Risk of Guillain-Barré Syndrome following Serogroup C Meningococcal Conjugate Vaccine in Quebec, Canada

Philippe De Wals,1 Geneviève Deceuninck,2 Renée-Myriam Boucher,3 Manale Ouakki,2
1Department of Social and Preventive Medicine, Laval University, and 2Public Health Research Unit and 3Department of Paediatric Neurology, Quebec University Hospital Centre, Quebec City, Canada

To assess the risk of Guillain-Barré syndrome (GBS) following administration of meningococcal serogroup C-CRM197 conjugate vaccine, provincial immunization records were linked with hospital discharge records, and medical charts were reviewed. In the cohort of 1.9 million individuals (age, 2 months to 20 years), observed postvaccination frequencies of GBS were not higher than expected.

Guillain-Barré syndrome (GBS) is an acute autoimmune inflammatory demyelinating neuropathy affecting peripheral motor and/or sensory nerves [1, 2]. In children, adolescents, and young adults, the reported incidence is 1–2 cases per 100,000 person-years, and the prognosis is usually good [3]. In 1976–1977, an increased risk of GBS was identified following the administration of inactivated “swine” influenza vaccines [4]. Recently, a possible association between GBS and receipt of a quadrivalent meningococcal conjugate vaccine was reported in the United States [5]. In the province of Quebec, Canada, a mass immunization campaign using a meningococcal serogroup C conjugate vaccine (C-MCV) was implemented in 2001 [6]. The Quebec Meningococcal Vaccine Safety Database was created by linking several provincial administrative databases to evaluate the effectiveness and safety of the newly licensed vaccine. At the request of the Quebec Ministry of Health, an investigation was performed to assess the risk of GBS following the administration of C-MCV.

Methods. The investigation was performed in accordance

Received 2 October 2007; accepted 27 November 2007; electronically published 17 March 2008.

Reprints or correspondence: Dr. Philippe De Wals, Département de Médecine sociale et préventive, Université Laval, Pavillon de l’Est, 2180 chemin Sainte-Foy, Suite 1108, Quebec City (Quebec), Canada G1K 7P4 (Philippe.De.Wals@ssss.gouv.qc.ca).

Clinical Infectious Diseases 2008;46:e75–7
© 2008 by the Infectious Diseases Society of America. All rights reserved. 1058-4838/2008/4608-00E2$15.00 DOI: 10.1086/533469
ysis, from a total of 4,075,465 person-years of observation, representing a crude annual incidence rate of 0.8 cases per 100,000 persons (95% CI, 0.56–1.14 per 100,000 person-years).

Acute inflammatory demyelinating polyradiculopathy was the most frequent clinical GBS presentation (27 cases), and there were 2 cases of acute motor axonal neuropathy, 1 case of acute motor and sensory axonal neuropathy, and 1 case of acute sensory neuropathy with pandysautonomia. In 2 other cases, a precise classification could not be made because of a lack of details. The GBS was considered to be confirmed in 13 cases, probable in 14 cases, and possible in the remaining 6 cases.

Nineteen of the 33 patients with GBS received a C-MCV. Five patients were immunized after the occurrence of the disease, and 14 received a first dose of vaccine prior to the disease (intervals between first vaccine and GBS onset, 9, 46, 76, 111, 132, 227, 240, 295, 339, 381, 382, 400, 405 and 425 days). Thus, there were 2 cases with GBS onset ≤8 weeks following vaccine administration. The first case was an acute motor axonal neuropathy (possible) in an 8-year-old child who was hospitalized 9 days after vaccine administration. All viral and bacteriologic test results were negative, and the case was reported in the passive surveillance system of adverse events associated with vaccines. The second case was an acute inflammatory demyelinating polyradiculopathy (probable) occurring 46 days after C-MCV administration in a 2-year-old child. Only a bacterial culture of CSF was performed, and the result was negative. This second case was not reported in the surveillance system.

The observed and expected numbers of GBS cases among vaccinees, sorted according to different diagnostic categories and definitions of the risk period, are shown in table 1. In all comparisons, observed numbers were lower than expected, and all 95% CIs of ratios encompassed the value of 1.

Discussion. The results of this study do not suggest the existence of an increased risk of GBS associated with the administration of C-MCV. In the mass immunization campaign in Quebec, a vaccine containing the serogroup C meningococcal polysaccharide conjugated to CRM_197_ protein derived from the diphtheria toxin was mainly used (Menjugate; Chiron Vaccines [now Novartis Vaccines]), whereas the alert in the United States concerned a vaccine containing 4 polysaccharides (A, C, Y, and W135) conjugated to diphtheria toxoid (Menactra; Sanofi Pasteur) [5].

In this study, the whole target population observed before, during, and after the mass immunization campaign was selected as a reference for computing the expected number of GBS cases among vaccinees to minimize selection biases associated with either the avoidance or the report of vaccination of individuals at increased risk of developing GBS [8]. This bias is amplified in comparisons restricted to vaccinees [9]. In our cohort, there were 15 unvaccinated individuals who received a diagnosis of GBS before the end of the mass immunization campaign, and only 6 (40%) of them were ultimately vaccinated. By comparison, ~80% of the whole target population was vaccinated [6].

The main limitation of our study is in its limited power to identify an increased risk of small magnitude. Given the sample size (219,025 person-years exposed and 3,856,440 person-years unexposed), the power was 81% to detect a risk ratio of 5 during the 8-week post-vaccination period, but only 11% for a risk ratio of 2, corresponding to an absolute risk close to 1 additional GBS case per million C-MCV doses.

In Quebec, the accessibility of hospital services is very good and the recommended practice is to admit any person with suspected GBS. Thus, underascertainment in our study is unlikely. However, the results confirm the limitation of passive surveillance systems to identify adverse events possibly associated with vaccination. Only 1 of the 2 GBS cases occurring during the 8-week post-vaccination period was reported to the passive surveillance system. In the United States, the sensitivity of passive surveillance systems was found to be 72% for poliomyelitis after the oral poliovirus vaccine to <1% for rash and thrombocytopenia after the measles, mumps, rubella and varicella vaccine [10].

Table 1. Observed and expected numbers of Guillain-Barré syndrome cases following the administration of a first dose of serogroup C meningococcal conjugate vaccine in the province of Quebec, Canada.

<table>
<thead>
<tr>
<th>Diagnostic confirmation*</th>
<th>Up to 8 weeks after vaccination</th>
<th>Up to 6 weeks after vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of cases observed/no. of cases expected</td>
<td>Ratio (95% CI)</td>
</tr>
<tr>
<td>Confirmed, probable, and possible cases</td>
<td>2/3</td>
<td>0.67 (0.01–2.41)</td>
</tr>
<tr>
<td>Confirmed and probable cases</td>
<td>1/1</td>
<td>2.8</td>
</tr>
</tbody>
</table>

* Confirmed, level 1a, typical clinical features with positive electromyogram and positive spinal tab; probable, level 1b, 2a, 2b or 3, typical clinical features and no alternative diagnosis (positive electromyogram or positive spinal tab may be present); possible, incomplete typical clinical features and no alternative diagnosis.

b One probable and 1 possible.
c One possible.
d One probable.
Acknowledgments

Financial support. Quebec National Public Health Institute and Chiron Vaccines (now Novartis Vaccines).

Potential conflicts of interest. P.D.W. received research grants, honoraria and reimbursement of travel expenses from vaccine manufacturers including Glaxo-Smith-Kline, Novartis, Sanofi Pasteur and Wyeth. All other authors: no conflicts.

References