Folate Metabolism and Requirements

Lynn B. Bailey and Jesse F. Gregory, III
Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611

ABSTRACT Folate functions in multiple coenzyme forms in acceptance, redox processing and transfer of one-carbon units, including nucleotides and certain amino acids. Folate-requiring metabolic processes are influenced by folate intake, intake of other essential nutrients, including vitamins B-12 and B-6, and at least one common genetic polymorphism. Estimates of folate requirements have been based on intakes associated with maintenance of normal plasma and erythrocyte folate concentrations and functional tests that reflect abnormalities in folate-dependent reactions. Dietary Reference Intakes for folate that have been developed recently are based primarily on metabolic studies in which erythrocyte folate concentration was considered the major indicator of adequacy. For adults ≥19 y, the Recommended Dietary Allowance (RDA) is 400 μg/d of dietary folate equivalents (DFE); for lactating and pregnant women, the RDAs include an additional 100 and 200 μg of DFE/d, respectively. J. Nutr. 129: 779–782, 1999.

KEY WORDS: • folate • one-carbon metabolism • requirements • dietary reference intakes

Adequate folate intake is vital for cell division and homeostasis due to the essential role of folate coenzymes in nucleic acid synthesis, methionine regeneration, and in the shuttling, oxidation and reduction of one-carbon units required for normal metabolism and regulation (Wagner 1995). The supply of folate coenzymes in vivo depends primarily on the quantity and bioavailability of ingested folate and the rate of loss by urinary and fecal routes and through catabolism. During periods of inadequate folate intake or malabsorption, biochemical changes associated with inadequate folate status allow the onset of abnormalities in one-carbon metabolism. These abnormalities (e.g., hyperhomocysteinemia or DNA hypomethylation) may result in deleterious consequences, including increased risk for certain types of chronic diseases (Boushey et al. 1995, Mason 1995) and developmental disorders (e.g., neural tube defects)(Scott et al. 1995). The long-term goal in defining folate requirements involves identifying intakes that minimize deleterious processes associated with inadequate intake and optimize folate-dependent reactions in metabolism and cellular development.

Recently, new Dietary Reference Intakes (DRIs)1 for folate have been reported [Food and Nutrition Board (FNB) 1998]. The DRIs include recommendations based primarily on data from controlled metabolic studies in which blood folate concentrations were measured, along with data from population-based studies. Several newer functional status assessment methods have been proposed to further define folate requirements. In addition, data from whole-body folate kinetic studies will enhance understanding of how changes in folate intake influence many phases of folate metabolism and nutritional status (Gregory et al. 1998).

Metabolism. Folate-requiring reactions, collectively referred to as one-carbon metabolism, include those involved in phases of amino acid metabolism, purine and pyrimidine synthesis, and the formation of the primary methylating agent, S-adenosylmethionine (SAM) (Fig. 1). The central folate acceptor molecule in the one-carbon cycle is a polyglutamyl form of tetrahydrofolate (THF) (Wagner 1995). The principal function of folate coenzymes is to accept or donate one-carbon units in key metabolic pathways (Fig. 1). The conversion of THF to 5,10-methylene-THF is a crucial first step in the cycle that employs the 3-carbon unit of serine as a major carbon source. This one-carbon unit is transferred from serine to THF via pyridoxal phosphate (PLP)-dependent serine hydroxymethyltransferase (SHMT) to form 5,10-methylene-THF and glycine. A portion of the 5,10-methylene tetrahydrofolate thus produced undergoes irreversible enzymatic reduction to the methyl oxidation state (as 5-methyl-THF) by methylene tetrahydrofolate reductase (MTHFR). The N5-methyl group of 5-methyl-THF can only be used metabolically for transfer to homocysteine, which results in the regeneration of methionine. MTHFR serves a key role in one-carbon metabolism by converting methylene-THF to 5-methyl-THF, thus irreversibly directing this one-carbon moiety to methylation of homocysteine synthesis. Between 50 and 80% of the homocysteine generated is remethylated, depending on the dietary content of methionine and choline. In the methionine synthase reaction, a methyl group is removed from 5-methyl-THF, which functions as a substrate, and is sequentially transferred to the vitamin B-12 coenzyme before homocysteine, thus forming methionine. In addition to protein synthesis, methionine serves as a methyl group donor through conversion to SAM, a key biological methylating agent involved in >100 methyltransferase reactions with a wide variety of acceptor molecules.

The methionine synthase reaction also regenerates THF, required for the formation of 5,10-methylene-THF and 10-formyl-THF used directly in thymidylate and purine synthesis, respectively. In the thymidylate synthase reaction, 5,10-methylene-THF donates its CH3 unit (becoming the thymidine methyl group). In the de novo purine synthesis pathway, two separate steps utilize 10-formyl-THF.

Metabolic Control Mechanisms. The synthesis of methyl groups and other one-carbon units is tightly controlled (Shane 1995, Wagner 1995). Folate coenzymes and relevant enzymes are compartmentalized between the cytosol and the mitochondria. Metabolic products are readily transported between compartments, but the folate coenzymes are not. The cytosolic form of

1 Supported by U.S. Department of Agriculture-NRI grants
7466 and 95-37200-2310, National Institutes of Health grant HD-29911, NIH Clinical Research Center grant RR00082 and funds from the Florida Agricultural Experiment Station. Florida Agricultural Experiment Station Journal Series no. R05730.

2 Manuscript received 19 January 1999.

3 To whom correspondence and reprint requests should be addressed.

4 Abbreviations used: AI, adequate intake; ApABG, N-acetylated para-aminobenzoyleglutamate; DFE, dietary folate equivalents; DRIs, Dietary Reference Intakes; EAR, estimated average requirement; FNB, Food and Nutrition Board; MTHFR, methylene tetrahydrofolate reductase; PABG, para-aminobenzoyleglu-
5-methyl and 5-formyl-THF as SHMT inhibitors, marginal folate lism during severe deficiency. However, because of the role of nors, inadequate folate status would impair one-carbon metabo-
tain. Because folates serve as carbon acceptors, carriers and do-
and processing of substrate in one-carbon metabolism is uncer-
lism is slowly evolving. The influence of intracellular folate con-
choline and adequate supply of other relevant coenzymes) curtails
THF and SAM as in periods of high intake of methionine,
of excess methyl groups (i.e., increased intracellular 5-methyl-
the production of 5-methyl-THF. Thus, the intracellular presence
also occurs by inhibition of MTHFR by SAM, which suppresses
rather than via SHMT (Graham et al. 1997). In cytosol, the
bon transfer from folate-mediated serine oxidation (to formate)
one-carbon metabolism appears to derive much of the one-car-
In contrast to one-carbon metabolism in cytosol, mitochondrial
glycine to serine and to serve as a source of mitochondrial THF.
1997). Mitochondrial SHMT has been hypothesized to convert
glycine to serine and to serve as a source of mitochondrial THF.
consideration of the interrelationship between folate and vitamin B-12 is the
the elevations of plasma homocysteine concentrations by deficiencies of
of folate and/or vitamin B-12. Thus hyperhomocysteinemia is not
specific for folate deficiency. Homocysteine has two primary met-
abolic fates as follows: 1) conversion to methionine, and 2) catabolism via the transsulfuration pathway that involves PLP-
dependent enzymes cystathionine β-synthase and γ-cystathion-
e. Vitamin B-6 deficiency inhibits homocysteine catabolism,
which tends to increase plasma homocysteine and intracellular
SAH concentrations. In summary, folate and vitamin B-12 func-
tion in the methylation of homocysteine, whereas vitamin B-6
and folate act in the acquisition (and reduction to methyl level)
of one-carbon units from serine, and vitamin B-6 is involved in
homocysteine catabolism. Although other sources of one-carbon
units exist (e.g., choline, formate, glycine or betaine), serine
appears to be the primary carbon donor for the diverse processes of

Metabolic and Clinical Manifestations of Folate Deficiency. In the case of folate deficiency, all of the reactions in one-carbon metabolism will be compromised to varying de-
degrees depending on the relative affinities of the enzymes for the respective folate molecules involved. When reactions of one-carbon metabolism are affected by folate deficiency, various sub-
strates and metabolic intermediates will accumulate and may have negative consequences. For example, elevated plasma homocysteine during a folate deficiency has been associated with a significantly increased risk for numerous types of vascular diseases (Boushey et al. 1995, Rimm et al. 1998, Selhub et al. 1995). The pathologic mechanisms involved are still actively debated.

Clinically, severe folate deficiency yields a specific type of
anemia, a megaloblastic anemia (Lindenbaum and Allen 1995). Megaloblasts are large, abnormal, nucleated cells that are precursors of erythrocytes; in a folate deficiency, they accumulate and are found in the bone marrow. These cells arise as a result of a failure of the red cell precursors to divide normally. The resulting anemia is not the only manifestation of diminished cell division. There are also decreased numbers of white cells and platelets. There is also general impairment of cell division related to folate’s role in nucleic acid synthesis, which is more apparent in tissues that turn over rapidly, such as the hematopoietic system and the cells lining the digestive tract (Lindenbaum and Allen 1995).
Inadequate folate intake has been implicated in the development or enhancement of certain types of cancer. Proposed hypotheses regarding folate's role in carcinogenesis relate to DNA structure, stability, and transcriptional regulation; they include increased susceptibility of DNA to strand breakage, uracil misincorporation into DNA, and hyperhomocysteinemia. These phenomena may be associated with maintenance of normal one-carbon transfer reactions as described above. Inadequacies identified by abnormalities in the metabolic pathways such as hyperhomocysteinemia, hypermethylation of DNA (Jacob et al. 1998), and uracil misincorporation (Blount et al. 1997) are characteristic of functional indicators of folate status (Green and Jacobsen 1995, Selhub et al. 1993). In vivo kinetics, which are readily used to study stable isotopically labeled tracers, also will aid in defining the folate requirement more precisely (Gregory et al. 1998). In addition, a great deal of current research is focused on characterizing optimum folate intake associated with risk reduction for chronic disease (Boushey et al. 1995) and developmental defects (e.g., neural tube) (Daly et al. 1997).

The FNB recently reported new DRIs (Bailey 1998, FNB 1998) that include a folate requirement estimate for population groups referred to as the Estimated Average Requirement (EAR). The EAR for folate is defined as the amount of folate that is needed to meet the requirement of 50% of the population. This requirement estimate was based primarily on the ability of specified intakes of folate to maintain normal red cell folate concentration. Red blood cell folate concentration was defined as the primary indicator of adequacy because of its correlation with liver folate and thus tissue stores (Wu et al. 1975). Maintenance of normal homocysteine concentration was also evaluated in relation to folate intake and was considered an ancillary functional indicator of adequacy. The Recommended Dietary Allowances (RDA) were estimated from the EAR by correcting for population variance and were defined as the average level of daily dietary intake sufficient to meet the nutrient requirement of approximately 98% of the population.

As primary studies on which conclusions regarding the EAR were drawn, the FNB committee considered those metabolic studies in which folate status response to defined diets was determined. Other types of supporting data were provided by epidemiologic studies in which folate intake was estimated in conjunction with plasma folate and homocysteine concentrations. The DRIs for folate are expressed as Dietary Folate Equivalents (DFE), a term adopted by the National Academy of Sciences to adjust for the generally higher bioavailability of synthetic folic acid relative to natural folate (Green and Jacobsen 1995, Selhub et al. 1993). In vivo kinetics, which are readily studied using stable isotopically labeled tracers, also will aid in defining the folate requirement estimate for population groups referred to as the Estimated Average Requirement (EAR). The EAR for folate is defined as the amount of folate that is needed to meet the requirement of 50% of the population. This requirement estimate was based primarily on the ability of specified intakes of folate to maintain normal red cell folate concentration. Red blood cell folate concentration was defined as the primary indicator of adequacy because of its correlation with liver folate and thus tissue stores (Wu et al. 1975). Maintenance of normal homocysteine concentration was also evaluated in relation to folate intake and was considered an ancillary functional indicator of adequacy. The Recommended Dietary Allowances (RDA) were estimated from the EAR by correcting for population variance and were defined as the average level of daily dietary intake sufficient to meet the nutrient requirement of approximately 98% of the population.

As primary studies on which conclusions regarding the EAR were drawn, the FNB committee considered those metabolic studies in which folate status response to defined diets was determined. Other types of supporting data were provided by epidemiologic studies in which folate intake was estimated in conjunction with plasma folate and homocysteine concentrations. The DRIs for folate are expressed as Dietary Folate Equivalents (DFE), a term adopted by the National Academy of Sciences to adjust for the generally higher bioavailability of synthetic folic acid relative to natural folate (Green and Jacobsen 1995, Selhub et al. 1993). In vivo kinetics, which are readily studied using stable isotopically labeled tracers, also will aid in defining the folate requirement estimate for population groups referred to as the Estimated Average Requirement (EAR). The EAR for folate is defined as the amount of folate that is needed to meet the requirement of 50% of the population. This requirement estimate was based primarily on the ability of specified intakes of folate to maintain normal red cell folate concentration. Red blood cell folate concentration was defined as the primary indicator of adequacy because of its correlation with liver folate and thus tissue stores (Wu et al. 1975). Maintenance of normal homocysteine concentration was also evaluated in relation to folate intake and was considered an ancillary functional indicator of adequacy. The Recommended Dietary Allowances (RDA) were estimated from the EAR by correcting for population variance and were defined as the average level of daily dietary intake sufficient to meet the nutrient requirement of approximately 98% of the population.
which the NAS based the EAR and RDA for pregnant women included population-based studies and one controlled metabolic study (FNB, 1998). Our research group conducted the metabolic study in which folate status was monitored for 12 wk in second trimester pregnant women and nonpregnant controls who consumed one of two quantities of folate (Bonnette et al. 1996, Cauldill et al. 1997 and 1998). A folate intake of 600 μg of DFE/d was sufficient to maintain both RBC folate concentration and serum folate in the normal range in pregnant subjects and provided blood folate concentrations that did not differ from those of nonpregnant controls. The conclusion of this study was consistent with the findings from population studies that ~600 μg of DFE/d is adequate to maintain normal folate status in pregnant women.

An additional approach to estimating the folate requirements of pregnant women is the measurement of urinary folate excretory products (McPartlin et al. 1993). This approach is based on the assumption that urinary catabolic products are representative of folate utilized daily because the major route of folate turnover is by catabolism and degradation of the C9-N10 bond, producing pteridines and pteridines and pteroainsobenzoylglutamate (pABG), which is N-acetylated before excretion (ApAG). McPartlin et al. (1993) reported a twofold higher urinary ApAG excretion by pregnant women during the second trimester relative to nonpregnant controls. In contrast, data from our metabolic study in which dietary folate intake was strictly controlled indicated no change in folate carbolism due to pregnancy (Caudill et al. 1998).

Folate requirements for lactating women are increased to replace the quantity of folate secreted daily in breast milk plus the amount necessary to maintain normal folate status (Bailey 1998, FNB 1998). It is unclear whether the physiologic changes associated with lactation increase maternal folate requirements. The new EAR and RDA are 450 and 500 μg of DFE/d, respectively (Bailey 1998, FNB 1998).

Folate DRI estimates for all age categories, including infants, children and adolescents, are not based on data from controlled metabolic studies. For infants, it was not possible to estimate an EAR or RDA due to limitations in the database. For infants, children and adolescents, are not based on data from controlled metabolic studies. For infants, it was not possible to estimate an EAR or RDA due to limitations in the database.

DFE/d, respectively (Bailey 1998, FNB 1998).

An additional approach to estimating the folate requirements of pregnant women is the measurement of urinary folate excretory products (McPartlin et al. 1993). This approach is based on the assumption that urinary catabolic products are representative of folate utilized daily because the major route of folate turnover is by catabolism and degradation of the C9-N10 bond, producing pteridines and pteroainsobenzoylglutamate (pABG), which is N-acetylated before excretion (ApAG). McPartlin et al. (1993) reported a twofold higher urinary ApAG excretion by pregnant women during the second trimester relative to nonpregnant controls. In contrast, data from our metabolic study in which dietary folate intake was strictly controlled indicated no change in folate carbolism due to pregnancy (Caudill et al. 1998).

Folate requirements for lactating women are increased to replace the quantity of folate secreted daily in breast milk plus the amount necessary to maintain normal folate status (Bailey 1998, FNB 1998). It is unclear whether the physiologic changes associated with lactation increase maternal folate requirements. The new EAR and RDA are 450 and 500 μg of DFE/d, respectively (Bailey 1998, FNB 1998).

Folate DRI estimates for all age categories, including infants, children and adolescents, are not based on data from controlled metabolic studies. For infants, it was not possible to estimate an EAR or RDA due to limitations in the database. A separate DRI, designated the Adequate Intake (AI), was based on the quantity of folate consumed daily by breast-fed infants (Bailey 1998, FNB 1998). For childhood and adolescence, data were extrapolated from estimates for the EAR and RDA for adults (Bailey 1998, FNB 1998).

Table 1 summarizes the AI and RDA estimates for all age and sex categories.

LITERATURE CITED

