CONTROL OF THE MALIGNANT HYPERPYREXIC SYNDROME IN MHS SWINE BY DANTROLENE SODIUM

GAISFORD G. HARRISON

SUMMARY

Experiments are described which demonstrate that dantrolene sodium effectively terminates the syndrome of malignant hyperpyrexia induced in susceptible swine by exposure to halothane. Dantrolene is also shown to block initiation of the syndrome of malignant hyperpyrexia by halothane in MHS swine. Therapeutic use of this drug in patients with anaesthetic-induced malignant hyperpyrexia appears to be indicated.

Anaesthetic-induced malignant hyperpyrexia is a rare, often fatal syndrome affecting man and the pig, which results from a genetic intrinsic functional defect within the muscle fibre (Relton, Britt and Steward, 1973; Harrison, 1973b). Rigor of muscle is its predominant clinical feature.

In 1967, Snyder and associates reported the synthesis of a series of hydantoins which proved to have muscle relaxant properties. One of these, dantrolene sodium* was extensively investigated and its pharmacological effects were demonstrated to follow an action on the intrinsic mechanism of muscle contraction. In addition, it was shown to act only on skeletal muscle and to have no effect on cardiac muscle or smooth muscle (Ellis et al., 1973). Because of this, the effects of dantrolene sodium on the syndrome of malignant hyperpyrexia induced by halothane in malignant hyperpyrexia susceptible (MHS) swine were investigated.

METHOD

In this investigation, use was made of an experimental protocol previously described (Harrison, 1973a). In MHS swine selected by reaction to halothane prescreening and estimation of serum c.p.k. levels, monitoring of vital parameters was established under initial ketamine or ketamine/thiopentone anaesthesia, followed by endotracheal intubation and maintenance of anaesthesia with nitrous oxide and oxygen. IPPV was provided when required by a Blease Pulmoflator.

Monitoring included:
(1) E.c.g.
(2) Observation of rigor (see fig. 1).
(3) Temperature measurement by means of a thermistor probe (Ellab, Denmark) inserted deep into the muscle mass of the thigh.
(4) Repeat sampling of mixed venous blood from a right atrial cannula.

Thereafter, the syndrome of malignant hyperpyrexia was initiated by the administration of halothane by IPPV commenced at a concentration of 2.5% and gradually reduced to 0.5% thereafter.

Once the hyperpyrexic syndrome was well established with marked muscle rigor, acidosis and an increase of temperature of 2°C or more, dantrolene sodium (0.5 mg/ml) was administered intravenously; a dosage of 1 mg/kg in early experiments was later increased to as much as 7–10 mg/kg.

The solubility of dantrolene is limited. The

Fig. 1. MHS pig's hind legs before and after onset of rigor following halothane (note extension). The phenomenon may be recorded by attachment of the trotter by string over a pulley to a recording pen on a revolving drum. During rigor the muscle mass is palpably hard.

*1-[(5-(p-nitrophenyl)furfurylidene)amino]hydantoin sodium hydrate synthesized by Norwich Pharmacal Company Laboratories, New York.

GAI SFORD G. HARRISON, M.D. (CAPE TOWN), F.F.A.R.C.S. (ENG.), Department of Anaesthetics, University of Cape Town, South Africa.
formulation used in these experiments was that described by Castellion (1973, personal communication):

- Dantrolene sodium 300 mg
- Mannitol 26.640 g
- Sodium hydroxide 48 mg
- Water to make 600 ml

Blood samples for acid-base, c.p.k. and potassium estimations were taken:
1. Immediately before exposure to halothane.
2. When the syndrome was established.
3. After administration of dantrolene.

Eight such experiments were undertaken using 5 pigs, the experiment being performed three times in one pig, twice in another and once each in the remaining 3 pigs.

It must be appreciated that in this somewhat crude and empiric (though effective) intact animal experiment, judgement of the moment at which to commence treatment was difficult, and precise criteria as to the degree of temperature increase could not be adhered to. The rate at which reactor pigs develop the syndrome differs. While it was desired that the syndrome be well enough established in terms of muscle rigor and increase in temperature, to render any response to dantrolene unequivocal, care had to be taken not to jeopardize the entire experiment by risking sudden death of an animal from cardiac arrest resulting from the concomitant acidosis and hyperkalaemia. In some experiments, not only was the moment of commencing dantrolene dictated by the onset of cardiac arrhythmia, but in two animals “Isoprin” 5 mg (Iproveratril, Knoll, Germany) (shown in previous experiments to have no effect on the syndrome (Harrison, 1972, unpublished data)) was used to control this before the administration of dantrolene. Once well initiated, the syndrome is independent of the concentration of halothane, which appears to act as a trigger (Berman et al., 1970). In five experiments, halothane was discontinued 8–18 min before administration of dantrolene, the syndrome continuing unabated with further increases in temperature of from 0.5 to 1.9°C. In three experiments halothane was continued for 2–4 min after commencement of dantrolene. In neither event did this appear to affect the outcome.

The only ancillary treatment generally applied was the administration of sodium bicarbonate following the onset of rigor. Ambient temperature during these experiments was 21–22°C and with one exception active cooling was not used. In the exception, ice blocks were applied to an animal after the temperature had decreased from 43.8°C to 41°C. Ambient temperature on this day was 25°C.

Complementary to the therapeutic use of dantrolene, its ability to block initiation of the hyperpyrexic syndrome by halothane in MHS pigs was also investigated in two experiments (a week apart) on a single fast reactor pig. In these experiments, following establishment of monitoring under initial ketamine / nitrous oxide / oxygen anaesthesia as described, and treatment of the animal with dantrolene 3 mg/kg, the animal was exposed to halothane inhalation for 90 min. Commencing at 2.5%, the halothane concentration was reduced over 30 min to 1%, at which concentration it was maintained.

RESULTS
The results of these experiments with details of the duration of the malignant hyperpyrexic syndrome before treatment, the actual increase in body temperature, maximum temperature attained, dose of dantrolene and final outcome in terms of survival, are presented in table I. A temperature and events chart of one experiment, typical of all the experiments, is reproduced in figure 2.

In the established syndrome of malignant hyperpyrexia in susceptible pigs, the administration of dantrolene caused:
1. Rapid loss of muscle rigor commencing within 5 min and usually complete within 20 min.
2. Immediate cessation of the increase in deep muscle temperature followed by a rapid decrease.
3. Termination of the progressive, inexorable acidosis characteristic of the syndrome (Harrison et al., 1969) rendering easy the buffering of acidosis developed until the dantrolene administration.

All pigs, except the first, used in the 8 experiments survived. This first pig, after showing a dramatic initial response to what, in the light of subsequent experience, proved to be too small a dose of dantrolene, suffered a recurrence of the syndrome with subsequent death (see table I).

Dantrolene pretreatment of an MHS pig effectively blocked initiation of the hyperpyrexic syndrome by halothane, allowing exposure of the animal to inhalation for 90 min with impunity. The time period of 90 min was chosen arbitrarily as being a period six times in excess of the previously tested “reaction” time of the pig used.
TABLE I

<table>
<thead>
<tr>
<th>Pig No. and weight</th>
<th>Resting c.p.k. A units/ml at 25°C (normal 0-50)</th>
<th>MH duration before dantrolene (min)</th>
<th>Increase in temp. (°C)</th>
<th>Max. temp. (°C)</th>
<th>Dose of dantrolene (mg/kg)</th>
<th>Temp. decrease in first 20 min (°C)</th>
<th>Final temp. (°C)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 70 kg</td>
<td>364</td>
<td>36</td>
<td>3.2</td>
<td>40.1</td>
<td>1</td>
<td>0.6</td>
<td>42.0</td>
<td>Died</td>
</tr>
<tr>
<td>168 120 kg</td>
<td>720</td>
<td>14</td>
<td>2.1</td>
<td>38.5</td>
<td>1</td>
<td>1.9</td>
<td>36.7</td>
<td>Survived</td>
</tr>
<tr>
<td>168 125 kg</td>
<td>817</td>
<td>40</td>
<td>2.4</td>
<td>38.8</td>
<td>2.5</td>
<td>2.2</td>
<td>36.4</td>
<td>Survived</td>
</tr>
<tr>
<td>182 30 kg</td>
<td>4932</td>
<td>38</td>
<td>3.6</td>
<td>42.2</td>
<td>7</td>
<td>2.0</td>
<td>38.4</td>
<td>Survived</td>
</tr>
<tr>
<td>180 39 kg</td>
<td>1480</td>
<td>18</td>
<td>2.0</td>
<td>40.2</td>
<td>6</td>
<td>1.4</td>
<td>38.2</td>
<td>Survived</td>
</tr>
<tr>
<td>180 40 kg</td>
<td>1340</td>
<td>21</td>
<td>2.0</td>
<td>40.5</td>
<td>10</td>
<td>1.5</td>
<td>38.4</td>
<td>Survived</td>
</tr>
<tr>
<td>180 44 kg</td>
<td>1440</td>
<td>36</td>
<td>3.2</td>
<td>40.0</td>
<td>7</td>
<td>2.6</td>
<td>37.3</td>
<td>Survived</td>
</tr>
<tr>
<td>74 30 kg</td>
<td>348</td>
<td>30</td>
<td>3.8</td>
<td>42.8</td>
<td>10</td>
<td>1.8</td>
<td>38.0</td>
<td>Survived</td>
</tr>
</tbody>
</table>

Different weights recorded for the same pig used more than once reflect weight gain with time.

Fig. 2. Temperature (deep muscle) and events chart of typical experiment on MHS pig weighing 45 kg. Dantrolene administered as i.v. dnp infusion for duration of square so marked. Biochemical values from mixed venous blood.

DISCUSSION

Untreated, the developed syndrome of malignant hyperpyrexia in pigs has a mortality rate of 100% (Harrison et al., 1969). While earlier work has demonstrated that it was possible to reverse the syndrome with procaine, especially if it was administered early enough (Harrison, 1971), the three out of five (60%) mortality for the established syndrome in pigs so treated described in this paper, has continued in our subsequent animal experiments. To date, procaine is the only drug that has been shown to have any effect on the established syndrome.

These experiments demonstrate that dantrolene has the property of relaxing the muscle rigor which characterizes malignant hyperpyrexia in the pig, and that concomitantly the excess heat and acid production cease. A survival rate of 100% was achieved in the last seven of eight experiments. In contrast to procaine, dantrolene has no effect on the myocardium, a factor which permits its use up to the limits of therapeutic effectiveness.

The pharmacology and toxicology of dantrolene have been extensively investigated in humans (Basmajian and Super, 1973; Chyatte and Birdsong, 1971; Chyatte, Birdsong and Bergman, 1971; Herman, Mayer and Newcombe, 1972) and it has been used extensively in the management of conditions characterized by muscle spasticity. The experiments reported here indicate that dantrolene should prove to be a most effective therapeutic agent in the treatment of malignant hyperpyrexia in humans.

ACKNOWLEDGEMENTS

Dantrolene sodium was supplied by the Norwich Pharmacal Company, New York. The project was supported financially by the Anglo-American and De Beers Anaesthetic Research Fund and the Joseph Stone Anaesthetic Research Fund. Brian Sasman undertook the initial screening of the pigs which were supplied by the Department of Surgery, University of Cape Town. Biochemical estimations were undertaken by Philip R. Abraham of the Department of Anaesthetics, University of Cape Town.
REFERENCES

—. (1973b). Recent advances in an understanding of malignant hyperpyrexia. Anaesthesist, 22, 373.

