Moderate Cholecalciferol Supplementation Depresses Intestinal Calcium Absorption in Growing Dogs

M. A. Tryfonidou, J. J. Stevenhagen, G. J. C. M. van den Bemd, M. A. Oosterlaken-Dijkstra, H. F. DeLuca, J. A. Mol, W. E. van den Brom, J. P. T. M. van Leeuwen and H. A. W. Hazewinkel

Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands; *TNO Nutrition and Food Research, 3700 AJ Zeist, The Netherlands; †Department of Internal Medicine, Erasmus MC Rotterdam, 3000 DR Rotterdam, The Netherlands; and **Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

ABSTRACT Hormonal regulation of calcium (Ca) absorption was investigated in a cholecalciferol (vitamin D3)–supplemented group (hVitD) vs. a control group (cVitD) of growing Great Danes (100 vs. 12.5 µg vitamin D3/kg diet). Although Ca intakes did not differ, fractional Ca absorption was significantly lower in the hVitD group than in the cVitD group. There were no differences in plasma concentrations of Ca, inorganic phosphate, parathyroid hormone, growth hormone or insulin-like growth factor I between groups. Plasma 25-hydroxycholecalciferol [25(OH)D3] concentrations were maintained in the hVitD dogs at the same levels as in the cVitD dogs due to increased turnover of 25(OH)D3 into 24,25-dihydroxycholecalciferol [24,25(OH)2D3] and 1,25-dihydroxycholecalciferol [1,25(OH)2D3]. In hVitD dogs, the greater plasma 24,25(OH)2D3 concentrations and the enhanced metabolic clearance rate (MCR) of 1,25(OH)2D3 indicated upregulated 24-hydroxylase activity. The increased MCR of 1,25(OH)2D3 decreased plasma 1,25(OH)2D3 concentrations. In hVitD dogs, the greater production rate of 1,25(OH)2D3 was consistent with the 12.9-fold greater renal 1α-hydroxylase gene expression compared with cVitD dogs and compensated to a certain extent for the accelerated MCR of 1,25(OH)2D3. The moderately decreased plasma 1,25(OH)2D3 concentration can only partially explain the decreased Ca absorption in the hVitD dogs. Intestinal vitamin D receptor concentrations did not differ between groups and did not account for the decreased Ca absorption. We suggest that 24,25(OH)2D3 may downregulate Ca absorption.

KEY WORDS: • 1,25-dihydroxycholecalciferol • 24,25-dihydroxycholecalciferol • 45Ca balance • vitamin D receptor • dogs

Intestinal calcium (Ca) absorption is absorbed by both passive and active transport processes. Passive transport is a nonsaturable paracellular process, whereas active transport is saturable and transcellular. Ca absorption is passive mainly in early life (1), whereas after weaning, passive absorption decreases and active hormonally regulated absorption becomes more prominent (1,2). Cholecalciferol (vitamin D3) is essential for the hormonal regulation of intestinal Ca absorption. After its first hydroxylation in the liver into 25-hydroxycholecalciferol [25(OH)D3], it is hydroxylated mainly in the kidney into 1,25-dihydroxycholecalciferol [1,25(OH)2D3] and 24,25-dihydroxycholecalciferol [24,25(OH)2D3] with the aid of 1α-hydroxylase and 24-hydroxylase, respectively. The up-regulating effects of 1,25(OH)2D3 on active and passive Ca absorption have been well described (3) although there is disagreement concerning the latter (4). The biological activities of 1,25(OH)2D3 at the intestinal level are mediated mainly by binding to a high affinity receptor (vitamin D receptor; VDR) (5). In addition, there is evidence that 1,25(OH)2D3 has rapid, nongenomic effects on Ca absorption (i.e., transcalcitriemia) that have been reported only in chicks and are transient, modulated locally and inconsistent with the plasma 1,25(OH)2D3 concentrations (4). The endocrine effects of 24,25(OH)2D3 on Ca absorption have been demonstrated in several studies (6–8), including downregulation of VDR-related and of nongenomic effects of 1,25(OH)2D3 on Ca absorption (9).

The in vivo effects of vitamin D3 toxicity are well established (10–12). The effects of vitamin D3 supplementation have been studied extensively in the elderly and children with vitamin D3 deficiency and/or negative Ca balance, including its effects on osteoporosis, renal failure and rickets (13–15). However, there is a lack of information concerning long-term
effects of moderate vitamin D₃ supplementation on the hormonal regulation of Ca metabolism in healthy, growing individuals in positive Ca balance.

Skeletal growth at high rates is a formidable challenge for both Ca and vitamin D₃ metabolism, and any disturbance may have important consequences. Ca metabolism in relation to skeletal growth and development has been studied in different animals, including dogs (16,17). Because interlaboratory CV for mean plasma 25(OH)D₃ concentrations may be 38% (18), absolute plasma concentrations cannot be compared. However, pathophysiologic mechanisms studied in dogs may well serve for extrapolation to humans (19,20). Dogs are convenient models with which to study the influence of vitamin D₃ on Ca metabolism because they are completely dependent on dietary intake of vitamin D₃ (21). This is attributed to the restricted availability of the vitamin D₃ precursor, 7-dehydrocholesterol, in the skin. Because vitamin D₃ status in dogs is easily controlled, seasonal variations of plasma vitamin D₃ metabolite concentrations do not exist. The Great Dane breed provides a very attractive research model because it undergoes in a short time a period of gradual growth after weaning until 6 mo of age, simulating the growth curves of children. This dog breed has a body weight (BW) of ~6 kg at weaning and of ~70 kg at growth-plate closure, a stage reached in a 12- to 15-mo period. In addition, its BW allows for sequential and simultaneous sampling of material for long-term studies.

To evaluate the long-term effects of moderate dietary vitamin D₃ supplementation on the hormonal regulation of intestinal Ca absorption during growth, two groups of dogs were studied, i.e., a control group vs. an eightfold dietary-supplemented vitamin D₃ group. Dogs were studied from weaning at 6 wk until 4 mo of age and Ca absorption, and calcium and growth-regulating hormones were measured. In addition, the production and metabolic clearance of 1,25(OH)₂D₃ were investigated.

MATERIALS AND METHODS

Animals and diets. Male (n = 6) and female (n = 8) pure-bred Great Dane dogs (Utrecht University, The Netherlands), originating from three different litters, were divided into two groups at 3 wk of age: a control group (n = 7, 44.6 kg) and a dietary vitamin D₃-supplemented group (n = 7, 48.1 kg). Pups were fed one of two dry pellet diets (Table 1) formulated to be comparable in energy, Ca and phosphate (P) concentrations as confirmed by analysis of (Table 2). The control diet contained the recommended amount of 12.5 μg vitamin D₃/kg diet (22,23), whereas the supplemented vitamin D₃ diet contained a total of 100 μg vitamin D₃/kg diet. Diets were analyzed for their vitamin D₃ content (24) in a reference laboratory (TNO Nutrition and Food Research, Zeist, The Netherlands). At 3 wk of age, partial weaning began and the pups received their diet as a gruel in addition to the bitch milk. Pups received their dry diet exclusively by 6 wk of age. Food intake was adapted biweekly to actual BW and provided at two times maintenance energy requirements of each dog (25) for the duration of the study. The Utrecht University Ethical Committee for Animal Care and Use approved all procedures.

Ca absorption. At 14 and 20 wk of age, true Ca absorption (Vₐ) was measured with the aid of one tracer, i.e., ⁴⁵Ca, by techniques described previously and validated for dogs (26,27). The use of only one tracer is justified by the following observations: 1) after intravenous (IV) administration of ⁴⁵Ca, the endogenous fecal excretion (Vₑ) of ⁴⁵Ca is measurable for a maximum of 3 d; 2) after oral administration of ⁴⁵Ca, the nonabsorbed tracer (Vₑ) is measurable for at most 4 d in the feces; and 3) the contribution of Vₑ by the tracer to Vₑ is negligible. Therefore, only one tracer can be used in the balance studies provided that the oral ⁴⁵Ca dose is given at least 3 d after the IV administration and with the assumption that the Ca balance is in a steady state during the 7-d investigation period.

In short, dogs were individually housed in metabolic cages during the 4- to 6-mo balance studies. The actual food intake was measured and Ca intake (Vₛ) was calculated for each investigation period. The endogenous fecal excretion of ⁴⁵Ca (Vₑ) was determined by collection of the feces for 3 consecutive days after an IV dose of 0.25 and 0.4 MBq ⁴⁵Ca as ⁴⁵CaCl₂ in water (specific activity 271.88 MBq/mg, NEN Life Science Products, Boston, MA) at 14 and 20 wk of age, respectively. Vₑ was calculated from the quotient of the part of the injected dose (Rₑ) that was excreted in the feces over 3 d and the integral of plasma specific activity C(t) according to the following formula:

\[Vₑ = Rₑ \int_0^3 C(t)dt. \]

On d 4 of each metabolic study, a dose of ⁴⁵Ca equivalent to the IV dose was administered orally and feces were collected for 4 consecutive days. The fecal content of ⁴⁵Ca was determined to calculate the total fecal content of Ca (Vₛ). Vₛ was calculated by the formula:

\[Vₛ = Vₑ - (Vₚ - Vₛ). \]

All parameters were expressed in mmol Ca/kg body·d. The fractional absorption of Ca (α) was defined as α = Vₛ/Vₛ.

Feces were collected and pooled for each part of the 3- and 4-d investigation periods, weighed and homogenized with a known quantity of distilled water with a blender. Triplicate samples were dried for 24 h at 60°C, weighed, ashed for 6 h at 550°C, and suspended in 10 mL of hydrochloric acid (37% v/v) and then distilled water was added to a total volume of 100 mL. The activity of ⁴⁵Ca was determined in 0.4 mL of the supernatant mixed thoroughly with 4 mL scintillation fluid

TABLE 1

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Control cholecalciferol diet</th>
<th>High cholecalciferol diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>528</td>
<td>528</td>
</tr>
<tr>
<td>Chicken</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Poultry fat</td>
<td>75.5</td>
<td>75.5</td>
</tr>
<tr>
<td>Brewers rice</td>
<td>74.2</td>
<td>74.2</td>
</tr>
<tr>
<td>Mineral mixture¹</td>
<td>35.4</td>
<td>35.4</td>
</tr>
<tr>
<td>Beet pulp</td>
<td>34.0</td>
<td>34.0</td>
</tr>
<tr>
<td>Egg</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Brewers yeast</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Menhaden oil</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Vitamin mixture M²</td>
<td>6.7</td>
<td>0</td>
</tr>
<tr>
<td>Vitamin mixture H³</td>
<td>0</td>
<td>6.7</td>
</tr>
<tr>
<td>Ground flax</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>dl-Methionine</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

¹ Composition of the mineral mixture (amount in 35.4 g): calcium carbonate (Ca = 4.41 g); monosodium phosphate (P = 2.61 g); ferrous sulfate (Fe = 2.55 g); zin oxide (Zn = 2.12 g); cupric sulfate (Cu = 159 mg); manganese oxide (Mn = 283 mg); manganese sulfate (Mn = 205 mg); potassium iodide (I = 32 mg); cobalt carbonate (Co = 5.3 mg); with potassium chloride as the remainder.

² Composition of the vitamin mixture (amount in 6.7 g): vitamin A (13.2 mg); vitamin C (367 mg); cholecalciferol (22.1 μg); vitamin E (226 mg); thiamin (27 mg); riboflavin (168 mg); nicotinic acid (28 mg); calcium pantothenate (52 mg); pyridoxine-HCl (13 mg); biotin (0.76 mg); folic acid (2.5 mg); inositol (17 mg); cyanocobalamin (0.30 mg); choline chloride (228 mg); with rice hulls as the remainder.

³ Composition of the vitamin mixture (amount in 6.7 g): vitamin A (13.2 mg); vitamin C (367 mg); cholecalciferol (220.4 μg); vitamin E (226 mg); thiamin (27 mg); riboflavin (168 mg); nicotinic acid (28 mg); calcium pantothenate (52 mg); pyridoxine-HCl (13 mg); biotin (0.76 mg); folic acid (2.5 mg); inositol (17 mg); cyanocobalamin (0.30 mg); choline chloride (228 mg); with rice hulls as the remainder.
Endogenous metabolic clearance rate (MCR) and production rate (PR) of 1,25(OH)2D3. At 19 wk of age, the MCR of 1,25(OH)2D3 was determined with the aid of a bolus injection of 1,25-dihydroxy[23,24(n)-3H]cholecalciferol [1,25(OH)2D3, specific activity 10.5 GBq/mg, Amersham Pharmacia Biotech, UK] by techniques described previously (36,37). In short, after an IV administration of ~3.7 kBq 1,25(OH)2D3, blood samples were drawn at 4, 6, 8, 10, 15, 20, 30, 45, 60 and 90 min and at 2, 3, 4, 5, 6, 10, 12 and 24 h after the injection and were immediately transferred into EDTA-coated tubes and put on ice until centrifuged and further processed. The plasma disappearance curve of 1,25(OH)2D3 was obtained by counting plasma samples (0.5 mL) with 4 mL scintillation fluid (Ultima Gold, Packard Biosciences BV) in a liquid scintillation counter (1212 Rackbeta, LKB Wallac) for 30 min per sample. Using a computerized nonlinear least-squares fitting procedure, a biexponential function \(C(t) = Ae^{\alpha t} + Be^{\beta t} \) was fitted to the plasma 1,25(OH)2D3 concentration. The MCR of 1,25(OH)2D3 was calculated by the quotient of the injected dose D of 1,25(OH)2D3 and the integral of plasma specific activity of 1,25(OH)2D3 as follows:

\[
MCR = \frac{D}{\int_0^t C(t) \, dt}
\]

where MCR is expressed in L/(kg body mass · d). The PR 1,25(OH)2D3 was derived from the formula: PR [pmol/(kg body mass · d)] = MCR [L/(kg body mass · d)] · endogenous circulating 1,25(OH)2D3 (pmol/L), where these circulating endogenous 1,25(OH)2D3 is the plasma 1,25(OH)2D3 concentration at 19 wk of age.

1α-hydroxylase gene expression. Gene expression levels of 1α-hydroxylase were determined at the middle and the end of the study in all dogs. At 11 wk of age, two kidney biopsies were obtained by fine needle biopsy under guidance of echography with the dog under general anesthesia. At the end of the study, i.e., at 21 wk of age, the dogs were killed with an overdose of Na-pentobarbital and biopsies from the kidney were sampled. Kidney biopsies were immediately frozen in liquid nitrogen and stored at −70°C until required for RNA isolation.

RNA isolation and cDNA synthesis. Frozen kidney tissue sampled at 11 wk of age was resuspended in Qiagen lysis buffer, homogenized using a Polytron, and centrifuged for 3 min at 5000 × g at room temperature. Frozen kidney tissue sampled at 21 wk of age was ground in liquid nitrogen prefrozen cups of a micro-dismembrator (Micro-Dismembrator U, B. Braun Biotech International GmbH, Melsungen, Germany) using 2 cycles of 45 s at 2200 rpm. Milled tissue (30 mg) was resuspended in Qiagen lysis buffer and centrifuged for 3 min at 5000 × g at room temperature. The supernatant was applied to a Qiagen mini-column (Qiagen GmbH, Hilden, Germany) and total RNA was isolated according to the manufacturer’s protocol.

RNA was ethanol precipitated and resuspended in RNAsecure (1X; Ambion, Austin, TX), which was activated at 60°C for 10 min. After DNase I treatment (DNAfreeTM kit, Ambion), RNA was again ethanol precipitated and resuspended in 20 μL of RNase-free water. Total RNA (2 and 3 μg) was used in a cDNA-synthesis reaction with a final volume of 40 and 60 μL (Reverse Transcription System, Promega, Madison, WI) according to the manufacturer’s instructions, for the material sampled at the middle and the end of the study, respectively.

Real-time polymerase chain reaction (PCR). Real-time PCR, based on the high affinity double-stranded DNA-binding dye SYBR green I (SYBR green I, BMA, Rockland, ME), was performed in triplicate in a spectrophotometric thermal cycler (iCycler, BioRad). Data were collected and analyzed with the application software provided. For each real-time PCR reaction, 1.67 μL (from the 40- or 60-μL stock) of cDNA was used in a reaction volume of 50 μL containing 1X PCR buffer, 2 mmol/L MgCl2, 1:100,000 dilution of SYBR green I, 10 nmol/L fluorescent calibration dye (Bio-Rad, Hercules, CA), 200 μmol/L dNTP, 20 pmol forward primer, 20 pmol reverse primer, and 1.25 U of AmpliTaq Gold DNA polymerase (Applied Biosystems, Roche, Branchburg, NJ). Cycling conditions were optimized for the reaction of each target gene. Primer pairs were
designed using PrimerSelect software (DNASTAR, Madison, WI). The primer pair of β-actin based on the human sequence (M10277) distinguishes cDNA from pseudogene DNA and the sense (F) and antisense (R) primers for its amplification were 5'-GATAAGCCGCGCCGTCGTC-3' (exon 2; 1102–1122) and 5'-GGGCTTGGAAGTTGACCTC-3' (exon 4; 2038–2058), respectively. Based on the human sequence of 1α-hydroxylase (AB005989) the F and R primers 5'-CCGGGCTTGGACAGACATC-3' (exon 1; 103–121) and 5'-GAGGAGGACGGCCCGCCGAGACT-3' (exon 3; 347–440), respectively, were used for amplification of a 337-bp fragment. Based on the homologous canine sequence of this PCR product, a 134-bp fragment was designed with the F and R primers 5'-CCGCCCCCTTGCGCTC-3' (exon 2) and 5'-CCTCGCCCTCGGGTGAGCA-3' (exon 2, 3), respectively.

Melt curves (iCycler, BioRad) and agarose gel electrophoresis were used to examine each sample for purity and standard sequencing procedures (ABI PRISM 310 Genetic Analyzer, Applied Biosystems) were used to verify the analytical specificity of the PCR products. Standard curves constructed by plotting the log of the starting amount vs. the threshold cycle were generated using serial 10-fold dilutions of known amounts of PCR products (from a conventional PCR). The amplification efficiency, E (%) = \left(\frac{10^{1/2^{1-S}} - 1}{10}\right) \times 100 \% \text{ (slope)}

of each standard curve was determined and appeared to be >90% over a large dynamic range (6–8 orders of magnitude). For each experimental sample, the amounts of 1α-hydroxylase and β-actin as endogenous references were determined from the appropriate standard curve in an autologous experiment. The amount of target was divided by the amount of endogenous reference to obtain a normalized target value. Each of the normalized target values was divided by the normalized target value of the calibrator (cvitD group) to generate relative expression levels.

VDR analysis. Nuclear extracts were prepared as described by Sandgren and DeLuca (38). Briefly, at the end of the study (i.e., at 21 wk of age) after killing and immediate laparotomy, the mucosal layer was sampled from the following defined intestinal segments: proximal and distal duodenum, beginning, middle, and end of the jejunum, ileum and colon. Segments were rinsed with ice-cold TED saline (50 mmol/L Tris-HCl, pH 7.4, 1.5 mmol/L EDTA, 5 mmol/L dithiothreitol, 10 mg/L TPCK, 1 mg/L leupeptin, 1 mg/L pepstatin) and the mucosal layer was scraped and washed three times in TED saline by centrifugation for 10 min at 3000 \times g and 4°C. Samples were homogenized in 4 volumes (wt/vol) KTED-300 (TED, 300 mmol/L KCl) in a glass Teflon homogenizer. Homogenates were centrifuged at 100,000 \times g for 1 h at 4°C and supernatants (nuclear extracts) were stored at −70°C until further assayed. The concentration of VDR was measured by a VDR-specific ELISA (39) and expressed as fmol/mg mucosal protein.

Statistical analysis. Statistical analyses were performed using the SPSS for Windows 10.1 (SPSS Inc, Chicago, IL). Differences within groups were analyzed by the unpaired two-tailed Student’s t test. After testing for homogeneity of variance with Levene’s test, the significance of differences in VDR concentration between groups was tested by the nonparametric Wilcoxon-Man Whitney U test because of the considerably high SD of the mean (i.e., in the majority >50% of the mean). Differences were considered significant when P < 0.05. Results are presented as means ± SEM.

RESULTS

The dogs were generally healthy, grew well and consumed all of the food that was administered daily. Consequently, energy and food intakes per kg metabolic BW (kg-0.75) did not differ between groups. The growth rates were 1.5 ± 0.1 and 1.5 ± 0.2 kg BW/wk of age for the cvitD and hvitD groups, respectively, and did not differ. Diets contained no detectable ergocalciferol and the vitamin D3 content was as given in the Materials and Methods.

Ca absorption. At all ages, \(V_i \) did not differ between groups (Table 3). The \(V_i \) did not differ between groups at 14 wk of age, whereas at 20 wk of age, it was significantly higher in the hvitD group than in the cvitD group. At both ages, \(V_i \) and \(\alpha \) were significantly lower in the hvitD group than in the cvitD group.

Biochemical profiles. The hvitD group consumed approximately 8 times as much vitamin D3/kg BW as the cvitD group (Table 3). Plasma Ca concentrations did not differ between groups throughout the study and stayed within limits of the reference values in growing Great Dane dogs (35,40).

MCR and PR of 1,25(OH)2D3. At 19 wk of age, the MCR and PR of 1,25(OH)2D3 were significantly higher in the hvitD group than in the cvitD group (Table 3).

Gene expression of 1α-hydroxylase. At 11 wk of age, renal gene expression levels of 1α-hydroxylase did not differ between groups (data not presented), whereas at 21 wk of age,

Table 3

<table>
<thead>
<tr>
<th>Cholecalciferol, μg/kg diet</th>
<th>cvitD group</th>
<th>hvitD group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, wk</td>
<td>12.5</td>
<td>100</td>
</tr>
<tr>
<td>Body weight, kg</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Cholecalciferol intake, μg/(kg body·d)</td>
<td>16.5 ± 0.6</td>
<td>15.0 ± 0.5</td>
</tr>
<tr>
<td>(V_i), mmol/(kg body·d)</td>
<td>0.44 ± 0.01</td>
<td>0.37 ± 0.01</td>
</tr>
<tr>
<td>(V_i), mmol/(kg body·d)</td>
<td>6.98 ± 0.09</td>
<td>6.20 ± 0.09</td>
</tr>
<tr>
<td>(V_i), mmol/(kg body·d)</td>
<td>0.88 ± 0.05</td>
<td>0.88 ± 0.05</td>
</tr>
<tr>
<td>(V_i), mmol/(kg body·d)</td>
<td>2.13 ± 0.30</td>
<td>2.42 ± 0.23</td>
</tr>
<tr>
<td>(V_i), mmol/(kg body·d)</td>
<td>5.73 ± 0.27</td>
<td>4.15 ± 0.21</td>
</tr>
<tr>
<td>(\alpha), %</td>
<td>82.2 ± 4.0</td>
<td>68.0 ± 3.7</td>
</tr>
</tbody>
</table>

Age, wk	20	
Body weight, kg	27.4 ± 0.7	
Cholecalciferol intake, μg/(kg body·d)	0.36 ± 0.01	
\(V_i \), mmol/(kg body·d)	6.02 ± 0.09	
\(V_i \), mmol/(kg body·d)	0.88 ± 0.05	
\(V_i \), mmol/(kg body·d)	2.42 ± 0.23	
\(V_i \), mmol/(kg body·d)	4.15 ± 0.21	
\(\alpha \), %	69.0 ± 3.7	

1 Data are presented as means ± SEM, n = 7, * , P > 0.05; †, P < 0.01; and **, P = 0.069 different from the control group at the same age
2 cvitD, control group; hvitD, high vitamin D group; \(V_i \), Ca intake; \(V_i \), endogenous fecal excretion of Ca; \(V_i \), total fecal content of Ca; \(V_i \), true Ca absorption; \(\alpha \), fractional Ca absorption.
they were 12.9-fold greater (with \(P < 0.01 \)) in the hVitD group compared with the cVitD group.

Intestinal VDR concentration. At the end of the study, VDR concentrations did not differ between groups and decreased gradually and progressively in the distal segments of the intestine in both groups, ranging from 349 ± 35 fmol/mg protein in the proximal duodenum to 92 ± 20 fmol/mg protein in the colon.

DISCUSSION

Two groups of young dogs were raised under identical circumstances and with dietary composition differing only in vitamin D\(_3\) content. The cVitD group was fed a diet with the amount of vitamin D\(_3\) recommended by the international reference organization of the National Research Council (22) and had growth curves, radiological and histological skeletal development (not shown here), and Ca metabolism consistent with previous studies in healthy growing Great Danes (35). The hVitD group also grew well with growth rates similar to those of the cVitD group (41). Chronic intake of food fortified with 8 times the amount of vitamin D\(_3\) had major influences on the formation of the biologically important vitamin D\(_3\) metabolites and resulted in downregulation of intestinal Ca absorption. The mechanisms implicated in the depression of intestinal Ca absorption are discussed.

Fractional Ca absorption (\(\alpha \)) was significantly lower in the hVitD compared with the cVitD group during the study and was reflected in the slightly but significantly increased \(V_a \) at the end of the study (42). Despite the lower \(\alpha \), the hVitD group retained its Ca homeostasis as indicated by maintenance of plasma PTH concentrations at control levels (43). Vitamin D\(_3\) metabolism in relation to Ca absorption is influenced by a wide variety of minerals and hormones of which plasma Ca, P\(_\text{a}\), PTH, CT, GH, IGF-I and vitamin D\(_3\) metabolites concentrations are the most important. Because these concentrations did not differ between groups during the study, we assume that they did not differently affect vitamin D\(_3\) metabolism in the two groups. The high growth rate and corresponding high GH and IGF-I levels may contribute to the higher plasma 1,25(OH)\(_2\)D\(_3\) concentrations in Great Dane dogs (44) when compared with healthy children (i.e., 101 ± 31 pmol/L) (45). It remains to elucidated whether vitamin D\(_3\) metabolism differs during growth at high and slow growth rates.

The decreased Ca absorption in the hVitD group is most likely explained by the only difference between the groups, i.e., the vitamin D\(_3\) intake and consequently, the different plasma concentrations of the vitamin D\(_3\) metabolites. Surprisingly, the hVitD group had plasma 25(OH)D\(_3\) concentrations not differing from the control group, plasma 1,25(OH)\(_2\)D\(_3\) concentrations lower than the cVitD group at 10, 13 and 21 wk of age, and plasma 24,25(OH)\(_2\)D\(_3\) concentrations significantly higher than the cVitD group starting at 13 wk of age. Plasma 25(OH)D\(_3\) concentrations are influenced by a variety

![FIGURE 1](https://academic.oup.com/jn/article-abstract/132/9/2644/4687889/2648)

FIGURE 1 Plasma concentrations of the main cholecalciferol metabolites during moderate cholecalciferol supplementation in growing Great Dane dogs from partial weaning at 3 wk until 21 wk of age. Data are presented as means ± SEM, \(n = 7 \). Asterisks indicate different from controls at that age: *\(P < 0.05 \) and **\(P < 0.01 \).

FIGURE 2 Metabolic clearance rate (MCR) and production rate (PR) of 1,25(OH)\(_2\)D\(_3\) at 19 wk of age during moderate cholecalciferol supplementation in growing Great Dane dogs from partial weaning at 3 wk until 21 wk of age. Data are presented as means ± SEM, \(n = 7 \). Asterisks indicate different from controls at that age: *\(P < 0.05 \) and **\(P < 0.01 \).
of factors, including vitamin D3 intake (46), successive hydroxylation into 1,25(OH)2D3 and 24,25(OH)2D3 (47), and negative feedback from 1,25(OH)2D3 on 25-hydroxylation (48). None of the factors regulating plasma 1,25(OH)2D3 and 24,25(OH)2D3 concentrations differed between groups except for vitamin D3 intake (49). Thus, during positive Ca balance, high vitamin D3 intake (as in the hVitD group) enhances 24-hydroxylase activity and results in enhanced production of 24,25(OH)2D3 (11,12) and probably competitive inhibition of the synthesis of 1,25(OH)2D3 from 25(OH)D3 as has been suggested in Ca-deficient rats (50). Accordingly, between 10 and 13 wk of age in the hVitD group, plasma 24,25(OH)2D3 concentrations started to increase, whereas plasma 1,25(OH)2D3 concentrations were lower than in the cVitD group. The MCR of 1,25(OH)2D3 at 19 wk of age was significantly higher in the hVitD group than in the cVitD group, reflecting the upregulated 24-oxidation pathway of 1,25(OH)2D3 and resulting in down-regulation of plasma 1,25(OH)2D3 concentrations. The latter is consistent with earlier reports of in vivo studies in rats (11,51). To counterbalance the increased MCR, the PR of 1,25(OH)2D3 increased in the hVitD group; this was demonstrated at 19 wk of age by using [3H]-1,25(OH)2D3 and by the 12.9-fold increase in the renal gene expression levels of 1α-hydroxylase at 21 wk of age compared with the cVitD group. Consequently, the combination of enhanced production of 24,25(OH)2D3 and 1,25(OH)2D3 resulted in successive hydroxylation of the substrate 25(OH)D3 and the maintenance of the plasma 25(OH)2D3 concentrations in the hVitD group at the same levels as those in the cVitD group.

The attenuated α in the hVitD group during the in vivo 45Ca balance studies can be attributed in part to a decreased biologic effect of the moderately decreased plasma 1,25(OH)2D3 concentrations. Biological activity of nuclear hormones, including 1,25(OH)2D3, is mediated by regulation of their receptor levels in target tissues. Intestinal VDR concentrations in the hVitD group were maintained at the same levels as in the cVitD group and thus did not account for the observed attenuation of α in the hVitD group. The most important determinant of α has been reported to be the plasma 1,25(OH)2D3 concentration in healthy women (52). Regression analysis reported by Morris et al. (52) predicted an 18.7% difference in α to be related to a 60% decrease in plasma 1,25(OH)2D3 concentrations. Consequently, at 13 wk of age in the hVitD group, it is questionable whether the 18% decreased plasma 1,25(OH)2D3 concentration decreased α to the same magnitude, i.e., 18.7%. Accordingly, at 20 wk of age in the hVitD group, plasma 1,25(OH)2D3 concentrations similar to the cVitD group were accompanied by a 15% lower α. Thus, in the hVitD group, the decrease in α is not adequately explained by the moderate decrease in plasma 1,25(OH)2D3 concentrations. The remainder of the difference in α between the cVitD and hVitD group may be due to a counterregulating effect of the increased plasma 24,25(OH)2D3 concentrations on intestinal Ca absorption. Although disputed by others (53), 24,25(OH)2D3 has been suggested to have endocrine effects on the intestine, in addition to the described actions on bone, cartilage and fracture healing (54). The effects of 24,25(OH)2D3 on intestinal Ca absorption can be executed by 1) an allosteric effect of 24,25(OH)2D3 on 1,25(OH)2D3 binding to the VDR (9, 22) a binding domain/receptor for 24,25(OH)2D3 independent of the VDR (6), and 3) a suppressive effect of 24,25(OH)2D3 on the rapid nongenomic actions of 1,25(OH)2D3 on P absorption (7) and transcaltachia (8) in the intestine. Transcalcachia has so far been reported only in chicks and whether it is applicable in mammalian species requires further study. Therefore, in the hVitD group a putative inhibitory effect of the elevated plasma 24,25(OH)2D3 concentrations on intestinal Ca transport can be expected.

In conclusion, 24-hydroxylase activity is the key to explain the changes in vitamin D3 metabolites and in Ca absorption during chronic moderate vitamin D3 supplementation. Further studies of 24-hydroxylase activity are necessary before all questions are answered. The results of this study indicate that chronic dietary vitamin D3 supplementation of growing dogs in positive Ca balance has a downregulating effect on Ca absorption accompanied by moderately decreased plasma 1,25(OH)2D3 and increased plasma 24,25(OH)2D3 concentrations. The vitamin D3-supplemented group retained its Ca homeostasis, as indicated by the maintenance of the plasma PTH concentrations within control levels. The attenuated Ca absorption is only partially due to the low plasma 1,25(OH)2D3, a consequence of accelerated degradation mediated by 24-hydroxylase. In addition, 24,25(OH)2D3 may have a downregulating effect on intestinal Ca absorption in growing dogs mediated either by its own receptor or an allosteric effect on the VDR.

ACKNOWLEDGMENTS

Stable metabolites of 25(OH)D3, and 24,25(OH)2D3 were kindly provided by J. P. van de Velden (Solvay Pharmaceuticals, Weesp, The Netherlands). The authors would like to acknowledge the attendants for good care of the pups and their assistance in performing the experiments and the assistance of the Biochemical Laboratory.

LITERATURE CITED

