Invasive mould infections: a multi-disciplinary update

GEORG MASCHMEYER*, THIERRY CALANDRA†, NINA SINGH‡, JOSEPH WILEY¶ & JOHN PERFECT§

*Department of Haematology and Oncology, Center for Haematology, Oncology and Radiotherapy, Klinikum Ernst von Bergmann, Potsdam, Germany, †Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, ‡Veterans Affairs Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, ¶Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Herman and Walter Samuelson Children’s Hospital at Sinai, Baltimore, Maryland, USA, and §Duke Mycology Research Unit, Duke University Medical Center, Durham, North Carolina, USA

Systemic fungal infections remain a significant cause of mortality in neutropenic and immunocompromised patients, despite advances in their diagnosis and treatment. The incidence of such infections is rising due to the use of intensive chemotherapy regimens in patients with solid tumours or haematological cancers, the increasing numbers of allogeneic haematopoietic stem cell and solid organ transplants, and the use of potent immunosuppressive therapy in patients with autoimmune disorders. In addition, the epidemiology of systemic fungal infections is changing, with atypical species such as Aspergillus terreus and zygomycetes becoming more common. Treatment has traditionally focused on empirical therapy, but targeted pre-emptive therapy in high-risk patients and prophylactic antifungal treatment are increasingly being adopted. New treatments, including lipid formulations of amphotericin B, second-generation broad-spectrum azoles, and echinocandins, offer effective antifungal activity with improved tolerability compared with older agents; the potential impact of these treatments is reflected in their inclusion in current treatment and prophylaxis guidelines. New treatment strategies, such as aerosolized lipid formulations of amphotericin B, may also reduce the burden of mortality associated with systemic fungal infections. The challenge is to identify ways of coupling potentially effective treatments with early and reliable identification of patients at highest risk of infection.

Keywords amphotericin B, azoles, echinocandins, transplantation, neutropenia, aspergillosis, zygomycosis

Introduction

The incidence of systemic fungal infections such as invasive aspergillosis (IA) has increased during the past two decades, largely due to the use of intensive chemotherapy regimens in patients with haematological malignancies, increasing numbers of allogeneic haematopoietic stem cell and solid organ transplants, and the broad use of potent immunosuppressive therapy in many different patient groups [1]. This increase has been facilitated by improvements in the management of such infections resulting from the introduction of more effective drugs, and the advent of new diagnostic approaches, such as high-resolution computed tomography (CT) [2] and Aspergillus galactomannan antigen assays [3], that may provide early identification and treatment. Despite these advances, however, mortality and morbidity remain high. For example, in a meta-analysis of 50 trials including a total of 1941 patients, the overall case-fatality rate associated with IA was 58%, and mortality rates ranged from 49.3% in patients...
with leukaemia or lymphoma to 86.7% in patients undergoing allogeneic bone marrow transplantation [4]. In contrast, starting effective systemic antifungal therapy (AFT) pre-emptively, based upon early diagnosis of pulmonary infiltrates by means of serial thoracic CT scans, may reduce aspergillosis-related mortality to below 20% [5]. However, the cultural or histological proof of invasive mould infection (IMI) is lacking in almost all of these patients, so that an undefined number of patients may also have had non-fungal causes of their pulmonary infiltrates.

The importance of prompt and effective treatment of systemic fungal infections is highlighted by a study that compared primary treatment with voriconazole versus intravenous amphotericin B, both followed by oral licensed AFT, in patients with IA, the majority of whom had haematological disorders [6]. The overall response rate (both complete and partial responses) was 52.8% with voriconazole and 31.6% with amphotericin B, and the survival rates at 12 weeks were 70.8% and 57.9%, respectively (hazard ratio [HR] 0.59, 95% confidence interval [CI] 0.40–0.88, \(P = 0.02 \)). Importantly, the study showed that unsuccessful first-line therapy can markedly affect the response to subsequent treatment: among patients who were switched to other antifungal agents because of insufficient clinical response, only 26% of those originally randomized to voriconazole, and 19% of those randomized to amphotericin B, showed a successful outcome at 12 weeks [7].

Some important aspects of the epidemiology and current management of invasive fungal infections are updated in this paper.

Epidemiology and risk factors of invasive fungal infections

Although *Aspergillus* and *Candida* species remain the principal pathogens associated with invasive fungal infections, the epidemiology of such infections has changed considerably during the past three decades, and is continuing to evolve. Prior to the 1980s, the majority of deaths from systemic fungal infections were associated with *Candida* species, but following the introduction of fluconazole, *Candida*-related deaths have decreased while infections caused by moulds, particularly *Aspergillus* species, have increased [8,9]; indeed, *Aspergillus* is now the most common cause of systemic fungal infections in patients undergoing allogeneic bone marrow transplantation and those with acute leukaemia undergoing intensive chemotherapy [10]. Patients with haematological malignancies account for approximately 50–60% of systemic fungal infections (Fig. 1) [11]. Moreover, the incidence of fungal infections in these patients is increasing (Fig. 2) [12–14] and retrospective autopsy data show that approximately 75% of such infections are not diagnosed prior to death [13].

Among 395 patients undergoing allogeneic haematopoietic stem cell transplantation, 2-year survival among those with a non-*Candida* systemic fungal infection was 20%, compared with 55% among non-infected patients (\(P < 0.0001 \)); the development of a non-*Candida* infection was the strongest independent risk factor for death, with an odds ratio of 5.6 (95% CI 3.7–8.6, \(P < 0.0001 \)) [15]. The principal risk factors for the development of such infections in these patients

Fig. 1 Underlying diseases in 88 patients with invasive aspergillosis [11].

Fig. 2 Incidence of mould and yeast infections in patients with haematological malignancies between 1999 and 2003 [12].

© 2009 ISHAM, Medical Mycology, 47, 571–583
were moderate-to-severe graft-versus-host disease (GVHD; odds ratio [OR] 4.6, 95% CI 2.2–9.7, \(P < 0.0001\)) and corticosteroid treatment for GVHD (OR 2.1, 95% CI 1.1–4.1, \(P = 0.04\)). The risk of infection increased from 4–11% when one of these risk factors was present, and to 33% when both were present [15]. Cytomegalovirus (CMV) infection is also a significant risk factor for IA in patients undergoing allogeneic stem cell transplants; in a study in 1682 patients, those infected with this virus were seven times (95% CI 4.5–10.8) more likely to develop IA than those without CMV [14]. The susceptibility of patients with CMV disease to opportunistic fungal infections reflects the known immunosuppressant effects of CMV [16–18], particularly against cell-mediated immune responses, and is probably also due to myelosuppression from CMV treatment with ganciclovir.

In a retrospective study of 1850 patients admitted to a medical intensive care unit, 127 (6.9%) showed microbiological or histopathological evidence of *Aspergillus* [19]. Of these, 89 (70.1%) did not have haematological malignancies: the most common underlying medical conditions in these patients were chronic obstructive pulmonary disease (COPD) in 42%, autoimmune disorders treated with immunosuppressants in 19%, and solid organ transplants in 10%. Overall mortality in patients without haematological malignancy was 80%. *A. fumigatus* is the most commonly isolated species [20], although other species are increasingly being encountered. In one study, for example, the incidence of *A. terreus*, expressed as a percentage of all *Aspergillus* isolates, increased from 1.5% in 1996 to 15.4% in 2001 (\(P < 0.001\)) [21]. This has important clinical implications because *A. terreus* is resistant to amphotericin B [22,23], and is associated with rapid disease progression and high mortality; in one series, six of 11 immunocompromised patients with invasive pulmonary aspergillosis caused by *A. terreus* developed disseminated disease, and 10 died [24].

The incidence of infections caused by zygomycetes is increasing, as are those of uncommon hyalohyphomycoses (caused by *Fusarium* and *Scedosporium* spp.) and phaeohyphomycoses (*Bipolaris*, *Exophiala* and *Wangiella* spp.). The increase in zygomycosis has been observed in patients without underlying malignancies as well as in patients with cancer and those undergoing bone marrow transplantation [25]. In a review of 929 patients with zygomycosis, patients with diabetes accounted for the highest proportion of cases (36%), followed by those without underlying disorders (19%) and those with malignancies (17%) [25]. Zygomycosis is highly aggressive and associated with mortality ranging from 76% in patients with pulmonary infection to 96% in those with disseminated disease [25]. It has been discussed that the rising incidence of zygomycosis may be associated with increasing use of voriconazole to prevent and treat aspergillosis (Fig. 3) [26,27]; for example, in a prospective comparison of patients with IA or zygomycosis, the OR for the development of zygomycosis associated with voriconazole prophylaxis was 20.3 (95% CI 3.85–108.15, \(P = 0.0001\)) [26].

Diagnosis of systemic fungal infections

Early diagnosis is critical for a favourable outcome in patients with systemic fungal infections. However, this remains challenging due to the low sensitivity of microbiological culture techniques and the low specificity of radiological procedures, particularly in neutropenic patients [28,29]. At best, *Aspergillus* can be isolated in 34% of sputum specimens and 62% of bronchoalveolar lavage (BAL) specimens from transplant patients with pulmonary aspergillosis [30,31]. Therefore, histopathological confirmation of the diagnosis is usually needed.

![Figure 3](https://example.com/figure3.png)

Fig. 3 Increasing incidence of zygomycosis (a) in relation to the use of voriconazole prophylaxis (b) [26]. BMT, bone marrow transplantation; IA, invasive aspergillosis.
required, but thrombocytopenia may preclude transbronchial or open lung biopsies [31].

Typical radiographic signs of invasive pulmonary mould infection include the halo sign and the air crescent sign. The halo sign is a sensitive but nonspecific marker of IA, and is short-lived: its prevalence on computed tomography (CT) scans decreases from 68% at 3 days after diagnosis to 22% at 7 days [5]. The air crescent sign is detected in 8% of cases at 3 days after diagnosis, in 28% at 7 and 63% at 14 days, indicating that characteristic CT signs change with time, and that early and repeated imaging is essential for diagnosis. Importantly, the presence of a halo sign is associated with a favourable outcome among those treated on the basis of this finding. In a subanalysis of a randomized trial on IA treatment with voriconazole [6], 61% of patients had halo signs at the time of presentation, whereas other CT signs, such as consolidations, cavitary lesions and air crescent signs, were present in 10–30% of cases [32]. The response to treatment was higher in patients with halo signs, compared with those with other imaging findings (52% versus 29%, P < 0.001), and survival rates at 84 days were also higher (71% versus 53%, P < 0.01). In clinical practice, mould-active AFT is started preemptively in at-risk febrile patients with thoracic CT findings compatible with early pulmonary filamentous fungal infection, while microbiological and/or non-culture based confirmation of mould infection is sought from blood or respiratory tract specimens (see below). However, in patients who have been pre-treated with voriconazole, or who have multiple pulmonary nodules and pleural effusion on CT scans, zygomycosis may be more likely than in patients without these characteristics [26,33].

Diagnostic laboratory testing

Current diagnostic tests for systemic fungal infections include measurement of *Aspergillus* galactomannan (GM) or (1,3)-β-D-glucan, and polymerase chain reaction (PCR) assays for *Aspergillus* DNA. GM is a polysaccharide cell wall component of *Aspergillus* that is released into the circulation during fungal growth in tissues, and can be measured by sensitive enzyme-linked immunosorbent assay (ELISA) techniques [3,34,35]. In patients undergoing cancer chemotherapy or haematopoietic stem cell transplantation, GM assays have shown a sensitivity of 67–100% and a specificity of 86–99% for the detection of *Aspergillus*, whereas lower specificities (15–30%) have been reported in non-neutropenic patients [3,34,36-40]. When serial GM testing was performed, a positive GM test typically preceded the proven diagnosis of IA by 6–14 days.

(1,3)-β-D-glucan is an integral cell wall component of a number of pathogenic yeasts and filamentous fungi [41]. Sensitivities of 67–100%, and specificities of 84–100%, have been reported with the standard *Limulus* colorimetric assay [[41–44]]. In a recent study, a positive test for (1,3)-β-D-glucan was found to precede the diagnosis of IA by a median of 3 days [45].

PCR-based tests for *Aspergillus* are not yet commercially available and not standardized. They have a high (92–99%) negative predictive value in blood or BAL samples [34], however, the positive predictive value in BAL samples is low, apparently due to transient colonization of the respiratory tract by *Aspergillus* [46]. In blood-based assays, sensitivities of 79–100% and specificities of 81–93% have been reported [47–49]. PCR assays are considerably more sensitive than culture techniques: in one study, PCR was 19 times more sensitive than culture for the detection of *A. fumigatus* [50].

Treatment and prevention of systemic fungal infections

Empirical AFT has been demonstrated to prevent overt invasive fungal infection in the majority high-risk neutropenic patients with fever refractory to broad-spectrum antibiotics [51–53]. Concerns about unselected administration of systemic antifungals resulting in significant costs, adverse events, and possible emergence of resistance to broad-spectrum antifungals have, however, led to studies on alternative clinical approaches, restricting AFT to patients with clinical, imaging and/or laboratory findings more specific for invasive mould infection than just persisting fever.

Current guidelines on empirical antifungal treatment and primary treatment of invasive aspergillosis in haematological patients

Evidence-based guidelines for the empirical administration of antifungals in high-risk patients, and for primary treatment of IA, have been published by the Infectious Diseases Society of America (IDSA) [54], and the European Conference on Infections in Leukaemia (ECIL) (Table 1) [55,56]. For empirical therapy, liposomal amphotericin B (L-AmB) and caspofungin are supported by the strongest evidence.

In patients with IA, both the ISDA guidelines [54] and the ECIL-2 guidelines [56] recommend voriconazole as first-line therapy [6]. However, the intravenous form of this agent is not appropriate for all patients, as...
Table 1 Recommendations of the 2nd European Conference on Infections in Leukaemia (ECIL-2) for empirical therapy in patients with systemic fungal infections [55]

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Dose</th>
<th>Level of recommendation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liposomal amphotericin B</td>
<td>3 mg/kg</td>
<td>A</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>50 mg</td>
<td>A</td>
</tr>
<tr>
<td>Amphotericin B lipid complex</td>
<td>5 mg/kg</td>
<td>B</td>
</tr>
<tr>
<td>Amphotericin B colloidal dispersion</td>
<td>4 mg/kg</td>
<td>B</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>2 × 3 mg/kg i.v.</td>
<td>B</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>200 mg i.v.</td>
<td>B</td>
</tr>
<tr>
<td>Amphotericin B deoxycholate</td>
<td>0.5–1.0 mg/kg</td>
<td>B/D†</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>400 mg i.v.</td>
<td>C</td>
</tr>
</tbody>
</table>

*Strength of evidence is graded A–E. For all agents, both efficacy and safety are graded I for quality of evidence (i.e., supported by at least one properly designed, randomized, trial).
†B in the absence of risk factors for renal toxicity (e.g., impaired renal function at baseline, concomitant nephrotoxic medication, or history of previous toxicity); D in the presence of such risk factors.

it is subject to numerous drug interactions, mainly due to inhibition of cytochrome P450 activity [57], and its use is contraindicated in patients with moderate or severe renal dysfunction (creatinine clearance <50 ml/minute). Lipid formulations of amphotericin B (LF-AB) may be an appropriate alternative to voriconazole as first-line therapy of IA. In a randomized, double-blind, trial involving 201 patients with confirmed systemic fungal infections (IA in 97%), the response rates achieved with liposomal amphotericin B (L-AmB), 3 mg/kg and 10 mg/kg, were 50% and 46%, respectively, and the 12-week survival rates were 72% and 59%, respectively [58]. There was no significant difference in efficacy between the two doses, although nephrotoxicity and hypokalaemia were significantly more common with the higher dose. Among 398 patients who had received amphotericin B lipid complex (ABLC) for IA, the overall response rate was 65%: 44% were cured or improved, and 21% had stabilization of infection at the end of therapy (Fig. 4) [20].

In patients not showing a favourable clinical response to this first-line therapy, there is a paucity of data allowing for a clear proof of treatment failure [59,60]. Switching to second-line or “salvage” AFT should be considered in patients in whom insufficient dosing [61], inhibitory drug-drug interactions [62] or differential diagnoses such as immune reconstitution syndrome [63] have been properly excluded. There are, however, few data to guide the choice of second-line AFT in patients with IA. Both the ECIL-2 and IDSA guidelines recommend class switches (i.e., LF-AB in patients primarily treated with voriconazole, voriconazole or posaconazole in patients primarily treated with LF-AB), and combinations with echinocandins such as caspofungin as an experimental option [54,56]. Among 83 patients with IA (73% of whom had haematological malignancies or had undergone stem cell or bone marrow transplantation), who were refractory to or intolerant of amphotericin B or triazoles, the overall success rate with caspofungin was 45%; the response rate was 50% in patients with pulmonary aspergillosis and 23% in those with disseminated aspergillosis [64]. Salvage therapy with posaconazole resulted in an overall success rate of 42%, compared with 26% in historical controls (OR 4.1, 95% CI 1.5–11.0, P = 0.006) [65].

Primary antifungal treatment of zygomycosis

Treatment options in patients with zygomycosis include LF-AB and posaconazole. The overall response rate in patients with zygomycosis treated with ABLC was 72% [66]. Impaired renal function stabilized or improved in the majority of patients with pre-existing renal disease, indicating that this formulation is less nephrotoxic than conventional amphotericin B. In a retrospective review of 91 patients with zygomycosis treated with posaconazole, the rate of complete plus partial response at 12 weeks was 60%, and a further 21% of patients had stable disease [67].

Pre-emptive antifungal therapy

An alternative to empirical AFT, or targeted AFT restricted to proven invasive mycoses, may be pre-emptive AFT in high-risk patients with clinical, laboratory and/or imaging findings indicative for invasive fungal infection. This approach was evaluated in 136 high-risk neutropenic patients, all of whom received prophylaxis with fluconazole and underwent screening by means of daily GM assays [28]. Seropositive patients, and those with positive microbiological tests plus supportive radiological findings, received L-AmB, 5 mg/kg/day. This approach reduced the use of AFT in patients with neutropenic fever by 78%, from 35% to 7.7%; furthermore, it led to the early initiation of AFT in 10 episodes (7.3%) where invasive infection was not suspected on clinical criteria. These findings suggest that pre-emptive AFT might provide effective antifungal control, while reducing exposure to potentially toxic antifungal drugs: however, this approach has not yet been validated in patients who are on mould-active antifungal prophylaxis, and in this study the pre-emptive approach failed to detect non-Aspergillus infections. A recently published study...
comparing pre-emptive with empirical AFT in high-risk, febrile neutropenic patients showed that the number of proven IMIs increases in patients with pre-emptive as compared with empirical AFT, but that overall mortality rates are not significantly affected, while acquisition costs for antifungals are reduced [68].

Primary and secondary antifungal prophylaxis

Fluconazole has been standard antifungal prophylaxis in patients undergoing allogeneic haematopoietic stem cell transplantation [69–73], while itraconazole has not been shown to provide more effective antifungal prophylaxis in a direct randomized comparison [74]. Recent studies have shown that posaconazole provides more effective prophylaxis than these agents in neutropenic patients with acute myeloid leukaemia or myelodysplastic syndrome [75], and is superior to fluconazole in patients with severe GVHD [76]. However, the use of azoles for prophylaxis may preclude their therapeutic use in patients with established infections, due to concerns about the emergence of atypical pathogens and the potential for antifungal resistance [23,77–80]. Current ECIL-2 recommendations for antifungal prophylaxis are summarized in Table 2 [81]. In patients undergoing repeated episodes of intensive myelosuppression, preferably those with acute myeloid leukaemia, bridging systemic AFT from hospital discharge to re-admission by administration of secondary prophylaxis with a broad-spectrum azole has been reported to minimize IMI relapses [82,83].

Table 2 ECIL-2 recommendations for antifungal prophylaxis [81]

<table>
<thead>
<tr>
<th>Strength and quality of evidence*</th>
<th>Allogeneic haematopoietic stem cell transplantation</th>
<th>Induction chemotherapy of acute leukaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluconazole i.v./oral</td>
<td>CI</td>
<td>A1</td>
</tr>
<tr>
<td>Itraconazole i.v. then oral</td>
<td>BI</td>
<td>CI</td>
</tr>
<tr>
<td>Posaconazole oral</td>
<td>AI</td>
<td>AI</td>
</tr>
<tr>
<td>Micafungin i.v.</td>
<td>CI</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Polyenes i.v.</td>
<td>CI–CII</td>
<td></td>
</tr>
</tbody>
</table>

*Strength of evidence is graded A–E; quality of evidence is graded I–III.
Systemic mould infections in solid organ transplant patients

Epidemiology and risk factors

The increasing number of solid organ transplants has resulted in a concomitant rise in the incidence of associated systemic fungal infections, such that these procedures now account for approximately 11% of cases of IA (Fig. 1) [11]. In patients undergoing liver or lung transplants, the incidence ranges from 1–8% and 3–14%, respectively, compared with 0.4% for kidney transplant recipients and 1–3% for pancreas transplant patients [31]. A mortality rate of 87% is seen in liver transplant patients, compared with 70–80% after other transplants [31].

Infection with *Aspergillus* can be detected in airway sample cultures from approximately 25–30% of lung transplant recipients, with IA developing in 3–15% [31]. The most common types of infection are tracheobronchitis or bronchial anastomotic infections, which account for 58% of IA cases; invasive pulmonary aspergillosis occurs in 32% of cases and disseminated infection in 22% [31]. The median time to onset of aspergillosis is 3.2 months after transplantation; 51% of cases occur within 3 months, and 72% occur within 6 months [31,84]. Risk factors for bronchial anastomotic infections include airway ischaemia, reperfusion injury, bilateral lung transplantation, T cell-depleting induction therapy, and sirolimus-based immunosuppression [85,86].

Aspergillus infections in patients undergoing liver transplantation typically occur during the early postoperative period: median times to onset of 16–17 days have been reported [31,87,88], however, delayed occurrences have been documented [89]. Disseminated infection is more common after liver transplantation than after other transplants, occurring in 50–60% of cases, compared with 12–20% of lung transplant recipients and 20–35% of heart transplant recipients [31].

Renal failure, particularly when renal replacement therapy is required, is associated with a 15–25-fold increase in the risk of IA [31]. This has important implications because the number of liver transplants in patients with renal dysfunction has increased exponentially since the introduction of MELD (Model for End-stage Liver Disease) [90]. Re-transplantation is associated with a 30-fold increase in the risk of IA [91,92], and accounts for 25% of all IA cases, and 21% of related deaths, among liver transplant recipients. The mortality rate was 82% among patients who developed IA after re-transplantation, compared with 72% among those developing the infection after their primary transplant (P = 0.4) [93]. In the same study, the outcome of IA was worse after late re-transplantation (≥30 days after primary transplant) than after earlier re-transplantation. Other risk factors include transplantation for fulminant liver failure, repeated intra-abdominal or intrathoracic surgery, and preoperative steroid treatment [31,91,92].

An increasingly high proportion of mould infections in organ transplant recipients are due to organisms other than *Aspergillus*: 27% of all mould infections are due to other hyaline and dematiaceous moulds and zygomycetes [94].

Antifungal chemoprophylaxis

Antifungal prophylaxis in liver transplant recipients has typically involved fluconazole or itraconazole or, less commonly, LF-AB. A meta-analysis of six randomized studies comparing these agents with placebo (five studies) or oral nystatin, showed that prophylactic treatment reduced the incidence of fungal colonization (relative risk [RR] 0.45, 95% CI 0.37–0.55), total proven fungal infections (RR 0.31, 95% CI 0.21–0.46), and invasive fungal infections (RR 0.33, 95% CI 0.18–0.59), and decreased mortality attributable to fungal infections (RR 0.30, 95% CI 0.12–0.75); however, there was no effect on overall mortality or the use of empirical treatment for suspected infections [95]. It should be noted, however, that the number needed to treat (NNT) to prevent one case of invasive fungal infection was 5, and to prevent attributable mortality in one case was 26; indeed, with regards to side-effects, the NNT actually favoured the control arm. Moreover, no beneficial effect on invasive *Aspergillus* infection was observed.

Several studies have investigated the use of targeted prophylaxis, mainly with LF-AB, in high-risk liver transplant patients. In a study in 280 liver transplant recipients who were treated with ABLC or L-AmB, the incidences of systemic fungal infections and IA were 6% and 4%, respectively, compared with 17% (P < 0.01) and 10% (P = 0.08), respectively, in a historical control group [96]. Among patients with four or more risk factors for systemic fungal infections, the risk of any systemic fungal infection was reduced from 36% to 14% (P = 0.07), and that of IA from 23% to 5% (P = 0.08), in patients receiving the lipid formulations. Moreover, in patients undergoing renal dialysis, the risk of aspergillosis was reduced from 32% to 0% (P = 0.03). In a further study, the use of ABLC prophylaxis in patients at high or intermediate risk of systemic fungal infection was associated with a reduction in the incidence of IMI from 5% to 1% (P = 0.08), compared with the preintervention period when antifungal prophylaxis was not provided [97].
The risk of IA in lung transplant recipients persists beyond 3 months post-transplant. Antifungal prophylaxis during the first 3 months after transplantation would prevent 62% of tracheobronchitis cases, but only 36% of pulmonary infections and 50% of disseminated infections [84]. Long-term antifungal prophylaxis is therefore necessary in lung transplant patients. As a result, voriconazole is increasingly the agent of choice because it can be given orally. In a retrospective study, the incidence of IA 1 year after transplantation was 1.5% in patients receiving universal prophylaxis with voriconazole, compared with 23% \((P = 0.001) \) in high-risk patients receiving targeted prophylaxis with itraconazole alone or with aerosolized amphotericin B [98]. However, more patients had to discontinue treatment because of adverse effects with voriconazole than with targeted prophylaxis (14% versus 8%). In 88% of cases, treatment discontinuations are due to elevations of liver enzymes. The use of aerosolized lipid formulations of amphotericin B may provide an alternative approach to prophylaxis in lung transplant recipients, with the potential for improved tolerability (see below).

Targeted antifungal prophylaxis can significantly reduce the risk of systemic fungal infections in high-risk liver transplant recipients. Indeed, the approach of targeted prophylaxis is becoming widely adopted: a recent survey of liver transplant centres in the USA found that 91% were using antifungal prophylaxis, of whom 72% directed prophylaxis specifically to high-risk patients [99].

Treatment

For AFT of IA in solid organ transplant patients, the use of combination therapy with voriconazole and caspofungin was studied [100]. The survival rate at 90 days was 67.5%, compared with 51% \((P = 0.11) \) in a control group receiving an LF-AB. Among patients with renal failure, mortality was significantly lower in the combination therapy group than in the control group (HR 0.32, 95% CI 0.12–0.85, \(P = 0.022 \)). In a retrospective study of 251 lung transplant recipients, all three patients receiving combination therapy with voriconazole and caspofungin survived, compared with two of 14 patients receiving amphotericin B alone or with itraconazole \((P = 0.014) \) [101].

IMIs in paediatric patients

Epidemiology

The incidence of systemic fungal infections in immunocompromised children is increasing, particularly among children with cancer and those receiving solid organ or allogeneic haematopoietic stem cell transplants [25,102–107]. A review of 666 paediatric cases of IA found that the children at greatest risk were those undergoing allogeneic bone marrow transplantation and those with acute myeloid leukaemia [103]. However, the incidence of IA in these high-risk groups was approximately 5% only: thus, empirical therapy or universal prophylaxis creates the risk of over-treatment in a substantial proportion of patients. The overall attributable mortality rate associated with systemic fungal infections in patients up to 20 years of age is approximately 68% for IA, compared with approximately 55–60% of patients in other age groups [4]. Effective early identification and treatment of high-risk paediatric patients is therefore essential.

Systemic antifungal treatment

Many antifungal agents have not been studied extensively in paediatric patients. Among 69 children with IA (median age 7 years) who received voriconazole for a median of 93 days, the overall response rate was 45% and a further 7% had stable disease; the highest response rates were achieved in children with chronic granulomatous disease, and the lowest in patients with haematological malignancies [108]. In this study, however, the voriconazole doses used were those developed for use in adults, and it is now recognized that the pharmacokinetics of voriconazole differ markedly in children and adults [109,110]. Higher doses on a per kilogram basis are required in younger children to achieve comparable AUCs to adult patients, highlighting the importance of specific paediatric studies and appropriate dose strategies. It is possible that voriconazole may have greater effectiveness when dosed appropriately in children. Conversely, increased effectiveness is unknown but increasing toxicity at higher per kilogram doses is also possible. Further studies with this agent in children are needed.

In an open-label, compassionate use study in 551 patients with invasive fungal infections, which included 111 episodes in paediatric patients, the response rate achieved with ABLC in patients with IA was 56%, and the overall response rate was 70% [111]. In a further study, involving 46 children (mean age 9.7 years) who received amphotericin B lipid complex (ABLC) as salvage therapy, response rates in patients with aspergillosis or candidiasis were 78% and 89%, respectively [112]. Among 548 paediatric patients (age \(\leq 20 \) years) who received ABLC for a median of 15 days (range 1–182 days), 300 (54.7%) were transplant recipients, and most were refractory to or intolerant of...
conventional AFT. Among this subset, 41.7% were recipients of haematopoietic stem cell transplants, 83.0% of whom from an allogeneic donor. In the overall transplant group, 71.7% had received one or more nephrotoxic agents. The overall response rate was 54.9%, and a further 16.9% of patients had a stable outcome. Among patients with confirmed *Aspergillus* or *Candida* infection, the overall response rates were 59% and 72%, respectively. In the subgroup of patients with *Aspergillus* infection, there was no significant difference in the response rates (complete or partial response) in transplant and non-transplant patients (40.5% versus 37.5%, respectively); however, when patients with stable disease were included, the overall response rate was significantly higher in the non-transplant group (71.9% versus 48.6%, *P* = 0.05) [113]. In the total patient population, there was no significant change in serum creatinine during ABLC therapy although a slight increase was recorded in patients aged 12–20 years, from a median of 1.2 mg/dl at baseline to 1.5 mg/dl at the end of treatment. These findings are encouraging for the use of ABLC in paediatric patients, including high-risk groups such as transplant recipients.

Aerosolized amphotericin B: a new approach to antifungal prophylaxis?

Inhaled AFT offers potential advantages, as this approach delivers the drug directly to the site of infection while reducing the risk of systemic toxicity and drug interactions. Amphotericin B has been the most widely used agent in inhalation therapy, but the results have been variable [114–116]. Nevertheless, a survey in 2001 revealed that 76% of lung transplant centres in the USA were using antifungal prophylaxis, of which 61% were using inhaled amphotericin B [117]. Approximately 75% of the aerosol particles are 1–8 μm in diameter, and thus can enter the bronchioles, while approximately 13% are less than 1 μm in diameter and can penetrate the alveoli [118].

Clinical studies have investigated the efficacy and tolerability of aerosolized LF-AB in lung transplant or stem cell patients, and in patients with haematological malignancies. An early study, involving 51 lung or heart–lung transplant patients, showed that aerosolized ABLC was well tolerated in such patients [119]. In a study in 100 lung transplant recipients receiving aerosolized amphotericin B deoxycholate (D-AmB), 25 mg, or aerosolized ABLC, 50 mg, given once daily for 4 days and then once weekly for 7 weeks for prophylaxis [120], the incidence of systemic fungal infections within 2 months was similar in both groups: 11.8% with ABLC and 14.3% with D-AmB. However, patients receiving D-AmB were significantly more likely to experience adverse events than those receiving ABLC (OR 2.16, 95% CI 1.10–4.24, *P* = 0.02). The most common adverse event was worsening dyspnoea, which occurred in 19.9% of patients receiving D-AmB and 2.1% of ABLC-treated patients, followed by cough (10.6% versus 2.1%, respectively) and taste disturbances (10.6% versus 7.7%). Decreases of 20% or more in forced expiratory volume in 1 second (FEV1) or forced vital capacity (FVC) occurred in approximately 11% of patients in both groups. A further study in 102 lung transplant patients treated with aerosolized L-AmB also showed good tolerability [121].

In a study in 382 neutropenic patients with leukemias, non-Hodgkin’s lymphoma or solid tumours, there was no significant difference in the incidence of IA between patients who received aerosolized D-AmB or placebo for antifungal prophylaxis (4% versus 7%, respectively, *P* = 0.37); moreover, there were no significant differences in overall mortality or infection-related mortality between the two groups [116]. More positive results were obtained in an open-label pilot study with aerosolized ABLC that included 40 patients undergoing allogeneic haematopoietic stem cell transplantation [122]. Patients received aerosolized ABLC once daily for 4 days and then once weekly for 13 weeks, with daily oral fluconazole throughout the study. Three proven systemic fungal infections occurred during the study, only one of which developed during study treatment. There were no cases of aspergillosis; two cases of *C. glabrata* fungaemia occurred, which were attributed to the use of fluconazole prophylaxis. Aerosolized ABLC was well tolerated: the incidence of adverse events such as cough, taste disturbances, nausea or vomiting was 2.2%. Decreases in FEV1 or FVC of 20% or more occurred after 5.2% of inhaled treatments. In a further study, involving 271 high-risk neutropenic patients, treatment with aerosolized L-AmB significantly reduced the incidence of IA, compared with placebo (4% versus 14%, *P* = 0.003) [123].

Aerosolized amphotericin B may provide an effective and safe alternative to systemic therapy for the prevention of systemic fungal infections in high-risk patients. However, large comparative studies are needed to evaluate the potential benefits of this approach. [124].

Conclusions

Despite important advances in the diagnosis, treatment, and prevention of systemic fungal infections, mortality from such infections remains high. The
potential impact of new treatments, including lipid formulations of amphotericin B, second-generation triazoles, and the echinocandins, is reflected in the inclusion of these agents in current guidelines for treatment and prophylaxis. New treatment strategies, such as the use of aerosolized lipid formulations of amphotericin B, may also have an important role to play in reducing the burden of mortality associated with systemic fungal infections. The challenge is to identify ways of coupling potentially effective treatments with early and reliable identification of patients at highest risk of infection.

Funding statement

The content of this manuscript is based on a satellite symposium of the 3rd Trends in Medical Mycology Congress, sponsored by Cephalon Europe. The initial draft of the manuscript was prepared by Dr Ann McIlhinney of Anagram Communications, funded by Cephalon Europe. The final text was written and approved by all listed authors without funding or any external influence.

Conflicts of interest

G.M. has received grants/research support from Novartis and Pfizer, consultancy fees from Gilead, MSD, Pfizer, Essex (Schering-Plough), and Novartis, and honoraria for speaking from Pfizer, MSD, Gilead, and Cephalon. T.C. has received grant support from Merck, Pfizer, and Schering-Plough, consultancy fees from Pfizer, Merck, Schering-Plough, and Novartis, and honoraria for speaking from Pfizer, Merck, Novartis, Schering-Plough, and Cephalon. N.S. has received research support from Schering-Plough, Astellas, and Enzon. J.W. has received honoraria for speaking from Cephalon and Enzon. J.P. has received research grants, consulting fees and honoraria from Enzon, Astellas, Pfizer, Merck, and Schering-Plough.

References

This paper was first published online on iFirst on 10 August 2009.

© 2009 ISHAM, Medical Mycology 47, 571–583.