
DISCUSSION 

In a similar way, if A>0, [r] => [C]. Analogous results can 
also be obtained for cases of perfect plasticity (A = 0) and 
strain softening (A<0) [8]-provided the stress-space for
mulations are properly framed. This is what the authors mean 
by the word equivalent. 

We apologize if the use of this word has proved misleading 
to some readers of the subject paper. The main point to be 
stressed is that in designing a computational algorithm for 
plasticity, one is at liberty to work from either the stress or 
strain-space version, whichever is more convenient, since the 
two approaches can, with certain restrictions, be made to 
yield the same physical behavior. The computational ex
perience reported in [2] and [8] lends additional support to the 
interchangeability of these two formulations. 
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I The Annular Membrane Under Axial Load' 

Robert Schmidt.2 Let us introduce auxiliary notations x, y, 
z, and p defined by 

r\x=r2, 4Dy = r2Nr, (la,b) 

2i/2tz=[3(\-v2)]W2rf3, (Ic) 

25/2 irEt4p = [3(1 - v2)f/2r2
2P, (Id) 

where D = Eti /\2(\ — v2), and the remaining symbols have the 
meaning assigned to them in the Note under discussion. With 
these notations, the nonlinear differential equations [1] 
governing moderately large axisymmetric deflections of 
circular plates become [2, 3] 

x2y" = -z2, x2z" =yz+px, (2a,b) 

where primes denote derivatives with respect to x. 
For a membrane, the foregoing equations reduce to 

x2y" = -z2, yz=-px, Qa,b) 

and finally to Schwerin's form [4] 

y2y" = -p2, (4) 
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which possesses closed-form general implicit and special 
explicit solutions [4, 5], both of which were published by 
Schwerin in 1929 [4].3 Needless to say, Schwerin was rather 
proud of his discovery, which doubled the number of known 
closed-form solutions in the theory of slack membranes from 
one to two. The authors of the present Note have simply 
rediscovered Schwerin's special solution, which is valid for 
e = l / 3 . 

Much later, closed-form solutions, similar to Schwerin's, 
were obtained by Jahsman, Field, and Holmes [5] for a 
prestretched axisymmetrical membrane, and by E. Reissner 
for a spherical membrane. 
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it should be rioted that equation (4) is analogous to the differential equation 
/• /: = const., describing the free fall of two spherical bodies toward each other. 

I The Annular Membrane Under Axial Load1 

C. W. Bert2. The authors are to be congratulated for ob
taining a closed-form solution for a nonlinear problem which 
has not been solved previously in the context of the Foppl 
theory [1] used. The limitations of the Foppl theory have been 
discussed by Junkin and Davis [2] in comparison with an 
exact membrane theory obtained from Budiansky's shell 
equations [3]. In reference [2], it was shown that Foppl's 
theory is valid only when the ratio of the deflection to the 
outside radius is small compared to unity. Nevertheless, using 
order-of-magnitude considerations, reference [2] obtained, 
for v= 1/3, a closed-form solution equivalent to that obtained 
by the authors. 
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DISCUSSION 

Even in the context of the Foppl theory, the second of 
equations (2), is not quite correct, since it involves an extra 
derivative with respect to radius. The correct equation is 

d r l d ( rf*\l 1 fdw\2 

Then equation (6) becomes 

cj32(0-2)re-2 + -Et k2a2r2a-2=Q (2) 

Fortunately, the solution obtained by the authors, as 
manifested in their equations (3), (4), and (7), satisfies the 
preceding corrected equations and thus is still correct. 

The lower order in equation (1) follows directly from the 
appropriate compatibility equation for this problem: 

d 1 (dw\ 2 

since the strain-displacement relations are: 

du 1 /dw\2 

To compare results with an existing numerical solution [4] 
(not based on Foppl's theory), the authors' equations can be 
cast in the following dimensionless form 

wm ax/ '-2=(6/)1 / 3(l-p2 / 3) (5) 

(ff,.)max/£=(9/16) l /3/2/3p -2 / 3 (6) 

where p = rt/r2, f=P/2irEtr2. It is interesting to note that 
although Lidin's analysis [4] is not based on Foppl's theory, 
Lidin obtained the same form of the variation of wmax/V2 and 
(°r) maxZ-E with/as in equations (5) and (6). However, there is 
some difference between the respective dependencies on p, as 
can be seen in the following tabulation: 

It is noted that Lidin's result is purportedly valid for any 
Poisson's ratio, yet it is independent of Poisson's ratio, which 
seems unusual from a physical viewpoint. 
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Author's Closure 

The authors are pleased to note the interest shown in their 
paper by Professor Bert and they are indebted to him for the 
valuable comparison of results with earlier work. 

In response to his discussion, however, it must be restated 
here that the second of equations (2) is the correct Foppl 
equation (which is of fourth order) for the annular membrane 
under axial load. The third-order equation derived from first 
principles by Professor Bert is recognized as the first integral 
of the Foppl equation with the constant of integration zero, as 
is necessary for a solution of equation (6) to be obtained. 

A subsequent paper [1] by the first author, which uses a 
variational formulation of Foppl's theory to obtain ap
proximate solutions for the annular membrane under axial 
load, will also be published soon. Numerical results are 
presented there for a range of values of Poisson's ratio in
cluding the value of one-third considered in the present work. 
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Values of wnmx/rif
[n Values of (5,.) mm/Ef2n 

Radius ratio p Allman & Mansfield [4] Allman & Mansfield [4] 

0.1 1.426 1.239 3.832 3.906 
0.3 1.003 0.9042 1.842 1.735 
0.5 0.6724 0.6849 1.310 1.201 
0.7 0.3846 0.4287 1.047 0.8697 
0.9 0.1233 0.2394 0.8856 0.5420 
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