peanut ball group. The use of pharmacologic and instrumental intervention was not found to be statistically different between the 2 groups, and there were no negative outcomes associated with peanut ball use.

The decrease in the length of both first and second stages of labor, along with the reduced cesarean surgery rates, support the efficacy of the peanut ball during active labor over current practices. Limitations of this study include the small study size and a significant difference between groups when it came to women’s parity and cervical dilation.

Osteopathic manipulative treatment (OMT) has been found to be effective for pregnancy-related pain and dysfunction when compared with standard intervention. Manual therapies have also shown promise as effective methods for pain relief during labor. However, there is a lack of studies examining OMT to improve labor progression. This study demonstrates the opportunity to improve labor length and outcomes by optimizing the shape of a laboring women’s pelvis, which can also be targeted by several OMT techniques (eg, sacroiliac balanced ligamentous tension, muscle energy for somatic dysfunction in the pelvic region). Additional studies are needed to investigate the potential benefits of OMT in labor progress. (doi:10.7556/jaoa.2018.110)

Remote MFR Increases Hamstring Flexibility: Support for the Fascial Train Theory

Joshi DG, Balthillaya G, Prabhu A. Effect of remote myofascial release on hamstring flexibility in asymptomatic individuals - a randomized clinical trial [published online February 17, 2018]. J Bodyw Mov Ther. doi:10.1016/j.jbmt.2018.01.008

The principle that all body structures are interconnected stands as a central concept in osteopathic medicine and is often used as a rationale when applying manual treatments. Recently, fascia and the anatomic trains created by its continuity have been of particular interest. As such, seemingly unrelated structures are theorized to have significant interplay with each other, affecting and influencing the health of individual organs and the body as a whole. Researchers from India evaluated the effect of remote myofascial release (MFR) on hamstring flexibility to demonstrate this phenomenon.

The researchers compared the effect of static stretching, remote MFR, or a combination of the 2 on hamstring flexibility. Static stretching involved directly stretching the hamstrings using hip flexion and knee extension. Distant MFR included direct, firm pressure suboccipital release and deep knuckle kneading on the plantar fascia. Fifty-eight randomly assigned participants received pre-intervention measurements of hamstring flexibility using the criterion standard Knee Extension Angle (KEA) and the

References

Sit-and-Reach Test (SRT). A physical therapist applied the intervention(s) at 7 sessions over 10 days; hamstring flexibility was subsequently remeasured. Participants were then instructed to perform their particular intervention(s) as a home-exercise program for 2 weeks, after which final measurements were taken. Analyses were conducted for both the therapist and the self-administered treatment periods.

The results showed that therapist-administered interventions in all 3 groups led to statistically significant increases in both KEA and SRT measures of hamstring flexibility, with no statistically significant differences between groups. During the self-treatment period, SRT results revealed significant increases in the SS and combination groups, but KEA results were not significant in any groups.

These findings support the fascial train theory and validate its clinical application. Therapist-administered MFR at the plantar and suboccipital fascia yielded statistically significant improvements in hamstring flexibility in lieu of, and in combination with, SS. The limitations of this study include a small sample size, lack of home program standardization, and lack of a sham or control group. Nonetheless, it offers encouraging findings regarding the whole-body approach of osteopathic physicians and supports the concept of treating fascial trains.


Brayden Healey, OMS IV
Robert Zarajczyk, OMS III
Western University of Health Sciences College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, Oregon

Michael A. Seffinger, DO
Western University of Health Sciences College of Osteopathic Medicine of the Pacific, Pomona, California

© 2018 American Osteopathic Association

JAQA Launching “Reviews in Musculoskeletal Medicine”

After summarizing important international content for 12 years, “The Somatic Connection” section is ending with this July issue. However, the JAQA is launching “Reviews in Musculoskeletal Medicine” later this year. The purpose of this section will be to briefly but critically review and update the contemporary research focused on the musculoskeletal system’s relationship to health and disease. Interested in submitting to this new section? Read more at http://jaoa.org/ss/announcements.aspx.