were examined.

RESEARCH DESIGN AND METHODS

Human subjects. Volunteers were recruited by advertisement. Eight lean premenopausal (28 ± 2 years of age) Caucasian women were studied. All were in good health, did not smoke, and were not on any medication. Their weight averaged 59 ± 2 kg, body mass index 22 ± 0.6 kg/m², and their waist-to-hip circumference ratio 0.71 ± 0.01. Subjects who qualified for the study had an oral

From the Department of Medicine and the Clinical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.

Address correspondence and reprint requests to Dr. Magda M.I. Hennes, Department of Medicine, Division of Endocrinology, Froedtert Memorial Lutheran Hospital, 9200 West Wisconsin Ave., Milwaukee, WI 53226.

Received for publication 1 April 1996 and accepted in revised form 1 August 1996.

BHCP, biosynthetic human C-peptide; EIC, endogenous insulin clearance; FFA, free fatty acid; ISR, insulin secretion rate; PIC, plasma insulin concentration.
Hyperglycemic clamp studies. Studies were conducted on two separate phase of their menstrual cycle, and a negative (3HCG pregnancy test was participants signed a written consent approved by the Human Research Reviewjects returned on a separate day for a BHCP bolus study. After an overnight glucose tolerance test after an overnight fast to exclude individuals with glucose intolerance and diabetes (22). Fasting plasma glucose levels were 5.1 ± 0.1 mmol/l, and fasting plasma insulin levels averaged 26 ± 2 pmol/1. Study par-glucose tolerance test after an overnight fast to exclude individuals with glu-state and two levels of clamped hyperglycemia. Experiments were performed at the Clinical Research Center of the Medical Col-lege of Wisconsin in Milwaukee, WI. Subjects were prescribed a weight-main-

Analytical procedures. Plasma glucose was measured by the glucose oxidase method with a Beckman Analyzer (Brea, CA). Plasma insulin and C-peptide were measured in triplicate using a commercial solid phase, 125I, radioimmunoassay (LINCO Research, Inc., St. Charles, MO). Plasma FFA concentrations and specific radioactivity were determined using a Model 1050 Hewlett-Packard HPLC (Brookfield, WI), employing the procedure described by Miles et al. (26). Briefly, phenacyl derivatives of the FFAs were prepared and resuspended in a solution of acetonitrile-water (83:17). Samples were injected into a 5-μm (4.5 × 250 mm) reverse-phase octadecyl silica column and eluted with acetonitrile-water (85:15) at a rate of 2 ml/min. External standards containing stearic, elaidic, oleic, palmitic, linoleic, arachidonic, palmitoleic, meadized blood samples. 3H-oleate (New England Nuclear, Boston, MA) was pre-

Calculations FFA kinetics. Data were analyzed using steady-state equations (26). Physi-

RESULTS

Figure 1 shows a representative profile of plasma FFA concent-
cinations achieved during saline or intralipid/heparin infu-
sion, both in the basal state and during clamped hyper-
glycemia. Calculated steady-state FFA flux during the basal period increased from 503 ± 48 in the control study to 907 ± 134 μmol/min with the infusion of intralipid and heparin. Clamping plasma glucose at either 7 or 11 mmol/l significa-
santly suppressed the flux of FFA during the control day (102 ± 40 and 96 ± 18 μmol/min, respectively). FFA flux, how-
ever, remained significantly high throughout both clamp lev-
els with the continuous infusion of intralipid/heparin (1,063 ± 125 and 1,079 ± 163 μmol/min during the 7 and 11 mmol/l glucose clamps, respectively).
The mean concentration of glucose in the basal state was not affected by intralipid infusion and averaged 4.61 ± 0.28 and 4.77 ± 0.5 mmol/l on the control and intralipid days, respectively. Figure 2 shows the levels of glycemia reached and maintained during both clamp levels. The mean coefficient of variation of plasma glucose during clamp studies was <5% on both study days.

Effects of increased FFA flux on splanchnic insulin dynamics during basal conditions. Since basal study conditions were identical, basal data are calculated as the means ± SE of all eight study subjects. As shown in Table 1, raising FFA flux under basal conditions significantly increased ISR from 30.4 ± 3.3 pmol/min during saline to 35.4 ± 3.7 pmol/min with intralipid infusion. Basal PIC also increased significantly from 40.4 ± 8.9 to 46.9 ± 7.7 pmol/l in the control day and the intralipid day, respectively. The calculated basal EIC rates were comparable on both study days, averaging 1,159 ± 203 and 1,046 ± 166 ml/min with normal and raised FFA flux, respectively. The increase in PIC in the basal state thus reflected the increase in ISR.

Effects of increased FFA flux on splanchnic insulin dynamics during the hyperglycemic clamps. During the control day, when the plasma glucose was clamped at 7 mmol/l, ISR increased to 51 ± 3.4 from a basal rate of 30.4 ± 3.3 pmol/min. The PIC correspondingly rose by -70%, from a basal value of 40.4 ± 8.9 to 69.2 ± 9.1 pmol/l. This increase mainly reflects the increase in ISR, since the calculated EIC did not change significantly. Upon raising the FFA flux during the intralipid day, ISR was further increased to 60.4 ± 4.1 pmol/min during the glucose clamp from a basal value of 35.4 ± 3.7, which was significantly higher (P < 0.05) than that of the control day (Table 1 and Fig. 3). Unlike the control day, however, PIC was nearly doubled and was significantly higher than the increase seen in the absence of intralipid and heparin infusion. In addition, raising FFA flux at that level of glycemia significantly decreased EIC to 765 ± 34 ml/min from 968 ± 78 ml/min during saline infusion. The increased PIC at that level of glycemia, therefore, results from both increased ISR and a concomitant decline in EIC.

When the plasma glucose was clamped at 11 mmol/l, the ISR rose to 136.2 ± 20.4 pmol/min during the control day. However, the ISR did not rise further in the presence of elevated FFA at that level of glycemia (intralipid day), remaining at 114.1 ± 25.4 pmol/min (Table 1 and Fig. 3). During the high-glucose clamp, PIC rose nearly sixfold when saline was infused (from 40.4 ± 8.9 to 280 ± 73.6 pmol/l). When FFA flux was raised, however, PIC increased ninefold and was significantly higher (P < 0.05) during the clamp than on the control day (420 ± 78 vs. 280 ± 73.6 pmol/l). EIC fell to 787 ± 187 ml/min during the control day and to 392 ± 159 ml/min during the intralipid day. As shown in Table 1, the decline in EIC during the high-glucose clamp was significant relative to that of the basal state, with or without intralipid infusion. In addition, the effect of intralipid was significant compared with that

TABLE 1

Effects of intralipid and glucose on splanchnic insulin dynamics in normal healthy females

<table>
<thead>
<tr>
<th></th>
<th>ISR (pmol/min)</th>
<th>PIC (pmol/l)</th>
<th>MCR (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline day</td>
<td>30.4 ± 3.3</td>
<td>40.4 ± 8.9</td>
<td>1,159 ± 203</td>
</tr>
<tr>
<td>Intralipid day</td>
<td>35.4 ± 3.7*</td>
<td>46.9 ± 7.7*</td>
<td>1,046 ± 166</td>
</tr>
<tr>
<td>Clamp-I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline day</td>
<td>51.0 ± 3.4†</td>
<td>69.2 ± 9.1†</td>
<td>968 ± 78</td>
</tr>
<tr>
<td>Intralipid day</td>
<td>60.4 ± 4.1†*</td>
<td>92.8 ± 8.3†*</td>
<td>765 ± 34†*</td>
</tr>
<tr>
<td>Clamp-II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline day</td>
<td>136.2 ± 20.4†</td>
<td>280 ± 73.6†</td>
<td>787 ± 187†</td>
</tr>
<tr>
<td>Intralipid day</td>
<td>114.1 ± 25.4†</td>
<td>420 ± 78†</td>
<td>392 ± 159†</td>
</tr>
</tbody>
</table>

MCR, metabolic clearance rate; clamp-I, plasma glucose concentration of 7 mmol/l; clamp-II, plasma glucose concentration of 11 mmol/l. *Significantly different from saline day (P < 0.05). †Significantly different from basal value (P < 0.05).
of the saline day. The increase in PIC at that level of glycemia results primarily from diminished EIC.

Synergistic effects of glucose and FFA on EIC. In Fig. 4, ISR and PIC are expressed as percentages of their mean basal values, taken as 100%. During the 7 mmol/l glucose clamp, while saline was infused (Fig. 4A) both ISR and PIC increased by ~200% of basal, which suggests no change in EIC. Raising FFA flux at the same level of glycemia (Fig. 4B) resulted in a slightly larger increase in both ISR and PIC, particularly during the first 2 h of the clamp. A trend toward a reduction in clearance is evidenced by an increase in the shaded area between the two curves. The effect of glucose on endogenous clearance can be seen by comparing Fig. 4A (7 mmol/l glucose clamp, saline day) to Fig. 4C (11 mmol/l glucose clamp, saline day). Both ISR and PIC increased during the 11 mmol/l glucose clamp. However, the relative increase in PIC was greater than that of the ISR, indicating a decline in EIC. Raising FFA flux at that level of glycemia further decreased the EIC, as evidenced by a significantly greater area between the two curves (Fig. 4D). To compare the effects of glucose and FFA and their possible interactivity, analysis of variance was applied as shown in Table 2. Glucose alone not only increased ISR and PIC, but also significantly decreased EIC. FFA, on the other hand, marginally increased PIC while significantly decreasing EIC. The effects of glucose and FFA seem to be independent and additive.

Effect of intralipid infusion on peripheral glucose utilization. The absolute amount of glucose metabolized did not differ during either saline or intralipid/heparin infusion with either level of glycemia (3.7 ± 0.1 and 3.1 ± 0.2 mmol · m⁻² · min⁻¹ during the 7 mmol/l glucose clamp, and 9.6 ± 1.9 and 8.4 ± 0.7 mmol · m⁻² · min⁻¹ during the 11 mmol/l glucose clamp with saline or intralipid/heparin infusion, respectively). The relative amount of glucose metabolized over the prevailing insulin concentration (M/I), however, was significantly blunted during the intralipid compared with the saline infusion. Raising plasma FFA flux during either level of glycemia resulted in significant reduction (P = 0.03) in the M/I ratio from 35.5 ± 5 to 23.6 ± 3 ([μmol · m⁻² · min⁻¹]/[pmol · l⁻¹]).

DISCUSSION
The present study demonstrated that raising plasma FFA flux in normal lean women via a continuous infusion of intralipid and heparin alters splanchnic insulin dynamics. Under basal conditions, raising FFA flux resulted in higher PIC consequent to increased ISR. As expected, raising plasma glucose to physiological postprandial levels (7 mmol/l) significantly increased ISR and PIC. Maintaining a high FFA flux during the glucose clamp resulted in significantly higher PIC due to the additive effects of an increase in pancreatic secretion and a decrease in EIC. Clamping plasma glucose at a higher level (11 mmol/l), as might be seen in glucose-intolerant and/or diabetic abdominally obese individuals, further increased PIC, as ISR increased and EIC decreased. At that level of glycemia, infusion of intralipid did not further increase ISR but synergistically decreased EIC, exceeding the effect of glucose alone. The suppressive effects of glucose and FFA on EIC were independent and additive.

While the role of glucose in stimulating insulin secretion is well established, the insulinotropic effects of fatty acids are not certain. In the present study, intralipid infusion modestly increased basal ISR. During the 7 mmol/l glucose clamp, an additive stimulatory effect of FFA on pancreatic secretion was also observed. This effect, however, was not seen when plasma glucose was clamped at 11 mmol/l. The mechanisms by which raising plasma FFA flux could influence insulin secretion are not clear. On the one hand, it is possible that the
enhanced insulin secretion could be due to anticipated increase in hepatic glucose production secondary to increased supply of gluconeogenic precursors during intralipid infusion. On the other hand, it is also possible that FFA might exert direct effects on the secretory process. Previous studies have shown that the pancreatic response to FFAs is influenced by the duration of exposure (27,28), structure of the fatty acid (29), and level of glycemia (30). While acute exposure of pancreatic islets to fatty acids results in a stimulatory effect (31–33), long-term incubation impairs the glucose-induced insulin release (34). Similarly, intralipid infusion in rats enhanced insulin secretion after 3 h, while extending the infusion to 24 or 48 h resulted in a time-dependent inhibition of glucose-induced insulin secretion (28). Polyunsaturated and medium-chain fatty acids have been shown to stimulate insulin secretion in vitro and in vivo. Intralipid contains a higher concentration of polyunsaturated fatty acids, mainly linoleic acid. Incubating isolated pancreatic islets with albumin-bound palmitate did not have an effect on insulin release in the absence of glucose but increased insulin release when glucose was added to the incubation medium. In the present study, excessive glucose stimulation at the higher clamp level may have masked the changes occurring by raising FFA flux. The mechanism by which FFA could influence insulin secretion differs from that of glucose. Several mechanisms have been suggested, including increased Ca\(^{2+}\) influx, formation of long-chain acyl CoA esters (35), generation of metabolic signals (36), and β-cell hyperplasia (37).

In the present study, both glucose and FFA synergistically and independently suppressed EIC. The liver is by far the major organ responsible for insulin metabolism. This involves a series of steps, which include binding to a specific membrane receptor, internalization and intracellular compartmentalization of the insulin-receptor complex, and finally proteolytic degradation by a specific insulin-degrading enzyme (38). Conditions that might alter any of these events will eventually affect insulin degradation and endogenous clearance. We have previously hypothesized that in abdominally obese subjects, the enhanced lipolysis and increased flux of FFA in the portal vein from the expanded lipolytically active visceral adipose tissue—and hence the increased exposure of the liver to elevated FFA levels—might contribute to the altered hepatic insulin dynamics. Indeed, exposure of isolated rat hepatocytes to increasing concentrations of FFA has profound effects on hepatocyte insulin-receptor binding, internalization, and receptor-mediated degradation. The effect on the binding process is energy dependent and is closely linked to enhanced lipid oxidation (39,40). The postbinding events, however, appear to involve other mechanisms, possibly protein acylation. Further, raising portal vein FFA levels in isolated rat livers results in a decrease in insulin clearance (20). The present study shows that in humans, increased FFA flux while glucose is maintained at physiological postprandial levels alters endogenous insulin clearance. That insulin clearance was further decreased at the 11 mmol/L glucose level when intralipid was infused without an accompanying increase in ISR suggests that the mechanism by which FFA suppresses hepatic insulin clearance is independent of the level of insulinemia. In addition to direct effects of FFA on splanchnic insulin metabolism, indirect mechanisms may be involved. Our results show that the insulin sensitivity index (M/I) was lower during the intralipid infusion, suggesting impairment of insulin-mediated glucose utilization. This may result in a compensatory stimulation of insulin secretion and/or reduction of clearance.

Our results show a dose-dependent reduction in the clearance of endogenously secreted insulin in response to the two levels of glycemia, irrespective of the effect of intralipid. Glucose has been shown to affect splanchnic insulin clearance (41). Different experimental conditions, including the route of administration (42–44) and the prevailing glucose concentration (41,44), yielded different results, and the mechanism is uncertain.

In conclusion, increased FFA flux together with higher levels of glycemia, as might be seen in abdominally obese individuals, particularly those who are glucose intolerant or overtly diabetic, might be partially responsible for the state of hyperinsulinemia observed in those individuals. At basal and physiological glucose concentrations, the increase in peripheral insulin level is mainly due to increased insulin secretion rates. At higher glucose levels, decreased endogenous clearance is largely responsible for the hyperinsulinemia.

ACKNOWLEDGMENTS

This work was supported by grant #HL34989 from the National Institutes of Health and by General Clinical Research Center Grant #RR00058.

We would like to thank Dr. G. Sonnenberg for her assistance with the BHCP bolus studies. We would also like to thank Keryl Jones and Jackie Marks for their excellent technical assistance and Dr. G. Krakower for assistance with the manuscript. We also thank the volunteers for their commitment and patience.

This work was presented in part at the 7th International Congress for the Study of Obesity, Toronto, Canada, 1994.

REFERENCES

27. Sako Y, Grill V: A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B-cell oxidation through a process likely coupled to fatty acid oxidation. *Endocrinology* 127:1580-1589, 1990