Synergism of nutrition, infection, and immunity: an overview¹⁻³

Nevin S Scrimshaw and John Paul SanGiovanni

ABSTRACT Infections, no matter how mild, have adverse effects on nutritional status. The significance of these effects depends on the previous nutritional status of the individual, the nature and duration of the infection, and the diet during the recovery period. Conversely, almost any nutrient deficiency, if sufficiently severe, will impair resistance to infection. Iron deficiency and protein-energy malnutrition, both highly prevalent, have the greatest public health importance in this regard. Remarkable advances in immunology of recent decades have increased insights into the mechanisms responsible for the effects of infection. These include impaired antibody formation; loss of delayed cutaneous hypersensitivity; reduced immunoglobulin concentrations; decreased thymic and splenic lymphocytes; reduced complement formation, secretory immunoglobulin A, and interferon; and lower T cells and T cell subsets (helper, suppressor-cytotoxic, and natural killer cells) and interleukin 2 receptors. The effects observed with single or multiple nutrient deficiencies are due to some combination of these responses. In general, cell-mediated and nonspecific immunity are more sensitive than humoral immunity. Am J Clin Nutr 1997;66:464S–77S.

KEY WORDS Nutrition and infection, nutrition and immunity, vitamins and minerals, minerals and immunity

INTRODUCTION

It is appropriate to begin a keynote lecture with a historical introduction. The 1968 WHO monograph Interactions of Nutrition and Infection (1) suggested for the first time that the relation between infection and malnutrition is synergistic. The monograph brought together extensive evidence for both the adverse effect of infections on nutritional status and the increased susceptibility to infection of malnourished individuals. Its thesis was that each worsened the other and that the biological effects of malnutrition and infection combined were greater than the sum of the two for this reason.

The monograph also tried to identify the mechanisms involved in this interaction. Its documentation of the ways in which infection worsens nutritional status was comprehensive and relatively complete even by today’s standards. However, its review of the ways in which malnutrition can affect resistance to infection was written before the modern explosion in immunologic research. This conference provides an opportunity to present and interpret the rapidly increasing knowledge of interactions between nutrient deficiencies and immune status.

I summarize the multiple ways in which infections can affect nutritional status and then give an overview of the possible mechanisms for the reciprocal relation between malnutrition and reduced resistance to infection. These include the following.

Anorexia

Nitrogen balance studies disrupted by intercurrent infections or even immunizations reveal consistent decreases in food intake. This is a factor in precipitating clinically evident deficiencies of any nutrient that is already borderline or deficient in the individual.

Cultural and therapeutic practices

Withdrawal of food from individuals with fever, diarrhea, or other symptoms of infection is an almost universal practice that exacerbates the effect of anorexia. In field studies it is not possible to separate the effects of anorexia from those of deliberate withdrawal of food for cultural reasons, but the combined effects can be devastating. In Matlab, Bangladesh, food intakes as judged from dietary energy were > 40% reduced in children aged < 5 y during the acute stage of diarrhea compared with after recovery (2). In Peru, energy intakes decreased between 10% and 86% in breast-fed children with diarrhea (3).

Decreased intestinal absorption

In studies by the Institute of Nutrition of Central America of Panama, protein absorption was generally reduced 10–30% and sometimes as much as 40% in children with diarrhea (4). In Bangladesh, absorption during diarrhea caused by rotavirus averaged 43% for nitrogen, 42% for fat, 74% for carbohydrate, and 55% for total energy (5). Corresponding values for diarrhea caused by enteropathogenic Escherichia coli and Shigella were slightly higher.

The range of infections associated with malabsorption is wide. Included are bacterial, viral, and protozoan enteritides

¹ From the Food and Nutrition Programme for Human and Social Development, United Nations University (Program Office), Boston.
³ Reprints not available. Address correspondence to NS Scrimshaw, UNU Food and Nutrition Programme for Human and Social Development, Charles Street Station, PO Box 500, Boston, MA 02114-0500. E-mail: Scrimshaw@inf.unu.edu.
and intestinal helminths (6). Vitamin A malabsorption also occurs during systemic febrile illnesses. Sivakumar and Reddy (7) reported that in children with acute diarrhea and respiratory infections only 30–70% of ingested vitamin A is absorbed.

Catabolic losses

A catabolic response occurs with all infections even when they are subclinical and not accompanied by fever (8–12). Under the stimulus of the release of interleukin 1 by leukocytes, endocrine changes are initiated that lead to the mobilization of amino acids from the periphery, primarily from skeletal muscle (8). The amino acids are used for gluconeogenesis in the liver and the nitrogen released is excreted in urine.

Protein

To describe the effect of infection on protein losses, Powanda (13) summarized data from a wide variety of acute infectious diseases by adding the total nitrogen losses and dividing them by the number of days over which these losses occurred. For all infections, the average loss of 0.6 g protein · kg⁻¹ · d⁻¹ is equal to the mean estimated total protein requirement for adults. Diseases associated with diarrhea or dysentry produced an average loss of 0.9 g protein · kg⁻¹ · d⁻¹. Higher losses were observed with typhoid fever and other severe infections, reaching 1.2 g protein · kg⁻¹ · d⁻¹ (13).

With use of urinary 3-methylhistidine as a measure of muscle protein catabolism in septic patients, losses from 12 to 30 mg/d were detected during the peak fever response (14). By this measure, the average additional loss in the urine during sepsis was equivalent to 1.14 g protein · kg⁻¹ · d⁻¹. Such calculations are underestimates of the metabolic cost of infections, however, because they do not include energy expended for the multiple anabolic responses described below.

Lipids

Infections affect plasma lipids but the changes are highly variable and depend on the duration and severity of infection, the degree of fever, and age. Effects include changes in triacylglycerol, fatty acids, ketone bodies, and the products of fatty acids partially oxidized in the liver.

Carbohydrates

The catabolic responses described above have as a principal function the provision of amino acid substrates for gluconeogenesis. Thus, a continual conversion of alanine carbon to glucose carbon occurs with acute infection, even when exogenous carbohydrate is adequate. It appears to be the rate of release of glycogenic amino acid substrates from peripheral tissues that determines the rate of hepatic gluconeogenesis. All of the hormones that regulate carbohydrate metabolism participate in host responses to infection. Several groups have documented an increased fasting concentration of both glucagon and insulin in serum. Despite the initial stimulation of gluconeogenesis, the body may eventually become severely hypoglycemic. Lethal hypoglycemia can develop in septic neonates with severe viral infections of the liver such as fulminating hepatitis or, as shown in monkeys, yellow fever.

Energy

The energy cost of depositing 1 g protein has been estimated to be 100 kJ (24 kcal) or 25–26 kcal (6 kcal) of total weight gain. If this figure is applied to the observed protein losses summarized above, calculated average energy losses from this source alone would be between 17 and 29 kg · kg⁻¹ · d⁻¹ (between 4 and 5 kcal · kg⁻¹ · d⁻¹). This amount seems small but it represents 14–29% of the energy cost. An estimate of the energy content of soft tissue is 60% protein. They estimate the energy cost of synthesizing 1 g lost protein to be 31 kJ (7.5 kcal) and that for replacing 1 g fat to be 48.5 kJ (11.6 kcal).

Vitamin A

The capacity of infections to precipitate xerophthalmia and keratomalacia in individuals already marginally deficient is well established and the effect is particularly severe with measles and also noted for chickenpox. A significant drop in serum vitamin A concentrations has been observed in children with acute respiratory infection, gastroenteritis, and measles, with concentrations returning to normal after recovery. Vitamin A blood concentrations also have been reported to be reduced in pneumonia, rheumatoid arthritis, acute tonsillitis, and infectious hepatitis. Lower serum carotene and vitamin A concentrations also have been found with hookworm disease.

Ascorbic acid

Ascorbic acid concentrations decrease in plasma and increase in the urine of infected individuals compared with noninfected persons living under comparable conditions. This is seen even with vaccination against smallpox and measles and for the common cold.

B vitamins

The classic nutritional diseases of beriberi and pellagra were known to be precipitated in vulnerable individuals by a variety of infections. Riboflavin status is also adversely affected by infection. Beisel et al (16) showed marked increases in riboflavin excretion with sandfly fever in well-nourished male volunteers.

Iron

One metabolic consequence of infection is a decrease in serum iron because of its being sequestered in the reticuloendothelial system. In addition, lactoferrin, with a higher iron binding capacity than bacterial siderophores, is released by phagocytes. The net effect is to deprive the infectious agent of iron for its replication and inhibit the spread of infection.

Other minerals

Infections decrease both serum copper and zinc. Careful metabolic studies by Castillo-Duran et al (17) documented the effect of diarrhea on zinc and copper status. Metabolic balances of these minerals were strongly negative during periods of
acute diarrhea. These losses cannot be predicted from serum concentrations because copper concentrations often increase during infection as a result of stimulation of the hepatic production of ceruloplasmin. Note that in this study serum copper concentrations were significantly lower in subjects with diarrhea than in control subjects. Conversely, plasma zinc concentrations often decline during acute infections because of an internal redistribution of the metal to the liver. The reduced retention of zinc during diarrhea thus interacts with the redistributional influence of the infection.

Anabolic losses

During infection, amino acids are diverted from normal pathways for the synthesis of immunoglobulins, lymphokines, C-reactive proteins, and a variety of other proteins including key liver enzymes (10).

Fever

Fever increases the basal metabolic rate 13% for each 1°C. During a period of high fever, metabolism may increase by nearly one-third (18). Additional nitrogen and amino acids are lost in sweat.

Additional intestinal losses

Protein-losing enteropathy has been described for measles and diarrhea, especially when due to shigellosis. In studies by the International Center for Diarrheal Disease Research-Bangladesh, nearly two-thirds of patients with enterotoxigenic E. coli and 40% of those with rotavirus diarrhea had excessive losses of protein in feces. In patients with shigellosis, between 100 and 500 mL serum was lost with feces each day as a result of protein-losing enteropathy (4).

Bleeding into the intestine from Schistosoma mansoni, or hookworm, also results in significant losses of iron and energy. Each adult hookworm causes the loss of ~4.2 kJ/d (1 kcal/d) and 0.03–0.26 g blood depending on the species (19). Less than one-half of iron lost in this way is reabsorbed. Chronic urinary blood loss with Schistosoma hemotobium also increases iron requirements, as does the sequestering of iron pigment by the reticuloendothelial system in malaria.

RELATION BETWEEN NUTRITION AND IMMUNITY

Reasons for malnutrition are multiple and complex, but, as reviewed above, infection is a common precipitating factor. Ironically, malnutrition is also a major factor in the occurrence of infection and the two interact, in many cases, making each other worse. The striking decrease in infectious disease morbidity in preschool children in Teozonteopan, Mexico, given additional milk is shown in Figure 1 (20).

To complete the overview of this synergistic interaction, the remainder of this paper summarizes the mechanisms responsible for decreased resistance to infection and the specific nutrient deficiencies that affect them. These potential mechanisms include interference with the production of humorul antibodies and of mucosal secretory antibodies, cell-mediated immunity, bactericidal capacity of phagocytes, complement formation, numbers of thymus-dependent T lymphocytes and T cell subgroups (helper, suppressor-cytotoxic, and natural killer cells), and nonspecific defense mechanisms. These nonspecific defense mechanisms include intestinal flora; anatomical barriers (skin, mucosa, and epithelium); secretory substances such as lysozymes, mucus, and gastric acid; the febrile response; endocrine changes; and binding of serum and tissue iron.

Antimicrobial systems in the neutrophil, all of which are potentially affected by malnutrition, are listed in Table 1. These include both oxygen-dependent systems, such as those responsible for the respiratory burst, and oxygen-independent systems, such as lactoferrin, lysozymes, hydrolase, and proteases. Some of the still fragmentary evidence for the role of specific nutrients in each of the mechanisms is summarized below.

The 1968 WHO monograph on nutrition and infection (1) summarized conclusions from experimental animal and human

![Figure 1](https://academic.oup.com/ajcn/article-abstract/66/2/4645/4655772/11June2018)

Figure 1. Percentage of days sick per semester for children in the maternal supplementation and complementary feeding group (solid bars) compared with children breast-fed by unsupplemented mothers who received no complementary food from the program (dashed bars). Values are for the first 30 wk of the supplementation program. t ≥ SD. Reproduced with permission from the International Nutrition Foundation (20).
studies then available. Assembled for the first time, 325 of these studies provided evidence that many infections were increased in prevalence or severity by specific nutritional deficiencies. However, 93 studies, almost all of them in experimental animals, indicated that it was possible to produce deficiencies that were sufficiently severe enough to affect replication of the infectious agent. The monograph introduced the terms synergism to describe the former and antagonism to characterize the latter.

At the time of this 1968 monograph there was already extensive evidence, mainly from studies in experimental animals, of the depressing effects of a variety of nutrient deficiencies on antibody formation and leukocyte function. There was no corresponding body of information for effects on cell-mediated immunity. There are, of course, now many more published research studies and a series of books on the subject including ones by Stinnert (21), the Nestlé Foundation (22), Gershwin et al (23), Bendich and Chandra (24), Chandra (25), and Cunningham-Rundles (26), as well as several reviews (12, 27–32). In addition, the quarterly Journal of Nutritional Immunology began publication in 1992. However, the overall conclusions of the 1968 tabulation have not changed.

The most important advances are 1) many more studies in human subjects and the strengthened evidence for the damaging effects on immunity of iron and protein-energy deficiencies in children and 2) a veritable explosion in the sophistication of immunologic studies, including studies of the role of cytokines. Much of the evidence relates to deficiencies of specific nutrients, some of which are summarized below. Where specific references are not given they can be found in the books and reviews listed above.

Protein

More than 100 studies in experimental animals alone have shown the adverse effects of protein deficiency on immunity and the clinical and public health significance of these studies has been confirmed by dozens of clinical and field studies. It is not surprising that protein deficiency is so consistently observed to interfere with resistance to infection because most immune mechanisms are dependent on cell replication or the production of active protein compounds. Because protein cannot be synthesized without a balance of essential amino acids, experimental amino acid deficiencies have the same effect.

Essentially all forms of immunity have been shown to be affected by protein-energy malnutrition in young children, depending on the severity of the protein deficiency relative to energy. Effects include impaired antibody formation (33–37), decreased serum immunoglobulin (38), decreased secretory immunoglobulin A (39–42), decreased thymic function (43–50) and splenic lymphocytes, delayed cutaneous hypersensitivity (51–60), decreased complement formation (53, 56, 57, 61–66), decreased interferon, and effects on nonspecific mechanisms that include anatomic barriers and secretory substances such as lysozymes and mucus.

Chandra and Newberne (67) tabulated more than 100 references on antibody response in malnourished subjects; 33% of the studies were performed in humans. Of all the studies, 63% showed depressed responses with malnutrition. Of the studies in humans, 53% showed depressed responses. The question that must be addressed for each situation is when and whether the deficiency is sufficient to have a demonstrable effect. For example, there is no doubt about the deterioration of immunity in the severe protein deficiency of kwashiorkor (33–37). However, the failure of antibody formation is reversed within a few days of protein therapy as amino acids become available for the synthesis of immune proteins as in the studies of Fernandez (68) and Brown and Katz (69).

The severely malnourished preschool children studied by Chandra and Newberne (67) in Hyderabad showed most of the effects on immunity discussed above. In field studies, however, results depend on the degree of malnutrition, the nature of the antigen, and the immune functions tested. For example, in studies of undernourished African preschool children, response to typhoid and tetanus antitoxin was slightly reduced compared with that in well-nourished children but no effect was observed with measles vaccine (70). This was presumably because with the live virus vaccine the amount of stimulating antigen was not limited by the initial amount in the vaccine. Low–birth weight babies were shown by Chandra in his studies in India to have lower concentrations of cord blood tetanus antitoxin (67).

The classical studies of Hodges with pairs of adult volunteers given 0.1, 1.0, and 2.0 g protein/kg body wt for 10 wk found poor antibody responses to tetanus and typhoid antigen in men receiving the lowest amount of protein (71). The inability of poorly nourished children in Narangwal, India, to produce C3 in response to infection is shown in Figure 2 (61, 62). Evidence for the immunologic effects of moderate malnutrition comes from studies in Bangladesh in which children with low weight-for-age had fewer positive skin reactions to common bacterial antigens. The higher the proportion of anergy, the higher the diarrheal disease rate (72, 73). Immunoglobulin concentrations in malnourished subjects vary with the specific immunoglobulins, the presence and nature of concurrent infection, and the nature and severity of the nutritional deficiency (74, 75).

Specific amino acids

Any limiting deficiency of an essential amino acid can be shown in experimental animals to result in the impaired immunity associated with protein deficiency. There has also been a great deal of interest in the possibility that adding certain
amino acids, particularly arginine (76), to the diet will improve the immune response. Arginine administered in clinical studies enhanced phagocytes of alveolar macrophages (77), depressed T suppressor cells, and stimulated T helper cells (76). The “nonessential” amino acid glutamine is necessary for, and has a high flux in, lymphocytes and other rapidly growing cells. This may be a factor in the diminished integrity of the immune system with the reduced protein turnover associated with low protein intakes. Leucine administered to sheep decreased antibody response (78).

Vitamin A

Experimental animals made deficient in vitamin A generally have increased susceptibility to infection. There have now been several studies, eight of which are summarized in Table 2, of the effect of vitamin A administration to preschool children. In six of these studies, large drops in mortality ranging from 30% to 50% were observed. Two of the studies showed no effect, perhaps because other deficiencies were limiting. Surprisingly, morbidity was not affected (88).

Vitamin A–deficient experimental animals have decreased thymus and spleen sizes, reduced natural killer cell activity, lower production of interferon, impaired delayed cutaneous hypersensitivity, less effective fixed fat macrophage activity, and lower lymphocyte response to stimulation by mitogens (74). Phagocytic activity may also be affected. However, there is no understanding of how vitamin A deficiency exerts its effect on human resistance (23).

Vitamin A is essential for maintaining epidermal and mucosal integrity but this does not appear to be compromised in the populations studied. Most clinical studies find no effects on T cell function (89). Dietary vitamin A increased T cell mitogenesis in lung patients and reversed postoperative immunosuppression (74). High intakes of vitamin A are mixed in their effects, enhancing some immune infections and suppressing others (74).

β-Carotene

β-Carotene in vivo can stimulate rat lymphocyte mitogenesis (90) and increase human natural killer cell (91) and T helper cell (92) numbers. The administration of β-carotene to elderly humans increased the ratio of CD4 to CD8 but had no effect on natural killer cells, virgin T cells, memory T cells, or cytotoxic T cells (93). β-Carotene added in vitro to human lymphatic cultures stimulated natural killer cell activity but did not affect other T cell subsets (94).

B vitamins

Pyridoxine deficiency has been associated with reduced cell-mediated immunity in both experimental animals and in humans. Hodges et al (95) reported that subjects given a diet deficient in pantothenate had a normal response to typhoid antigen but a reduced response to tetanus toxoid. With pyridoxine deficiency, formation of antibodies against tetanus and typhoid was slightly reduced (96). With combined pantothenate and pyridoxine deficiency, the immunologic response was almost completely inhibited but became excellent when these vitamins were restored to the diet (97).

Folic acid and vitamin B-12 are so essential to cellular replication that the finding that experimental deficiencies of

TABLE 2

Results of eight vitamin A intervention trials on mortality of young children

<table>
<thead>
<tr>
<th>Site</th>
<th>Percent effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh, Indonesia (79)</td>
<td>-27</td>
</tr>
<tr>
<td>Sudan (80)</td>
<td>-4</td>
</tr>
<tr>
<td>Hyderabad, India (81,82)</td>
<td>-6</td>
</tr>
<tr>
<td>Jumla, Nepal (83)</td>
<td>-26</td>
</tr>
<tr>
<td>Sylhet, Nepal (84)</td>
<td>-29</td>
</tr>
<tr>
<td>Ghana (VAST Study) (85)</td>
<td>-20</td>
</tr>
<tr>
<td>Bogor, Indonesia (86)</td>
<td>-30</td>
</tr>
<tr>
<td>Tamil Nadu, India (87)</td>
<td>-50</td>
</tr>
</tbody>
</table>

Mean relative risk: 0.77; 95% CI: 0.68, 0.84. From Beaton et al (88).

FIGURE 2. Serum C3 concentrations correlated with infection morbidity indicated by the number of days of fever. Three weight categories in reference to the standard (% WT STD) are shown. In well-nourished children, C3 concentrations increase with infection; in undernourished children, C3 concentrations generally decrease. Reproduced with permission (61).
these vitamins interfere with both antibody formation and replication of stimulated leukocytes was expected. The vitamins are also associated with thymic atrophy, as is choline deficiency. In folic acid deficiency anemia, cell-mediated immunity is depressed (98).

Vitamin C

The reported immunologic and related consequences of ascorbic acid deficiency are listed in Table 3. Decreased neutrophil function, impaired delayed cutaneous hypersensitivity, and abnormal serum complement concentrations have been documented in studies in both experimental animals and human subjects. Reduced phagocytic response and killing power as well as reduced antibody response have been described in clinical studies. Studies of experimentally induced scurvy in humans found normal lymphocyte stimulation response in vitro to T cell mitogens and no change in lymphocyte subsets (111). There is no conclusive evidence to support the hypothesis that ascorbic acid deficiency in humans leads to either altered cell-mediated or humoral immunity. The many claims of a favorable effect on infection of massive doses of vitamin C have not been confirmed in studies with acceptable experimental designs and are not reviewed here.

Vitamin D

Vitamin D serves as both an immunoregulatory hormone and a lymphocyte differentiation hormone in addition to its role in mineral homeostasis.

Vitamin E

Alterations in immunity reported with vitamin E deficiency are listed in Table 4. Reduced lymphocyte and leukocyte killing power has been shown in humans as well as in experimental animals. In animals it was shown to interfere with antibody formation, plague-forming cells, and other aspects of cell-mediated immunity. Vitamin E supplementation has been reported to enhance both humoral and cell-mediated immunity and to augment the efficacy of phagocytosis in experimental and farm animals and humans (23, 121, 129, 130). Vitamin E is one of the few nutrients for which supplementation at a level higher than recommended levels has been shown to enhance immune response and resistance to disease (121).

Iron

Iron deficiency is the most widespread nutrient deficiency in the world today and in field studies is consistently associated with increased morbidity from infectious diseases. Moreover, iron supplementation of iron-deficient populations results in decreased frequency of infectious episodes. The reported effects of iron deficiency on immune function are listed in Table 5. Mechanisms clearly identified are impaired phagocytic killing power, less response to lymphocyte stimulation, fewer natural killer cells associated with reduced interferon production, and depressed delayed cutaneous hypersensitivity. Apparently B cell and antibody formation are not affected. Bryan and Stone (147) provided an extensive review and analysis of the immunologically related properties of the iron molecule.

One of the most revealing animal studies is one conducted by Baggs and Miller (144), who found more viable intracellular and extracellular bacteria in the macrophages and intestinal walls of iron-deficient rats with experimental salmonellosis than in iron-replete animals. This was paralleled by the concentrations in the intestinal wall of the iron-containing enzyme myeloperoxidase, which mediates the iodination of proteins and the formation of hydrogen peroxide to kill microorganisms within the cell.

Chandra et al (145) showed a relation in Indian children between hemoglobin status and the capacity of lymphocytes to react to antigenic stimulation (Figure 3, top). He also showed the reduced capacity of phagocytes from malnourished Indian children to produce a respiratory burst (Figure 3, bottom) and hence a decrease in phagocytic killing power (Figure 3, middle) (145). There is extensive evidence for a direct relation between iron status and plasma T lymphocyte concentrations (67, 147). Impaired delayed cutaneous hypersensitivity to several ubiquitous antigens has also been described in iron-deficient children (67).

Iron overload and infection

Any discussion of the effect of dietary iron on immunity is incomplete without discussion of the biological mechanisms for withholding iron from invading organisms (148). Iron is needed for a wide variety of biochemical functions not only by the host but also by the infectious agent (149). Transferrin is found not only in blood but in all body fluids and is the normal mechanism for withholding iron from the infectious agent, as is lactoferrin. Conalbumin and lactoferrin have stronger iron binding properties than do most bacterial siderophores and are normally highly unsaturated.

Ferritin is the storage form of iron and as ferritin molecules become saturated with iron, some is metabolized to the inert intracellular ferric ion, hemosiderin. When molecules of lactoferrin become ≥40% saturated with iron, they are assimilated by macrophages that have been attracted to the site of infection.

TABLE 3

<table>
<thead>
<tr>
<th>Vitamin C deficiency causes the following decreases in immune function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased immune function</td>
</tr>
<tr>
<td>T lymphocyte response</td>
</tr>
<tr>
<td>Delayed cutaneous hypersensitivity</td>
</tr>
<tr>
<td>Phagocytic function</td>
</tr>
<tr>
<td>Killing power</td>
</tr>
<tr>
<td>Complement formation or function</td>
</tr>
<tr>
<td>Epithelial integrity</td>
</tr>
</tbody>
</table>

Vitamin C may also act by increasing iron absorption.
TABLE 4
Vitamin E deficiency causes the following decreases in immune function

<table>
<thead>
<tr>
<th>Decreased immune function</th>
<th>Animal</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humoral response, B cell function</td>
<td>Mice (112–115), rats (116)</td>
<td>—</td>
</tr>
<tr>
<td>Immunoglobulins</td>
<td>Mice (113)</td>
<td>—</td>
</tr>
<tr>
<td>T lymphocyte response</td>
<td>Mice (114, 115), rats (116), pigs (117), sheep (118), dogs (119)</td>
<td>Severe vitamin E deficiency (120, 121), premature infants respond to vitamin E supplementation (122)</td>
</tr>
<tr>
<td>Delayed cutaneous hypersensitivity</td>
<td>—</td>
<td>Severe vitamin E deficiency (120, 121), vitamin E-deficient patients with tropical sprue (123)</td>
</tr>
<tr>
<td>Phagocytic function</td>
<td>Mice (115), rats (124–126), pigs (117)</td>
<td>Severe vitamin E deficiency (120, 121), glutathione-deficient neonates (127)</td>
</tr>
<tr>
<td>Hemmagglutination titers</td>
<td>Mice (112, 113)</td>
<td>—</td>
</tr>
<tr>
<td>Cytokine or lymphokine function or production</td>
<td>Rats (128)</td>
<td>Severe vitamin deficiency (120, 121)</td>
</tr>
</tbody>
</table>

and much of the iron is incorporated into ferritin. Ferritin functions as an iron-withholding rather than as an iron-transport agent.

Lactoferrin, known to be released during degranulation of leukocytes in aseptic areas, is a major component of human milk and resists proteolytic destruction in the gastrointestinal tract. It is not difficult to show in vitro the protective effect of lactoferrin. In an iron-deficient host with reduced immune function, lack of available iron for agent replication is protective. Baggs and Miller (144) found that in rats exposed to a standard dose of Salmonella, a diet lacking in iron is almost as protective as one meeting iron needs.

When individuals whose resistance to infection is compromised by iron deficiency are given parenteral iron or large doses of oral iron, a disastrous exacerbation of the infection and death may occur (150, 151). This happens because the agent is supplied with iron for replication before the host immune system has had time to recover. However, in field studies, supplementation of poorly nourished adults with physiologic amounts of up to 100 mg Fe/d and proportionately less for children, consistently results in decreased morbidity from infectious disease. It is important to recognize that there is a fairly large range of iron intakes over which the immune system can function normally.

Zinc deficiency

Zinc is a ubiquitous trace metal essential to the development and maintenance of the immune system and that influences both lymphocyte and phagocyte cell functions (152–155). More than 100 metalloenzymes have been identified that are zinc dependent. It is not surprising, therefore, that experimental zinc deficiency in animals is associated with the wide range of immunologically related consequences listed in Table 6.

These include extensive changes in T cell–related indexes. In the genetic disease acrodermatitis enteropathica—characterized by reduced intestinal zinc absorption—thymic atrophy, impaired lymphocytosis, and impaired response to stimulation are observed. However, unlike the situation for iron, there is no evidence that zinc deficiency in the underprivileged human populations of developing countries is severe enough to affect immunity. Nevertheless, the number of publications reporting the effects of experimental zinc deficiency on immunity outnumber those on iron by a ratio of 20 to 1. Excessive zinc intakes also impair immune responses (201).

Other mineral deficiencies

The immune effects of copper deficiency in experimental animals are listed in Table 7. They include both B cell– and T cell–related deficiencies. Impaired antibody formation, inflammatory response, phagocytic killing power, and lymphocyte stimulation responses, as well as thymic atrophy, have been well documented. The only clinical relevance of these observations is to children with Menkes syndrome, a rare congenital disease resulting in copper deficiency. Among its symptoms are increased bacterial infections, diarrhea, and bronchopneumonia. Note that anemia and reduced serum iron are characteristics of copper deficiency in rats that are not corrected by iron administration.

Magnesium participates in all major metabolic pathways and is an obligate cofactor for DNA synthesis (216). The immune effects of magnesium deficiency in experimental animals are listed in Table 8. Effects include the same range

TABLE 5
Iron deficiency causes the following decreases in immune function

<table>
<thead>
<tr>
<th>Decreased immune function</th>
<th>Animal</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humoral response, B cell function</td>
<td>Rats (131, 132)</td>
<td>(131, 133, 134)</td>
</tr>
<tr>
<td>Immunoglobulins</td>
<td>Rats (131)</td>
<td>—</td>
</tr>
<tr>
<td>Thymic structure or function</td>
<td>Rats (135–137)</td>
<td>—</td>
</tr>
<tr>
<td>T lymphocyte response</td>
<td>Mice (138)</td>
<td>(61, 67, 133, 134, 139–142)</td>
</tr>
<tr>
<td>Delayed cutaneous hypersensitivity</td>
<td>—</td>
<td>(67, 141, 142)</td>
</tr>
<tr>
<td>Phagocytic function</td>
<td>Rats (143)</td>
<td>—</td>
</tr>
<tr>
<td>Killing power</td>
<td>Rats (144)</td>
<td>(145)</td>
</tr>
<tr>
<td>Cytokine or lymphokine function or production</td>
<td>Rats (146)</td>
<td>—</td>
</tr>
</tbody>
</table>
of altered T and B cell functions as described for copper and zinc deficiencies. For these minerals, there is no evidence of any public health significance to these observations because they have been limited to experimental animals. Selenium deficiency can also affect all components of the immune system (228).

Overnutrition and infection

Definitive studies on the effects of overnutrition on immune system function in humans are lacking. Lower respiratory tract infections have been reported to be higher in obese than in nonobese infants (229). Overfed and obese beagle dogs, chal-

Table 6

Zinc deficiency causes the following decreases in immune function⁷

<table>
<thead>
<tr>
<th>Decreased immune function</th>
<th>Animal</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humoral response, B cell function</td>
<td>Rodents (156), rats (157)</td>
<td>—</td>
</tr>
<tr>
<td>T cell–dependent antigens (SRBC)</td>
<td>Mice (158–168)</td>
<td>—</td>
</tr>
<tr>
<td>T cell–independent antigens (dextran)</td>
<td>Mice (161, 166, 167, 169)</td>
<td>—</td>
</tr>
<tr>
<td>Immunoglobulins</td>
<td>Mice (163, 164, 166, 168, 170)</td>
<td>(171)</td>
</tr>
<tr>
<td>Cell-mediated immunity functions</td>
<td>Mice (158, 168), rats (186)</td>
<td>(184)</td>
</tr>
<tr>
<td>Delayed cutaneous hypersensitivity</td>
<td>Mice (158, 169, 170, 193, 194)</td>
<td>(169, 171, 183, 185)</td>
</tr>
<tr>
<td>Phagocytic function</td>
<td>Mice (169, 187, 194–197)</td>
<td>(199)</td>
</tr>
<tr>
<td>Killing power</td>
<td>Mice (195, 197, 198)</td>
<td>—</td>
</tr>
<tr>
<td>Cytokine or lymphokine function or production</td>
<td>Mice (165), rats (186, 193)</td>
<td>(200)</td>
</tr>
</tbody>
</table>

⁷SRBC, sheep red blood cells.
TABLE 7
Copper deficiency causes the following decreases in immune function

<table>
<thead>
<tr>
<th>Decreased immune function</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humoral response, B cell function</td>
<td>Rodents (202), mice (203–206), rats (207, 208)</td>
</tr>
<tr>
<td>Immunoglobulins</td>
<td>Mice (204)</td>
</tr>
<tr>
<td>Thymic structure</td>
<td>Mice (202)</td>
</tr>
<tr>
<td>Cell-mediated immunity functions</td>
<td>Mice (203, 209), rats (208)</td>
</tr>
<tr>
<td>T lymphocyte response</td>
<td>Rodents (202), mice (187, 203, 206, 210), rats (211, 212)</td>
</tr>
<tr>
<td>Phagocytic function</td>
<td>Mice (202, 203), rats (212, 213), sheep (214), cattle (214, 215)</td>
</tr>
<tr>
<td>Cytokine or lymphokine function or production</td>
<td>Mice (204)</td>
</tr>
</tbody>
</table>

TABLE 8
Magnesium deficiency causes the following decreases in immune function

<table>
<thead>
<tr>
<th>Decreased immune function</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humoral response, B cell function</td>
<td>Mice (217, 218), rats (219–221)</td>
</tr>
<tr>
<td>Immunoglobulins</td>
<td>Rats (220), mice (218)</td>
</tr>
<tr>
<td>Cell-mediated immunity functions</td>
<td>Rodents (221)</td>
</tr>
<tr>
<td>T lymphocyte response</td>
<td>Mice (187, 221, 222), rats (223, 224)</td>
</tr>
<tr>
<td>Cytotoxic T cells</td>
<td>Mice (222, 225–227)</td>
</tr>
<tr>
<td>Phagocytic function</td>
<td>Mice (187), rats (223, 224)</td>
</tr>
<tr>
<td>Cytokine or lymphokine function or production</td>
<td>Rats (224)</td>
</tr>
</tbody>
</table>

lenged with distemper virus, which is similar to human measles virus, had decreased survival time and increased incidence of encephalitis and mortality (230, 231). Another study in dogs showed increased morbidity and mortality from Salmonella in overfed animals (231).

CLINICAL AND PUBLIC HEALTH EXPERIENCE

It should be obvious from the evidence for the effects of individual infections on nutritional status that any factors that increase the burden of infection are of clinical and public health importance. Given the multiple effects of nutritional deficiencies on immune function, it is clear that these deficiencies increase the frequency and severity of infections in poorly nourished populations. In children the result is impaired growth and development and in adults time lost from work and decreased work productivity. The only rational public health response is a combination of measures that will reduce infection, including improved environmental and personal hygiene, immunizations, and a better diet to improve nutritional status and thereby reduce morbidity from infections.

Most nutrients are directly or indirectly involved in protein synthesis and most immune responses involve the production of proteins with specific functions. Because there are only a limited number of possible alterations of the immune system, it is not surprising that lists of the observed effects of individual nutrient deficiencies tend to be similar. T cell functions are more sensitive than B cell functions to most nutrient deficiencies. Thus, a few specific immune tests such as of phagocytic capacity, T cell subtypes, complement levels, and delayed cutaneous hypersensitivity can be useful indicators of malnutrition and indicate the need to identify and combat the specific nutritional deficiencies responsible. Iron deficiency and protein-energy malnutrition, both highly prevalent, have the greatest public health importance.

REFERENCES

65. Sirisinha S, Edelman R, Suskind R, Charupatana C, Olson RE. Complement and C3-proactivator levels in children with protein-

160. Fraker PJ, DePasquale-Jardieu P, Zwickl CM, Luecke RW. Regen-

207. Failla ML, Babu L, Seidel KE. Use of immunoresponsiveness to
demonstrate that the dietary requirement for copper in young rats is greater with dietary fructose than dietary starch. J Nutr 1988;118:487-96.

208. Kishore V, Latman N, Roberts DW, Barnett JB, Sorenson JR. Effect of nutritional copper deficiency on adjuvant arthritis and immuno-

209. Lukasewycz OA, Kolquist KL, Prohaska JR. Splenocytes from copper-deficient mice are low responders and weak stimulators in mixed

210. Lukasewycz OA, Prohaska JR, Meyer SG, Schmidke JR, Marder SM, Marder P. Alterations in lymphocyte populations in copper

211. Bala S, Failla ML, Lunney JK. Alterations in splenic lymphoid cell
subsets and activation antigens in copper-deficient rats. J Nutr

212. Newberne PM, Hunt CE, Young VR. The role of the diet and the
reticuloendothelial system in the response of rats to Salmonella

213. Babu U, Failla ML. Respiratory burst and candidacidal activity of
peritoneal macrophages are impaired in copper-deficient rats. J Nutr

214. Jones DG, Suttle NF. Some effects of copper deficiency on leucocyte

215. Boyne R, Arthur JR. Effects of selenium and copper deficiency on

216. Kubena KS. The role of magnesium in immunity. J Nutr Immunol

217. Guenonou M, Armier J, Gaudin-Harding F. Effect of magnesium
deficiency and food restriction on the immune response in young

218. Elin RJ. The effect of magnesium deficiency in mice on serum
immunoglobulin concentrations and antibody plaque-forming cells.

219. McCoy JH, Kenney MA. Depressed immune response in the magne-

220. Alcock NW, Shils ME. Serum immunoglobulin G in the magnesium

221. Larvor P. Magnesium, humoral immunity, and allergy. In: Cantin M,

222. Flynn A, Yen BR. Mineral deficiency effects on the generation of
cytotoxic T-cells and T-helper cell factors in vitro. J Nutr 1981;111:

223. Averdunk R, Bippus PH, Gunther T, Merker HJ. Development and
properties of malignant lymphoma induced by magnesium deficiency

224. Yangou M, Hadjipetrou-Kourounakis L. Effect of magnesium defi-
ciency on interleukin production by Fisher rats: effect of interleukins
on reduced in vitro lymphocyte responses to concanavalin A and
lipopolysaccharide. Int Arch Allergy Appl Immunol 1989;89:
217-21.

225. Martz E. Immune T lymphocyte to tumor cell adhesion. Magnesium

226. Golstein P. Post recognition Mg++ or Ca++ dependent events in
cell-mediated cytotoxicity. In: Seligmann M, Preud’homme JL,
Koutrisky FM, eds. Membrane receptors of lymphocytes. Amsterdam:

227. Maclennan IC, Golstein P. Recognition in both systems as a divergent
cation-independent, cytochalasin A-sensitive step. J Immunol
1978;121:2542-6.

228. Kiremidjian-Schumacher LO, Stotzky G. Selenium and immune re-

229. Hutchinson-Smith B. The relationship between the weight of an
infant and lower respiratory infections. Med Officer 1970;123:
257-62.

230. Newberne PM. Overnutrition and resistance of dogs to distemper

231. Newberne PM. Interactions of nutrition, infection and immune re-
ponses in animals. In: Chandra RK, Newberne PM, eds. Nutrition,